Skip to main content

Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System

  • Chapter
  • First Online:
Bacterial Cell Walls and Membranes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 92))

Abstract

The Bacterial Phosphoenolpyruvate (PEP) : Sugar Phosphotransferase System (PTS) mediates the uptake and phosphorylation of carbohydrates, and controls the carbon- and nitrogen metabolism in response to the availability of sugars. PTS occur in eubacteria and in a few archaebacteria but not in animals and plants. All PTS comprise two cytoplasmic phosphotransferase proteins (EI and HPr) and a species-dependent, variable number of sugar-specific enzyme II complexes (IIA, IIB, IIC, IID). EI and HPr transfer phosphorylgroups from PEP to the IIA units. Cytoplasmic IIA and IIB units sequentially transfer phosphates to the sugar, which is transported by the IIC and IICIID integral membrane protein complexes. Phosphorylation by IIB and translocation by IIC(IID) are tightly coupled. The IIC(IID) sugar transporters of the PTS are in the focus of this review. There are four structurally different PTS transporter superfamilies (glucose, glucitol, ascorbate, mannose) . Crystal structures are available for transporters of two superfamilies: bcIICmal (MalT, 5IWS, 6BVG) and bcIICchb (ChbC, 3QNQ) of B. subtilis from the glucose family, and IICasc (UlaA, 4RP9, 5ZOV) of E. coli from the ascorbate superfamily . They are homodimers and each protomer has an independent transport pathway which functions by an elevator-type alternating-access mechanism. bcIICmal and bcIICchb have the same fold, IICasc has a completely different fold. Biochemical and biophysical data accumulated in the past with the transporters for mannitol (IICBAmtl) and glucose (IICBglc) are reviewed and discussed in the context of the bcIICmal crystal structures. The transporters of the mannose superfamily are dimers of protomers consisting of a IIC and a IID protein chain. The crystal structure is not known and the topology difficult to predict. Biochemical data indicate that the IICIID complex employs a different transport mechanism . Species specific IICIID serve as a gateway for the penetration of bacteriophage lambda DNA across, and insertion of class IIa bacteriocins into the inner membrane. PTS transporters are inserted into the membrane by SecYEG translocon and have specific lipid requirements. Immunoelectron- and fluorescence microscopy indicate a non-random distribution and supramolecular complexes of PTS proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboulwafa M, Saier MH Jr (2002) Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidyl glycerol in Escherichia coli: studies with a pgsA mutant lacking phosphatidyl glycerophosphate synthase. Res Microbiol 153:667–677

    Article  CAS  PubMed  Google Scholar 

  • Aboulwafa M, Saier H (2003) Soluble sugar permeases of the phosphotransferase system in Escherichia coli: evidence for two physically distinct forms of the proteins in vivo. Mol Microbiol 48:131–141

    Article  CAS  PubMed  Google Scholar 

  • Aboulwafa M, Saier MH Jr (2011) Biophysical studies of the membrane-embedded and cytoplasmic forms of the glucose-specific enzyme II of the E. coli phosphotransferase system (PTS). PLoS One 6:e24088. https://doi.org/10.1371/journal.pone.0024088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aboulwafa M, Chung YJ, Wai HH, Saier MH Jr (2003) Studies on the Escherichia coli glucose-specific permease, PtsG, with a point mutation in its N-terminal amphipathic leader sequence. Microbiology 149:763–771

    Article  CAS  PubMed  Google Scholar 

  • Aboulwafa M, Hvorup R, Saier MH Jr (2004) Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidylethanolamine in Escherichia coli: studies with a pssA mutant lacking phosphatidylserine synthase. Arch Microbiol 181:26–34

    Article  CAS  PubMed  Google Scholar 

  • Abranches J, Candella MM, Wen ZT, Baker HV, Burne RA (2006) Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans. J Bacteriol 188:3748–3756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adler J, Epstein W (1974) Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis. Proc Natl Acad Sci USA 71:2895–2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali MH, Imperiali B (2005) Protein oligomerization: how and why. Bioorg Med Chem 13:5013–5020

    Article  CAS  PubMed  Google Scholar 

  • Balderas-Hernandez VE, Sabido-Ramos A, Silva P, Cabrera-Valladares N, Hernandez-Chavez G, Baez-Viveros JL, Martinez A, Bolivar F, Gosset G (2009) Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microb Cell Fact 8:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barabote RD, Saier MH Jr (2005) Comparative genomic analyses of the bacterial phosphotransferase system. Microbiol Mol Biol Rev 69:608–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barraza DE, Rios Colombo NS, Galvan AE, Acuna L, Minahk CJ, Bellomio A, Chalon MC (2017) New insights into enterocin CRL35; mechanism of action and immunity revealed by heterologous expression in Escherichia coli. Mol Microbiol 105:922–933

    Article  CAS  PubMed  Google Scholar 

  • Basu S (2003) Biography of Professor Dr. Saul Roseman. Glycoconjugate J 20:7

    Article  Google Scholar 

  • Beck K, Wu LF, Brunner J, Müller M (2000) Discrimination between SRP-and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and trigger factor. EMBO J 19:134–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begley GS, Warner KA, Arents JC, Postma PW, Jacobson GR (1996) Isolation and characterization of a mutation that alters the substrate specificity of the Escherichia coli glucose permease. J Bacteriol 178:940–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beutler R, Kaufmann M, Ruggiero F, Erni B (2000a) The glucose transporter of the escherichia coli phosphotransferase system: linker insertion mutants and split variants. Biochemistry 39:3745–3750

    Article  CAS  PubMed  Google Scholar 

  • Beutler R, Ruggiero F, Erni B (2000b) Folding and activity of circularly permuted forms of a polytopic membrane protein. Proc Natl Acad Sci USA 97:1477–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bieler S, Silva F, Soto C, Belin D (2006) Bactericidal activity of both secreted and nonsecreted microcin E492 requires the mannose permease. J Bacteriol 188:7049–7061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bieler S, Silva F, Belin D (2010) The polypeptide core of Microcin E492 stably associates with the mannose permease and interferes with mannose metabolism. Res Microbiol 161:706–710

    Article  CAS  PubMed  Google Scholar 

  • Boer H, Ten Hoeve-Duurkens RH, Schuurman-Wolters GK, Dijkstra A, Robillard GT (1994) Expression, purification, and kinetic characterization of the mannitol transport domain of the phosphoenolpyruvate-dependent mannitol phosphotransferase system of Escherichia coli—kinetic evidence that the E-coli mannitol transport protein is a functional dimer. J Biol Chem 269:17863–17871

    CAS  PubMed  Google Scholar 

  • Boer H, Ten Hoeve-Duurkens RH, Lolkema JS, Robillard GT (1995) Phosphorylation site mutants of the mannitol transport protein enzyme IImtl of Escherichia coli: studies on the interaction between the mannitol translocating C-domain and the phosphorylation site on the energy-coupling B-domain. Biochemistry 34:3239–3247

    Article  CAS  PubMed  Google Scholar 

  • Boer H, Ten Hoeve-Duurkens RH, Robillard GT (1996) Relation between the oligomerization state and the transport and phosphorylation function of the Escherichia coli mannitol transport protein: interaction between mannitol-specific enzyme II monomers studied by complementation of inactive site-directed mutants. Biochemistry 35:12901–12908

    Article  CAS  PubMed  Google Scholar 

  • Bolhuis HH, Palm PP, Wende AA, Falb MM, Rampp MM, Rodriguez-Valera FF, Pfeiffer FF, Oesterhelt DD (2006) The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7:169. https://doi.org/10.1186/1471-2164-7-169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouma CL, Roseman S (1996) Sugar transport by the marine chitinolytic bacterium Vibrio furnissii. Molecular cloning and analysis of the mannose/glucose permease. J Biol Chem 271:33468–33475

    Article  CAS  PubMed  Google Scholar 

  • Bouma CL, Meadow ND, Stover EW, Roseman S (1987) II-BGlc, a glucose receptor of the bacterial phosphotransferase system: molecular cloning of ptsG and purification of the receptor from an overproducing strain of Escherichia coli. Proc Natl Acad Sci USA 84:930–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broos J, Strambini GB, Gonnelli M, Vos EP, Koolhof M, Robillard GT (2000) Sensitive monitoring of the dynamics of a membrane-bound transport protein by tryptophan phosphorescence spectroscopy. Biochemistry 39:10877–10883

    Article  CAS  PubMed  Google Scholar 

  • Brouwer M, Elferink MGL, Robillard GT (1982) Phosphoenolpyruvate-dependent fructose phosphotransferase system of Rhodopseudomonas sphaeroides: purification and physicochemical and immunochemical characterization of a membrane-associated enzyme I. Biochemistry 21:82–88

    Article  CAS  PubMed  Google Scholar 

  • Buhr A, Erni B (1993) Membrane topology of the glucose transporter of Escherichia coli. J Biol Chem 268:11599–11603

    CAS  PubMed  Google Scholar 

  • Buhr A, Daniels GA, Erni B (1992) The glucose transporter of Escherichia coli. Mutants with impaired translocation activity that retain phosphorylation activity. J Biol Chem 267:3847–3851

    CAS  PubMed  Google Scholar 

  • Buhr A, Flükiger K, Erni B (1994) The glucose transporter of Escherichia coli. Overexpression, purification, and characterization of functional domains. J Biol Chem 269:23437–23443

    CAS  PubMed  Google Scholar 

  • Cao Y, Jin X, Levin EJ, Huang H, Zong Y, Quick M, Weng J, Pan Y, Love J, Punta M, Rost B, Hendrickson WA, Javitch JA, Rajashankar KR, Zhou M (2011) Crystal structure of a phosphorylation-coupled saccharide transporter. Nature 473:50–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona SB, Moreno FM, Bolivar F, Gosset G, Escalante A (2015) Inactivation of the PTS as a strategy to engineer the production of aromatic metabolites in Escherichia coli. J Mol Microbiol Biotechnol 25:195–208

    Article  CAS  PubMed  Google Scholar 

  • Castellana M, Wilson MZ, Xu Y, Joshi P, Cristea IM, Rabinowitz JD, Gitai Z, Wingreen NS (2014) Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat Biotechnol 32:1011–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Amster-Choder O (1998) BglF, the sensor of the bgl system and the β-glucosides permease of Escherichia coli: evidence for dimerization and intersubunit phosphotransfer. Biochemistry 37:8714–8723

    Article  CAS  PubMed  Google Scholar 

  • Chen JS, Reddy V, Chen JH, Shlykov MA, Zheng WH, Cho J, Yen MR, Saier MH Jr (2011) Phylogenetic characterization of transport protein superfamilies: Superiority of superfamilytree programs over those based on multiple alignments. J Mol Microbiol Biotechnol 21:83–96

    Article  CAS  PubMed  Google Scholar 

  • Clore GM, Venditti V (2013) Structure, dynamics and biophysics of the cytoplasmic protein-protein complexes of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Trends Biochem Sci 38:515–530

    Article  CAS  PubMed  Google Scholar 

  • Cotter PD (2014) An ‘Upp’-turn in bacteriocin receptor identification. Mol Microbiol 92:1159–1163

    Article  CAS  PubMed  Google Scholar 

  • Crigler J, Bannerman-Akwei L, Cole AE, Eiteman MA, Altman E (2018) Glucose can be transported and utilized in Escherichia coli by an altered or overproduced N-acetylglucosamine phosphotransferase system (PTS). Microbiology 164:163–172

    Article  CAS  PubMed  Google Scholar 

  • Cumby N, Reimer K, Mengin-Lecreulx D, Davidson AR, Maxwell KL (2015) The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK97. Mol Microbiol 96(3):437–447. https://doi.org/10.1111/mmi.12918

    Article  CAS  PubMed  Google Scholar 

  • Curtis SJ, Epstein W (1975) Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase. J Bacteriol 122:1189–1199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dalvit C, Vulpetti A (2016) Weak intermolecular hydrogen bonds with fluorine: detection and implications for enzymatic/chemical reactions, chemical properties, and ligand/protein fluorine nmr screening. Chem Eur J 22:7592–7601

    Article  CAS  PubMed  Google Scholar 

  • Danchin A (1989) The PTS after 25 Years. FEMS Microbiol Rev 5:1–200

    Article  Google Scholar 

  • Poncet S, Milohanic E, Maze A, Abdallah JN, Ake F, Larribe M, Deghmane AE, Taha MK, Dozot M, De B, X, Letesson JJ, Deutscher J (2009) Correlations between carbon metabolism and virulence in bacteria. Contrib Microbiol 16:88–102

    Google Scholar 

  • DeLuca S, Khar K, Meiler J (2015) Fully flexible docking of medium sized ligand libraries with RosettaLigand. PLoS One 10:e0132508. https://doi.org/10.1371/journal.pone.0132508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deutscher J, Aké FMD, Derkaoui M, Zébré AC, Cao TN, Bouraoui H, Kentache T, Mokhtari A, Milohanic E, Joyet P (2014) The bacterial phosphoenolpyruvate: carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 78:231–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diep DB, Skaugen M, Salehian Z, Holo H, Nes IF (2007) Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc Natl Acad Sci USA 104:2384–2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dijkstra DS, Broos J, Lolkema JS, Enequist H, Minke W, Robillard GT (1996) A fluorescence study of single tryptophan-containing mutants of enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent mannitol transport system. Biochemistry 35:6628–6634

    Article  CAS  PubMed  Google Scholar 

  • Dijkstra DS, Broos J, Visser AJWG, Van Hoek A, Robillard GT (1997) Dynamic fluorescence spectroscopy on single tryptophan mutants of EIImtl in detergent micelles. Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay. Biochemistry 36:4860–4866

    Article  CAS  PubMed  Google Scholar 

  • Dobson L, Reményi I, Tusnady GE (2015) CCTOP: a Consensus Constrained TOPology prediction web server. Nucleic Acids Res 43:W408–W412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drew D, Boudker O (2016) Shared molecular mechanisms of membrane transporters. Annu Rev Biochem 85:543–572

    Article  CAS  PubMed  Google Scholar 

  • Drider D, Fimland G, Hechard Y, McMullen LM, Prevost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duquesne S, Destoumieux-Garzon D, Peduzzi J, Rebuffat S (2007) Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 24:708–734

    Article  CAS  PubMed  Google Scholar 

  • Elferink MG, Driessen AJ, Robillard GT (1990) Functional reconstitution of the purified phosphoenolpyruvate-dependent mannitol-specific transport system of Escherichia coli in phospholipid vesicles: coupling between transport and phosphorylation. J Bacteriol 172:7119–7125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott J, Arber W (1978) Escherichia coli mutants which block phage lambda DNA injection coincide with ptsM which determines a component of a sugar transport system. Mol Gen Genet 161:1–8

    Article  CAS  PubMed  Google Scholar 

  • Emmons SW, MacCosham V, Baldwin RL (1975) Tandem genetic duplications in phage lambda. III. The frequency of duplication mutants in two derivatives of phage lambda is independent of known recombination systems. J Mol Biol 91:133–146

    Article  CAS  PubMed  Google Scholar 

  • Erni B (1986) Glucose-specific permease of the bacterial phosphotransferase system: phosphorylation and oligomeric structure of the glucose-specific IIGlc-IIIGlc complex of Salmonella typhimurium. Biochemistry 25:305–312

    Article  CAS  PubMed  Google Scholar 

  • Erni B (2001) Glucose transport by the bacterial phosphotransferase system (PTS): an interface between energy- and signal transduction. In: Winkelmann G (ed) Microbial transport systems. Wiley-VCH, Weinheim Germany, pp 115–138

    Chapter  Google Scholar 

  • Erni B (2013) The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS): an interface between energy and signal transduction. J Iran Chem Soc 10:593–630

    Article  CAS  Google Scholar 

  • Erni B, Zanolari B (1985) The mannose-permease of the bacterial phosphotransferase system. Gene cloning and purification of the enzyme IIMan/IIIMan complex of Escherichia coli. J Biol Chem 260:15495–15503

    CAS  PubMed  Google Scholar 

  • Erni B, Zanolari B (1986) Glucose-permease of the bacterial phosphotransferase system. Gene cloning, overproduction, and amino acid sequence of enzyme IIGlc. J Biol Chem 261:16398–16403

    CAS  PubMed  Google Scholar 

  • Erni B, Trachsel H, Postma PW, Rosenbusch JP (1982) Bacterial phosphotransferase system. Solubilization and purification of the glucose-specific enzyme II from membranes of Salmonella typhimurium. J Biol Chem 257:13726–13730

    CAS  PubMed  Google Scholar 

  • Erni B, Zanolari B, Kocher HP (1987) The mannose permease of Escherichia coli consists of three different proteins. Amino acid sequence and function in sugar transport, sugar phosphorylation, and penetration of phage lambda DNA. J Biol Chem 262:5238–5247

    CAS  PubMed  Google Scholar 

  • Erni B, Zanolari B, Graff P, Kocher HP (1989) Mannose permease of Escherichia coli. Domain structure and function of the phosphorylating subunit. J Biol Chem 264:18733–18741

    CAS  PubMed  Google Scholar 

  • Erni B, Siebold C, Christen S, Srinivas A, Oberholzer A, Baumann U (2006) Small substrate, big surprise: fold, function and phylogeny of dihydroxyacetone kinases. Cell Mol Life Sci 63:890–900

    Article  CAS  PubMed  Google Scholar 

  • Esquinas-Rychen M, Erni B (2001) Facilitation of bacteriophage lambda DNA injection by inner membrane proteins of the bacterial phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS). J Mol Micro Biotechnol 3:361–370

    CAS  Google Scholar 

  • Facey SJ, Kuhn A (2004) Membrane integration of E. coli model membrane proteins. Biochim Biophys Acta 1694:55–66

    Article  CAS  PubMed  Google Scholar 

  • Fekkes P, Driessen AJM (1999) Protein targeting to the bacterial cytoplasmic membrane. Microbiol Mol Biol Rev 63:161–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gabor E, Gohler AK, Kosfeld A, Staab A, Kremling A, Jahreis K (2011) The phosphoenolpyruvate-dependent glucose-phosphotransferase system from Escherichia coli K-12 as the center of a network regulating carbohydrate flux in the cell. Eur J Cell Biol 90:711–720

    Article  CAS  PubMed  Google Scholar 

  • Gabrielsen C, Brede DA, Hernandez PE, Nes IF, Diep DB (2012) The maltose ABC transporter in Lactococcus lactis facilitates high-level sensitivity to the circular bacteriocin garvicin ML. Antimicrob Agents Chemother 56:2908–2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galinier A, Deutscher J (2017) Sophisticated regulation of transcriptional factors by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Mol Biol 429:773–789

    Article  CAS  PubMed  Google Scholar 

  • Garcia De Gonzalo CV, Denham EL, Mars RA, Stulke J, van der Donk WA, Van Dijl JM (2015) The phosphoenolpyruvate: sugar phosphotransferase system is involved in sensitivity to the glucosylated bacteriocin sublancin. LID—AAC.01519-15 [pii]. Antimicrob Agents Chemother 59:6844–6854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Alles LF, Zahn A, Erni B (2002a) Sugar recognition by the glucose and mannose permeases of Escherichia coli. Steady-state kinetics and inhibition studies. Biochemistry 41:10077–10086

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Alles LF, Navdaeva V, Haenni S, Erni B (2002b) The glucose-specific carrier of the Escherichia coli phosphotransferase system. Eur J Biochem 269:4969–4980

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Doval C, van Raaij MJ (2013) Bacteriophage receptor recognition and nucleic acid transfer 489–518

    Google Scholar 

  • Geldart K, Kaznessis YN (2017) Characterization of class IIa Bacteriocin resistance in Enterococcus faecium. Antimicrob Agents Chemother

    Google Scholar 

  • Gera K, Le T, Jamin R, Eichenbaum Z, McIver KS (2014) The phosphoenolpyruvate phosphotransferase system in group A Streptococcus acts to reduce streptolysin S activity and lesion severity during soft tissue infection. Infect Immun 82:1192–1204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerard F, Pradel N, Wu LF (2005) Bactericidal activity of colicin V is mediated by an inner membrane protein, SdaC, of Escherichia coli. J Bacteriol 187:1945–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh BK, Owens K, Pietri R, Peterkofsky A (1989) Localization to the inner surface of the cytoplasmic membrane by immunoelectron microscopy of enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli. Proc Natl Acad Sci USA 86:849–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosset G (2005) Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system. Microb Cell Fact 4:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Govindarajan S, Albocher N, Szoke T, Nussbaum-Shochat A, Amster-Choder O (2018) Phenotypic heterogeneity in sugar utilization by E. coli is generated by stochastic dispersal of the general PTS protein EI from polar clusters. Front Microbiol 8:2695

    Google Scholar 

  • Gracy KN (2003) A conversation with Saul Roseman. Biochem Biophys Res Commun 300:5–8

    Article  Google Scholar 

  • Gutknecht R, Manni M, Mao QC, Erni B (1998) The glucose transporter of Escherichia coli with circularly permuted domains is active in vivo and in vitro. J Biol Chem 273:25745–25750

    Article  CAS  PubMed  Google Scholar 

  • Haddad J, Vakulenko S, Mobashery S (1999) An antibiotic cloaked by its own resistance enzyme. J Am Chem Soc 121:11922–11923

    Article  CAS  Google Scholar 

  • Hariharan P, Balasubramaniam D, Peterkofsky A, Kaback HR, Guan L (2015) Thermodynamic mechanism for inhibition of lactose permease by the phosphotransferase protein IIAGlc. Proc Natl Acad Sci USA 112:2407–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harwani D (2014) Regulation of gene expression: cryptic beta-glucoside (bgl) operon of Escherichia coli as a paradigm. Braz J Microbiol 45:1139–1144

    Article  CAS  PubMed  Google Scholar 

  • Hassan M, Kjos M, Nes IF, Diep DB, Lotfipour F (2012) Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol 113:723–736

    Article  CAS  PubMed  Google Scholar 

  • Hechard Y, Pelletier C, Cenatiempo Y, Frere J (2001) Analysis of sigma(54)-dependent genes in Enterococcus faecalis: a mannose PTS permease (EII(Man)) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147:1575–1580

    Article  CAS  PubMed  Google Scholar 

  • Heijne GV (2003) Membrane protein assembly in vivo. Adv Protein Chem 63:1–18

    Article  Google Scholar 

  • Higa F, Edelstein PH (2001) Potential virulence role of the Legionella pneumophila ptsP ortholog. Infect Immun 69:4782–4789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogema BM, Arents JC, Bader R, Eijkemans K, Yoshida H, Takahashi H, Alba H, Postma PW (1998) Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc. Mol Microbiol 30:487–498

    Article  CAS  PubMed  Google Scholar 

  • Huber F, Erni B (1996) Membrane topology of the mannose transporter of Escherichia coli K12. Eur J Biochem 239:810–817

    Article  CAS  PubMed  Google Scholar 

  • Jacobson GR, Lee CA, Saier MH Jr (1979) Purification of the mannitol-specific enzyme II of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system. J Biol Chem 254:249–252

    CAS  PubMed  Google Scholar 

  • Jacobson GR, Tanney LE, Kelly DM, Palman KB, Corn SB (1983a) Substrate and phospholipid specificity of the purified mannitol permease of Escherichia coli. J Cell Biochem 23:231–240

    Article  CAS  PubMed  Google Scholar 

  • Jacobson GR, Lee CA, Leonard JE, Saier MH (1983b) Mannitol-specific enzyme II of the bacterial phosphotransferase system. I. Properties of the purified permease. J Biol Chem 258:10748–10756

    CAS  PubMed  Google Scholar 

  • Jeckelmann JM, Harder D, Mari SA, Meury M, Ucurum Z, Muller DJ, Erni B, Fotiadis D (2011) Structure and function of the glucose PTS transporter from Escherichia coli. J Struct Biol 176:395–403

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, McKnight CJ, Gierasch LM (1990) Biophysical studies of signal peptides: implications for signal sequence functions and the involvement of lipid in protein export. J Bioenerg Biomembr 22:213–232

    Article  CAS  PubMed  Google Scholar 

  • Kalbermatter D, Chiu PL, Jeckelmann JM, Ucurum Z, Walz T, Fotiadis D (2017) Electron crystallography reveals that substrate release from the PTS IIC glucose transporter is coupled to a subtle conformational change. J Struct Biol 199:39–45

    Article  CAS  PubMed  Google Scholar 

  • Katsura I (1983) Tail assembly and injection. In: Hendrix RW (ed) Lambda II. Cold Spring Harbor, New York, pp 331–346

    Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandekar SS, Jacobson GR (1989) Evidence for two distinct conformations of the Escherichia coli mannitol permease that are important for its transport and phosphorylation functions. J Cell Biochem 39:207–216

    Article  CAS  PubMed  Google Scholar 

  • Kholodenko BN, Rohwer JM, Cascante M, Westerhoff HV (1998) Subtleties in control by metabolic channelling and enzyme organization. Mol Cell Biochem 184:311–320

    Article  CAS  PubMed  Google Scholar 

  • Kiefer D, Kuhn A (2007) YidC as an essential and multifunctional component in membrane protein assembly. Int Rev Cytol 259:113–138

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi S, Shibuya I, Matsumoto K (2000) Viability of an Escherichia coli pgsANull mutant lacking detectable phosphatidylglycerol and cardiolipin. J Bacteriol 182:371–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkland PA, Gil MA, Karadzic IM, Maupin-Furlow JA (2008) Genetic and proteomic analyses of a proteasome-activating nucleotidase a mutant of the haloarchaeon Haloferax volcanii. J Bacteriol 190:193–205

    Article  CAS  PubMed  Google Scholar 

  • Kjos M, Nes IF, Diep DB (2009) Class II one-peptide bacteriocins target a phylogenetically defined subgroup of mannose phosphotransferase systems on sensitive cells. Microbiology 155:2949–2961

    Article  CAS  PubMed  Google Scholar 

  • Kjos M, Salehian Z, Nes IF, Diep DB (2010) An extracellular loop of the mannose phosphotransferase system component IIC is responsible for specific targeting by class IIa bacteriocins. J Bacteriol 192:5906–5913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kjos M, Nes IF, Diep DB (2011) Mechanisms of resistance to bacteriocins targeting the mannose phosphotransferase system. Appl Environ Microbiol 77:3335–3342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch HG, Hengelage T, Neumann-Haefelin C, MacFarlane J, Hoffschulte HK, Schimz KL, Mechler B, Müller M, Walter P (1999) In vitro studies with purified components reveal signal recognition particle (SRP) and SecA/SecB as constituents of two independent protein-targeting pathways of Escherichia coli. Mol Biol Cell 10:2163–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kok M, Bron G, Erni B, Mukhija S (2003) Effect of enzyme I of the bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) on virulence in a murine model. Microbiology 149:2645–2652

    Article  CAS  PubMed  Google Scholar 

  • Koning RI, Keegstra W, Oostergetel GT, Schuurman-Wolters G, Robillard GT, Brisson A (1999) The 5 A projection structure of the transmembrane domain of the mannitol transporter enzyme II. J Mol Biol 287:845–851

    Article  CAS  PubMed  Google Scholar 

  • Kornberg HL, Lambourne LT, Sproul AA (2000) Facilitated diffusion of fructose via the phosphoenolpyruvate/glucose phosphotransferase system of Escherichia coli. Proc Natl Acad Sci USA 97:1808–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kundig W, Roseman S (1971a) Sugar transport. II. Characterization of constitutive membrane-bound enzymes II of the Escherichia coli phosphotransferase system. J Biol Chem 246:1407–1418

    CAS  PubMed  Google Scholar 

  • Kundig W, Roseman S (1971b) Sugar Transport: I. Isolation of a phosphotransferase system from Escherichia coli. J Biol Chem 246:1393–1406

    CAS  PubMed  Google Scholar 

  • Kundig W, Ghosh S, Roseman S (1964) Phosphate bound to histidine in a protein as an intermediate in a novel phospho-transferase system. Proc Natl Acad Sci USA 52:1067–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanz R, Erni B (1998) The glucose transporter of the Escherichia coli phosphotransferase system–mutant analysis of the invariant arginines, histidines, and domain linker. J Biol Chem 273:12239–12243

    Article  CAS  PubMed  Google Scholar 

  • Le Bouguenec C, Schouler C (2011) Sugar metabolism, an additional virulence factor in enterobacteria. Int J Med Microbiol 301:1–6

    Article  PubMed  CAS  Google Scholar 

  • Lee AG (2003) Lipid-protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 1612:1–40

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Boos W, Bouche JP, Plumbridge J (2000) Signal transduction between a membrane-bound transporter, PtsG, and a soluble transcription factor, Mlc, of Escherichia coli. EMBO J 19:5353–5361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Ren Z, Zhou M, Im W (2017) Molecular simulation and biochemical studies support an elevator-type transport mechanism in EIIC. Biophys J 112:2249–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard JE, Saier MH (1983) Mannitol-specific enzyme II of the bacterial phosphotransferase system. II. Reconstitution of vectorial transphosphorylation in phospholipid vesicles. J Biol Chem 258:10757–10760

    CAS  PubMed  Google Scholar 

  • Lepore BW, Indic M, Pham H, Hearn EM, Patel DR, van den Berg B (2011) Ligand-gated diffusion across the bacterial outer membrane. Proc Natl Acad Sci USA 108:10121–10126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liberman ES, Bleiweis AS (1984) Glucose phosphoenolpyruvate-dependent phosphotransferase system of Streptococcus mutans GS5 studied by using cell-free extracts. Infect Immun 44:486–492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lolkema JS (1993) A method to study complex enzyme kinetics involving numerical analysis of enzymatic schemes. The mannitol permease of Escherichia coli as an example. J Biol Chem 268:17850–17860

    CAS  PubMed  Google Scholar 

  • Lolkema JS, Robillard GT (1990) Subunit structure and activity of the mannitol-specific enzyme II of the Escherichia coli phosphoenolypyruvate-dependent phosphotransferase system solubilized in detergent. Biochemistry 29:10120–10125

    Article  CAS  PubMed  Google Scholar 

  • Lolkema JS, Hoeve-Duurkens RH, Dijkstra DS, Robillard GT (1991) Mechanistic coupling of transport and phosphorylation activity by enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system. Biochemistry 30:6716–6721

    Article  CAS  PubMed  Google Scholar 

  • Lolkema JS, Wartna ES, Robillard GT (1993) Binding of the substrate analogue perseitol to phosphorylated and unphosphorylated enzyme IImtl of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli. Biochemistry 32:5848–5854

    Article  CAS  PubMed  Google Scholar 

  • Lopian L, Elisha Y, Nussbaum-Shochat A, Amster-Choder O (2010) Spatial and temporal organization of the E. coli PTS components. EMBO J 29:3630–3645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Zhang T, Wu H (2014) The transport and mediation mechanisms of the common sugars in Escherichia coli. Biotechnol Adv 32:905–919

    Article  CAS  PubMed  Google Scholar 

  • Luo P, Yu X, Wang W, Fan S, Li X, Wang J (2015) Crystal structure of a phosphorylation-coupled vitamin C transporter. Nat Struct Mol Biol 22:238–241

    Article  CAS  PubMed  Google Scholar 

  • Luo P, Dai S, Zeng J, Duan J, Shi H, Wang J (2018) Inward-facing conformation of l-ascorbate transporter suggests an elevator mechanism. Cell Discov 4:35. https://doi.org/10.1038/s41421-018-0037-y

  • Lux R, Jahreis K, Bettenbrock K, Parkinson JS, Lengeler JW (1995) Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. Proc Natl Acad Sci USA 92:11583–11587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manché K, Notley-McRobb L, Ferenci T (1999) Mutational adaptation of Escherichia coli to glucose limitation involves distinct evolutionary pathways in aerobic and oxygen-limited environments. Genetics 153:5

    Google Scholar 

  • Mancusso R, Gregorio GG, Liu Q, Wang DN (2012) Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature 491:622–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao Q, Schunk T, Flükiger K, Erni B (1995) Functional reconstitution of the purified mannose phosphotransferase system of Escherichia coli into phospholipid vesicles. J Biol Chem 270:5258–5265

    Article  CAS  PubMed  Google Scholar 

  • Markovic-Housley Z, Cooper A, Lustig A, Flukiger K, Stolz B, Erni B (1994) Independent folding of the domains in the hydrophilic subunit IIABman of the mannose transporter of Escherichia coli. Biochemistry 33:10977–10984

    Article  CAS  PubMed  Google Scholar 

  • McCloskey D, Xu S, Sandberg TE, Brunk E, Hefner Y, Szubin R, Feist AM, Palsson BO (2018) Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the phosphotransferase system. Metab Eng 48:233–242

    Article  CAS  PubMed  Google Scholar 

  • McCoy JG, Levin EJ, Zhou M (2015) Structural insight into the PTS sugar transporter EIIC. Biochim Biophys Acta 1850:577–585

    Article  CAS  PubMed  Google Scholar 

  • McCoy JG, Ren Z, Stanevich V, Lee J, Mitra S, Levin EJ, Poget S, Quick M, Im W, Zhou M (2016) The structure of a sugar transporter of the glucose EIIC superfamily provides insight into the elevator mechanism of membrane transport. Structure 24:956–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meadow ND, Fox DK, Roseman S (1990) The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu Rev Biochem 59:497–542

    Article  CAS  PubMed  Google Scholar 

  • Meijberg W, Schuurman-Wolters GK, Robillard GT (1998a) Thermodynamic evidence for conformational coupling between the B and C domains of the mannitol transporter of escherichia coli, enzyme IImtl. J Biol Chem 273:7949–7956

    Article  CAS  PubMed  Google Scholar 

  • Meijberg W, Schuurman-Wolters GK, Boer H, Scheek RM, Robillard GT (1998b) The thermal stability and domain interactions of the mannitol permease of Escherichia coli. A differential scanning calorimetry study. J Biol Chem 273:20785–20794

    Article  CAS  PubMed  Google Scholar 

  • Meins M, Zanolari B, Rosenbusch JP, Erni B (1988) Glucose permease of Escherichia coli. Purification of the IIGlc subunit and functional characterization of its oligomeric forms. J Biol Chem 263:12986–12993

    CAS  PubMed  Google Scholar 

  • Miller KA, Phillips RS, Kilgore PB, Smith GL, Hoover TR (2015) A mannose family phosphotransferase system permease and associated enzymes are required for utilization of fructoselysine and glucoselysine in Salmonella enterica serovar Typhimurium. J Bacteriol 197:2831–2839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell P (1957) A general theory of membrane transport from studies of bacteria. Nature 180:134

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P, Moyle J (1958) Nature 182:372–373

    Article  CAS  PubMed  Google Scholar 

  • Mixson AJ, Phang JM (1988) The uptake of pyrroline 5-carboxylate. Group translocation mediating the transfer of reducing-oxidizing potential. J Biol Chem 263:10720–10724

    CAS  PubMed  Google Scholar 

  • Möller S, Croning MDR, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–653

    Article  PubMed  Google Scholar 

  • Mukhija S, Erni B (1996) Purification by Ni2+ affinity chromatography, and functional reconstitution of the transporter for N-acetylglucosamine of Escherichia coli. J Biol Chem 271:14819–14824

    Article  CAS  PubMed  Google Scholar 

  • Navdaeva V, Zurbriggen A, Waltersperger S, Schneider P, Oberholzer AE, Bahler P, Bachler C, Grieder A, Baumann U, Erni B (2011) Phosphoenolpyruvate: sugar phosphotransferase system from the hyperthermophilic Thermoanaerobacter tengcongensis. Biochemistry 50:1184–1193

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TX, Yen MR, Barabote RD, Saier MH Jr (2006) Topological predictions for integral membrane permeases of the phosphoenolpyruvate: sugar phosphotransferase system. J Mol Microbiol Biotechnol 11:345–360

    Article  CAS  PubMed  Google Scholar 

  • Nissen-Meyer J, Oppegard C, Rogne P, Haugen HS, Kristiansen PE (2010) Structure and mode-of-action of the two-peptide (class-IIb) bacteriocins. Probiotics Antimicrob Proteins 2:52–60

    Article  CAS  PubMed  Google Scholar 

  • Niwano M, Taylor BL (1982) Novel sensory adaptation mechanism in bacterial chemotaxis to oxygen and phosphotransferase substrates. Proc Natl Acad Sci USA 79:11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Notley-McRobb L, Ferenci T (2000) Substrate specificity and signal transduction pathways in the glucose-specific enzyme II (EII(Glc)) component of the Escherichia coli phosphotransferase system. J Bacteriol 182:4437–4442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunn RS, Markovic-Housley Z, Génovésio-Taverne JC, Flükiger K, Rizkallah PJ, Jansonius JN, Schirmer T, Erni B (1996) Structure of the IIA domain of the mannose transporter from Escherichia coli at 1.7 Ã… resolution. J Mol Biol 259:502–511

    Article  CAS  PubMed  Google Scholar 

  • Nuoffer C, Zanolari B, Erni B (1988) Glucose permease of Escherichia coli. The effect of cysteine to serine mutations on the function, stability, and regulation of transport and phosphorylation. J Biol Chem 263:6647–6655

    CAS  PubMed  Google Scholar 

  • Oh H, Park Y, Park C (1999) A mutated PtsG, the glucose transporter, allows uptake of D-ribose. J Biol Chem 274:14006–14011

    Article  CAS  PubMed  Google Scholar 

  • Opacic M, Vos EP, Hesp BH, Broos J (2010) Localization of the substrate-binding site in the homodimeric mannitol transporter, EIImtl, of Escherichia coli. J Biol Chem 285:25324–25331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opacic M, Hesp BH, Fusetti F, Dijkstra BW, Broos J (2012) Structural investigation of the transmembrane C domain of the mannitol permease from Escherichia coli using 5-FTrp fluorescence spectroscopy. Biochim Biophys Acta 1818:861–868

    Article  CAS  PubMed  Google Scholar 

  • Otte S, Scholle A, Turgut S, Lengeler JW (2003) Mutations which uncouple transport and phosphorylation in the D-mannitol phosphotransferase system of Escherichia coli K-12 and Klebsiella pneumoniae 1033-5P14. J Bacteriol 185:2267–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palsdottir H, Hunte C (2004) Lipids in membrane protein structures. Biochim Biophys Acta 1666:2–18

    Article  CAS  PubMed  Google Scholar 

  • Palva ET, Saris P, Silhavy TJ (1985) Gene fusions to the ptsM/pel locus of Escherichia coli. Mol Gen Genet MGG 199:427–433

    Article  CAS  PubMed  Google Scholar 

  • Pas HH, Ellory JC, Robillard GT (1987) Bacterial phosphoenolpyruvate-dependent phosphotransferase system: association state of membrane-bound mannitol-specific enzyme II demonstrated by radiation inactivation. Biochemistry 26:6689–6696

    Article  CAS  PubMed  Google Scholar 

  • Pas HH, Hoeve-Duurkens RH, Robillard GT (1988) Bacterial phosphoenolpyruvate-dependent phosphotransferase system: mannitol-specific EII contains two phosphoryl binding sites per monomer and one high-affinity mannitol binding site per dimer. Biochemistry 27:5520–5525

    Article  CAS  PubMed  Google Scholar 

  • Patel HV, Vyas KA, Li X, Savtchenko R, Roseman S (2004) Subcellular distribution of enzyme I of the Escherichia coli phosphoenolpyruvate: glycose phosphotransferase system depends on growth conditions. Proc Natl Acad Sci USA 101:17486–17491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patzer SI, Baquero MR, Bravo D, Moreno F, Hantke K (2003) The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology 149:2557–2570

    Article  CAS  PubMed  Google Scholar 

  • Perham RN (1991) Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry 30:8501–8512

    Article  CAS  PubMed  Google Scholar 

  • Pickl A, Johnsen U, Schönheit P (2012) Fructose degradation in the haloarchaeon Haloferax volcanii involves a bacterial type phosphoenolpyruvate-dependent phosphotransferase system, fructose-1-phosphate kinase, and class II fructose-1,6-bisphosphate aldolase. J Bacteriol 194:3088–3097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plumbridge J (2000) A mutation which affects both the specificity of PtsG sugar transport and the regulation of ptsG expression by Mlc in Escherichia coli. Microbiology 146:2655–2663

    Article  CAS  PubMed  Google Scholar 

  • Portlock SH, Lee Y, Tomich JM, Tamm LK (1992) Insertion and folding of the amino-terminal amphiphilic signal sequences of the mannitol and glucitol permeases of Escherichia coli. J Biol Chem 267:11017–11022

    CAS  PubMed  Google Scholar 

  • Postma PW (1981) Defective enzyme II-BGlc of the phosphoenolpyruvate:sugar phosphotransferase system leading to uncoupling of transport and phosphorylation in Salmonella typhimurium. J Bacteriol 147:382–389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Postma PW, Roseman S (1976) The bacterial phosphoenolpyruvate: sugar phosphotransferase system. Biochim Biophys Acta 457:213–257

    Article  CAS  PubMed  Google Scholar 

  • Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate—carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabus R, Reizer J, Paulsen I, Saier MH (1999) Enzyme I(Ntr) from Escherichia coli. A novel enzyme of the phosphoenolpyruvate-dependent phosphotransferase system exhibiting strict specificity for its phosphoryl acceptor, NPr. J Biol Chem 274:26185–26191

    Article  CAS  PubMed  Google Scholar 

  • Ramnath M, Beukes M, Tamura K, Hastings JW (2000) Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin a-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl Environ Microbiol 66:3098–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramnath M, Arous S, Gravesen A, Hastings JW, Hechard Y (2004) Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis. Microbiology 150:2663–2668

    Article  CAS  PubMed  Google Scholar 

  • Reizer J, Paulsen IT, Reizer A, Titgemeyer F, Saier MH (1996) Novel phosphotransferase system genes revealed by bacterial genome analysis: the complete complement of pts genes in Mycoplasma genitalium. Microb Comp Genomics 1:151–164

    CAS  PubMed  Google Scholar 

  • Ren Z, Lee J, Moosa MM, Nian Y, Hu L, Xu Z, McCoy JG, Ferreon AC, Im W, Zhou M (2018) Structure of an EIIC sugar transporter trapped in an inward-facing conformation. Proc Natl Acad Sci USA 115:5962–5967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds AE, Felton J, Wright A (1981) Insertion of DNA activates the cryptic bgl operon in E. coli K12. Nature 293:625

    Article  CAS  PubMed  Google Scholar 

  • Rios Colombo NS, Chalon MC, Navarro SA, Bellomio A (2018) Pediocin-like bacteriocins: new perspectives on mechanism of action and immunity. Curr Genet 64:345–351

    Article  CAS  PubMed  Google Scholar 

  • Robillard GT, Blaauw M (1987) Enzyme II of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: protein-protein and protein-phospholipid interactions. Biochemistry 26:5796–5803

    Article  CAS  PubMed  Google Scholar 

  • Robillard GT, Broos J (1999) Structure/function studies on the bacterial carbohydrate transporters, enzymes II, of the phosphoenolpyruvate-dependent phosphotransferase system. Biochim Biophys Acta 1422:73–104

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez E, Lavina M (2003) The proton channel is the minimal structure of ATP synthase necessary and sufficient for microcin h47 antibiotic action. Antimicrob Agents Chemother 47:181–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roessner CA, Ihler GM (1984) Proteinase sensitivity of bacteriophage lambda tail proteins gpJ and pH in complexes with the lambda receptor. J Bacteriol 157:165–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rohwer JM, Postma PW, Kholodenko BN, Westerhoff HV (1998) Implications of macromolecular crowding for signal transduction and metabolite channeling. Proc Natl Acad Sci USA 95:10547–10552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohwer JM, Meadow ND, Roseman S, Westerhoff HV, Postma PW (2000) Understanding glucose transport by the bacterial phosphoenolpyruvate: glycose phosphotransferase system on the basis of kinetic measurements in vitro. J Biol Chem 275:34909–34921

    Article  CAS  PubMed  Google Scholar 

  • Roise D, Horvath SJ, Tomich JM, Richards JH, Schatz G (1986) A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J 5:1327–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roseman S (1969) The transport of carbohydrates by a bacterial phosphotransferase system. J Gen Physiol 54:138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roseman S (1989) Sialic acid, serendipity, and sugar transport: discovery of the bacterial phosphotransferase system. FEMS Microbiol Rev 5:3–11

    CAS  PubMed  Google Scholar 

  • Ruijter GJG, Postma PW, Van Dam K (1991) Energetics of glucose uptake in a Salmonella typhimurium mutant containing uncoupled enzyme IIGlc. Arch Microbiol 155:234–237

    Article  CAS  PubMed  Google Scholar 

  • Ruijter GJG, van Meurs G, Verwey MA, Postma PW, Van Dam K (1992) Analysis of mutations that uncouple transport from phosphorylation in enzyme-IIGlc of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system. J Bacteriol 174:2843–2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saier MH (2015) PTS50—the prokaryotic phosphoenolpyruvate: sugar phosphotransferase system, 50 years after its discovery. J Mol Microbiol Biotechnol 25:69–236

    Article  Google Scholar 

  • Saier MH, Cox DF, Feucht BU, Novotny MJ (1982) Evidence for the functional association of enzyme I and HPr of the phosphoenolpyruvate-sugar phosphotransferase system with the membrane in sealed vesicles of Escherichia coli. J Cell Biochem 18:231–238

    Article  CAS  PubMed  Google Scholar 

  • Saier MH, Yamada M, Suda K, Erni B, Rak B, Lengeler J, Stewart GC, Waygood EB, Rapoport G (1988) Bacterial proteins with N-terminal leader sequences resembling mitochondrial targeting sequences of eukaryotes. Biochimie 70:1743–1748

    Article  CAS  PubMed  Google Scholar 

  • Saier MH, Werner PK, Müller M (1989) Insertion of proteins into bacterial membranes: mechanism, characteristics, and comparisons with the eucaryotic process. Microbiol Rev 53:333–366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saier MH, Chauvaux S, Deutscher J, Reizer J, Ye J-J (1995) Protein phosphorylation and regulation of carbon metabolism in Gram-negative versus Gram-positive bacteria. Trends Biochem Sci 20:267–271

    Article  CAS  PubMed  Google Scholar 

  • Saier MH, Hvorup RN, Barabote RD (2005) Evolution of the bacterial phosphotransferase system: from carriers and enzymes to group translocators. Biochem Soc Trans 33:220

    Article  CAS  PubMed  Google Scholar 

  • Saraceni-Richards CA, Jacobson GR (1997a) A conserved glutamate residue, Glu-257, is important for substrate binding and transport by the Escherichia coli mannitol permease. J Bacteriol 179:1135–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saraceni-Richards CA, Jacobson GR (1997b) Subunit and amino acid interactions in the Escherichia coli mannitol permease: a functional complementation study of coexpressed mutant permease proteins. J Bacteriol 179:5171–5177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scandella D, Arber W (1976) Phage lambda DNA injection into Escherichia coli pel mutants is restored by mutations in phage genes V and H. Virology 69:206–215

    Article  CAS  PubMed  Google Scholar 

  • Schauder S, Nunn RS, Lanz R, Erni B, Schirmer T (1998) Crystal structure of the IIB subunit of a fructose permease (IIBLev) from Bacillus subtilis. J Mol Biol 276:591–602

    Article  CAS  PubMed  Google Scholar 

  • Schnetz K, Rak B (1988) Regulation of the bgl operon of Escherichia coli by transcriptional antitermination. EMBO J 7:3271–3277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnetz K, Sutrina SL, Saier MH Jr, Rak B (1990) Identification of catalytic residues in the beta-glucoside permease of Escherichia coli by site-specific mutagenesis and demonstration of interdomain cross-reactivity between the beta-glucoside and glucose systems. J Biol Chem 265:13464–13471

    CAS  PubMed  Google Scholar 

  • Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666:105–117

    Article  CAS  PubMed  Google Scholar 

  • Seitz S, Lee SJ, Pennetier C, Boos W, Plumbridge J (2003) Analysis of the interaction between the global regulator Mlc and EIIBGlc of the glucose-specific phosphotransferase system in Escherichia coli. J Biol Chem 278:10744–10751

    Article  CAS  PubMed  Google Scholar 

  • Somavanshi R, Ghosh B, Sourjik V (2016) Sugar influx sensing by the phosphotransferase system of Escherichia coli. PLoS Biol 14(8):e2000074. https://doi.org/10.1371/journal.pbio.2000074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sourjik V, Berg HC (2002) Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. Mol Microbiol 37:740–751

    Article  Google Scholar 

  • Sourjik V, Berg HC (2004) Functional interactions between receptors in bacterial chemotaxis. Nature 428:437–441

    Article  CAS  PubMed  Google Scholar 

  • Stephan MM, Jacobson GR (1986) Subunit interactions of the Escherichia coli mannitol permease: correlation with enzymic activities. Biochemistry 25:4046–4051

    Article  CAS  PubMed  Google Scholar 

  • Stolz B, Huber M, Markovic-Housley Z, Erni B (1993) The mannose transporter of Escherichia-coli—structure and function of the IIAB(Man)-subunit. J Biol Chem 268:27094–27099

    CAS  PubMed  Google Scholar 

  • Strahsburger E, Baeza M, Monasterio O, Lagos R (2005) Cooperative uptake of microcin E492 by receptors FepA, Fiu, and Cir and inhibition by the siderophore enterochelin and its dimeric and trimeric hydrolysis products. Antimicrob Agents Chemother 49:3083–3086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundar GS, Islam E, Gera K, Le Breton Y, McIver KS (2017) A PTS EII mutant library in group A Streptococcus identifies a promiscuous man-family PTS transporter influencing SLS-mediated hemolysis. Mol Microbiol 103:518–533

    Article  CAS  PubMed  Google Scholar 

  • Swe PM, Cook GM, Tagg JR, Jack RW (2009) Mode of action of dysgalacticin: a large heat-labile bacteriocin. J Antimicrob Chemother 63:679–686

    Article  CAS  PubMed  Google Scholar 

  • Tamm LK, Tatulian SA (1993) Orientation of functional and nonfunctional PTS permease signal sequences in lipid bilayers. A polarized attenuated total reflection infrared study. Biochemistry 32:7720–7726

    Article  CAS  PubMed  Google Scholar 

  • Tamm LK, Tomich JM, Saier MH (1989) Membrane incorporation and induction of secondary structure of synthetic peptides corresponding to the N-terminal signal sequences of the glucitol and mannitol permeases of Escherichia coli. J Biol Chem 264:2587–2592

    CAS  PubMed  Google Scholar 

  • Tan MW, Rahme LG, Sternberg JA, Tompkins RG, Ausubel FM (1999) Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci USA 96:2408–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchieu JH, Norris V, Edwards JS, Saier MH Jr (2001) The complete phosphotranferase system in Escherichia coli. J Mol Microbiol Biotechnol 3:329–346

    CAS  PubMed  Google Scholar 

  • Thiem S, Kentner D, Sourjik V (2007) Positioning of chemosensory clusters in E. coli and its relation to cell division. The EMBO J 26:1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tymoszewska A, Diep DB, Wirtek P, Aleksandrzak-Piekarczyk TA (2017) The non-lantibiotic bacteriocin garvicin Q targets man-PTS in a broad spectrum of sensitive bacterial genera. Sci Rep 7:8359. https://doi.org/10.1038/s41598-017-09102-7

  • Van Montfort BA, Schuurman-Wolters GK, Duurkens RH, Mensen R, Poolman B, Robillard GT (2001) Cysteine cross-linking defines part of the dimer and B/C domain interface of the Escherichia coli mannitol permease. J Biol Chem 276:12756–12763

    Article  PubMed  Google Scholar 

  • Van Montfort BA, Schuurman-Wolters GK, Wind J, Broos J, Robillard GT, Poolman B (2002) Mapping of the dimer interface of the Escherichia coli mannitol permease by cysteine cross-linking. J Biol Chem 277:14717–14723

    Article  PubMed  CAS  Google Scholar 

  • Veldhuis G, Gabellieri E, Vos EP, Poolman B, Strambini GB, Broos J (2005) Substrate-induced conformational changes in the membrane-embedded IIC(mtl)-domain of the mannitol permease from Escherichia coli, EnzymeII(mtl), probed by tryptophan phosphorescence spectroscopy. J Biol Chem 280:35148–35156

    Article  CAS  PubMed  Google Scholar 

  • Veldhuis G, Hink M, Krasnikov V, van den Bogaart G, Hoeboer J, Visser AJ, Broos J, Poolman B (2006) The oligomeric state and stability of the mannitol transporter, EnzymeII(mtl), from Escherichia coli: a fluorescence correlation spectroscopy study. Protein Sci 15:1977–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vervoort EB, Bultema JB, Schuurman-Wolters GK, Geertsma ER, Broos J, Poolman B (2005) The first cytoplasmic loop of the mannitol permease from Escherichia coli is accessible for sulfhydryl reagents from the periplasmic side of the membrane. J Mol Biol 346:733–743

    Article  CAS  PubMed  Google Scholar 

  • Vogler AP, Broekhuizen CP, Schuitema A, Lengeler JW, Postma PW (1988) Suppression of IIIGlc-defects by enzymes IINag and IIBgl of the PEP: carbohydrate phosphotransferase system. Mol Microbiol 2:719–726

    Article  CAS  PubMed  Google Scholar 

  • Vos EP, ter Horst R, Poolman B, Broos J (2009a) Domain complementation studies reveal residues critical for the activity of the mannitol permease from Escherichia coli. Biochim Biophys Acta 1788:581–586

    Article  CAS  PubMed  Google Scholar 

  • Vos EPP, Bokhove M, Hesp BH, Broos J (2009b) Structure of the cytoplasmic loop between putative helices II and III of the mannitol permease of Escherichia coli: a tryptophan and 5-fluorotryptophan spectroscopy study. Biochemistry 48:5284–5290

    Article  CAS  PubMed  Google Scholar 

  • Waeber U, Buhr A, Schunk T, Erni B (1993) The glucose transporter of Escherichia coli. Purification and characterization by Ni + chelate affinity chromatography of the IIBCGlc subunit. FEBS Lett 324:109–112

    Article  CAS  PubMed  Google Scholar 

  • Wehmeier UF, Wöhrl BM, Lengeler JW (1995) Molecular analysis of the phosphoenolpyruvate-dependent L-sorbose: phosphotransferase system from Klebsiella pneumoniae and of its multidomain structure. Mol Gen Genet 246:610–618

    Article  CAS  PubMed  Google Scholar 

  • Wells JE, Russell JB (1996) Why do many ruminal bacteria die and lyse so quickly? J Dairy Sci 79:1487–1495

    Article  CAS  PubMed  Google Scholar 

  • Weng QP, Jacobson GR (1993) Role of a conserved histidine residue, His-195, in the activities of the Escherichia coli mannitol permease. Biochemistry 32:11211–11216

    Article  CAS  PubMed  Google Scholar 

  • Weng QP, Elder J, Jacobson GR (1992) Site-specific mutagenesis of residues in the Escherichia coli mannitol permease that have been suggested to be important for its phosphorylation and chemoreception functions. J Biol Chem 267:19529–19535

    CAS  PubMed  Google Scholar 

  • Werner PK, Saier MH, Müller M (1992) Membrane insertion of the mannitol permease of Escherichia coli occurs under conditions of impaired SecA function. J Biol Chem 267:24523–24532

    CAS  PubMed  Google Scholar 

  • Williams N, Fox DK, Shea C, Roseman S (1986) Pel, the protein that permits lambda DNA penetration of Escherichia coli, is encoded by a gene in ptsM and is required for mannose utilization by the phosphotransferase system. Proc Natl Acad Sci USA 83:8934–8938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler J, Seybert A, Konig L, Pruggnaller S, Haselmann U, Sourjik V, Weiss M, Frangakis AS, Mogk A, Bukau B (2010) Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing. EMBO J 29:910–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu LF, Tomich JM, Saier MH (1990) Structure and evolution of a multidomain multiphosphoryl transfer protein: nucleotide sequence of the fruB(HI) gene in Rhodobacter capsulatus and comparisons with homologous genes from other organisms. J Mol Biol 213:687–703

    Article  CAS  PubMed  Google Scholar 

  • Wuttge S, Licht A, Timachi MH, Bordignon E, Schneider E (2016) Mode of interaction of the signal-transducing protein EIIAGlc with the maltose ABC transporter in the process of inducer exclusion. Biochemistry 55:5442–5452

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Chang YY, Daniels GA, Wu LF, Tomich JM, Yamada M, Saier MH Jr (1991) Insertion of the mannitol permease into the membrane of Escherichia coli. Possible involvement of an N-terminal amphiphilic sequence. J Biol Chem 266:17863–17871

    CAS  PubMed  Google Scholar 

  • Yeagle PL (2014) Non-covalent binding of membrane lipids to membrane proteins. Biochim Biophys Acta 1838:1548–1559

    Article  CAS  PubMed  Google Scholar 

  • Zeppenfeld T, Larisch C, Lengeler JW, Jahreis K (2000) Glucose transporter mutants of Escherichia coli K-12 with changes in substrate recognition of IICB(Glc) and induction behavior of the ptsG gene. J Bacteriol 182:4443–4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Aboulwafa M, Smith MH, Saier MH Jr (2003) The ascorbate transporter of Escherichia coli. J Bacteriol 185:2243–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Wang G, Wang C, Ren F, Hao Y (2016) Both IIC and IID components of mannose phosphotransferase system are involved in the specific recognition between immunity protein PedB and bacteriocin-receptor complex. PLoS One 11(10):e0164973. https://doi.org/10.1371/journal.pone.0164973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu F, Wang Y, San K, Bennett GN (2018) Metabolic engineering of Escherichia coli to produce succinate from soybean hydrolysate under anaerobic conditions. Biotechnol Bioeng 115:1743–1754

    Article  CAS  PubMed  Google Scholar 

  • Zou Z, Tong F, Faergeman NJ, Borsting C, Black PN, DiRusso CC (2003) Vectorial acylation in Saccharomyces cerevisiae: Fat1p and fatty acyl-CoA synthetase are interacting components of a fatty acid import complex. J Biol Chem 278:16414–16422

    Article  CAS  PubMed  Google Scholar 

  • Zuniga M, Comas I, Linaje R, Monedero V, Yebra MJ, Esteban CD, Deutscher J, Perez-Martinez G, Gonzalez-Candelas F (2005) Horizontal gene transfer in the molecular evolution of mannose PTS transporters. Mol Biol Evol 22:1673–1685

    Article  CAS  PubMed  Google Scholar 

  • Zurbriggen A, Schneider P, Bahler P, Baumann U, Erni B (2010) Expression, purification, crystallization and preliminary X-ray analysis of the EIICGlc domain of the Escherichia coli glucose transporter. Acta Crystallogr Sect F: Struct Biol Cryst Commun 66:684–688

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.-M. J. was supported by the University of Bern, the National Centre of Competence in Research (NCCR) TransCure and the Swiss National Science Foundation (grants to Prof. Dimitrios Fotiadis, University of Bern, Switzerland). BE would like to thank his former collaborators for their commitment, and the Universities of Basel, Marburg and Bern, the DFG and the SNF for their generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Jeckelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeckelmann, JM., Erni, B. (2019). Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System. In: Kuhn, A. (eds) Bacterial Cell Walls and Membranes . Subcellular Biochemistry, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-030-18768-2_8

Download citation

Publish with us

Policies and ethics