Skip to main content

Marine Glycosaminoglycans (GAGs) and GAG-Mimetics: Applications in Medicine and Tissue Engineering

  • Chapter
  • First Online:
Extracellular Sugar-Based Biopolymers Matrices

Part of the book series: Biologically-Inspired Systems ((BISY,volume 12))

Abstract

Glycosaminoglycans or GAGs are fundamental constituents of both cell surface and extracellular matrix (ECM), and through their localization they participate in many biological processes by playing a key role in cell-cell and cell-matrix interactions. Therefore, they present a great potential for the design and preparation of therapeutic drugs to treat major diseases such as ischemic heart disease, stroke, cancers, infectious diseases, and degenerative diseases. With the demand of both animal-free molecules and clean environmentally friendly processes, the production of GAG-mimetics or GAG-like molecules from other sources than mammalian tissues is flourishing. Glycans, carbohydrates, or polysaccharides from marine resources are unique in terms both of function and structure, and they differ considerably from those of terrestrial origin. With the simultaneous development of both glycoscience and marine biotechnologies, the potential of marine polysaccharides as an innovative source for new pharmaceuticals has emerged and gained considerable attention. Algal and microbial polysaccharides offer a tremendous structural diversity for drug discovery. With the recent progress in genetic engineering, the bacterial production of tailor-made polysaccharides will provide very competitive molecules with properties of interest especially to treat major diseases and to elaborate new applications in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguado BA, Mulyasasmita W, Su J, Lampe KJ, Heilshorn SC (2012) Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng 18:806–815

    Article  CAS  Google Scholar 

  • Ale MT, Maruyama H, Tamauchi H, Mikkelsen JD, Meyer AS (2011) Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int J Biol Macromol 49:331–336

    Article  CAS  PubMed  Google Scholar 

  • Al-Nahas MO, Darwish MM, Ali AE, Amin MA (2011) Characterization of an exopolysaccharide-producing marine bacterium, isolate Pseudoalteromonas sp AM. Afr J Microbiol Res 5:3823–3831

    Article  CAS  Google Scholar 

  • Alonso AA, Antelo LT, Otero-Muras I, Pérez-Gálvez R (2010) Contributing to fisheries sustainability by making the best possible use of their resources: the BEFAIR initiative. Trends Food Sci Technol 21:569–578

    Article  CAS  Google Scholar 

  • Arena A, Gugliandolo C, Stassi G, Pavone B, Iannello D, Bisignano G, Maugeri TL (2009) An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: antiviral activity on immunocompetent cells. Immunol Lett 123:132–137

    Article  CAS  PubMed  Google Scholar 

  • Austin B (1989) Novel pharmaceutical compounds from marine bacteria. J Appl Bacteriol 67:461–470

    Article  CAS  PubMed  Google Scholar 

  • Badri A, Williams A, Linhardt RJ, Koffas MAG (2018) The road to animal-free glycosaminoglycan production: current efforts and bottlenecks. Curr Opin Biotechnol 53:85–92

    Article  CAS  PubMed  Google Scholar 

  • Bae S-Y, Yim JH, Lee HK, Pyo S (2006) Activation of murine peritoneal macrophages by sulfated exopolysaccharide from marine microalga Gyrodinium impudicum (strain KG03): involvement of the NF-[kappa]B and JNK pathway. Int Immunopharmacol 6:473–484

    Article  CAS  PubMed  Google Scholar 

  • Barabanova A, Shashkov A, Glazunov V, Isakov V, Nebylovskaya T, Helbert W, Solov’eva T, Yermak I (2008) Structure and properties of carrageenan-like polysaccharide from the red alga Tichocarpus crinitus (Gmel.) Rupr. (Rhodophyta, Tichocarpaceae). J Appl Phycol 20:1013–1020

    Article  CAS  Google Scholar 

  • Barritault D, Gilbert-Sirieix M, Rice KL, Siñeriz F, Papy-Garcia D, Baudouin C, Desgranges P, Zakine G, Saffar J-L, van Neck J (2017) RGTA® or ReGeneraTing agents mimic heparan sulfate in regenerative medicine: from concept to curing patients. Glycoconj J 34:325–338

    Article  CAS  PubMed  Google Scholar 

  • Berteau O, Mulloy B (2003) Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 13:29R–40R

    Article  CAS  PubMed  Google Scholar 

  • Bidarra SJ, Barrias CC, Granja PL (2014) Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 10:1646–1662

    Article  CAS  PubMed  Google Scholar 

  • Boisson-Vidal C, Zemani F, Caligiuri G, Galy-Fauroux I, Colliec-Jouault S, Helley D, Fischer AM (2007) Neoangiogenesis induced by progenitor endothelial cells: effect of fucoidan from marine algae. Cardiovasc Hematol Agents Med Chem 5:67–77

    Article  CAS  PubMed  Google Scholar 

  • Carlucci MJ, Ciancia M, Matulewicz MC, Cerezo AS, Damonte EB (1999) Antiherpetic activity and mode of action of natural carrageenans of diverse structural types. Antivir Res 43:93–102

    Article  CAS  PubMed  Google Scholar 

  • Casillo A, Lanzetta R, Parrilli M, Corsaro M (2018) Exopolysaccharides from marine and marine extremophilic bacteria: structures, properties, ecological roles and applications. Mar Drugs 16:69. https://doi.org/10.3390/md16020069

    Article  CAS  PubMed Central  Google Scholar 

  • Chen RH, Chang JR, Shyur JS (1997) Effects of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan. Carbohydr Res 299:287–294

    Article  CAS  Google Scholar 

  • Chen HM, Ouyang W, Martoni C, Afkhami F, Lawuyi B, Lim T, Prakash S (2010) Investigation of genipin cross-linked microcapsule for oral delivery of live bacterial cells and other biotherapeutics: preparation and in vitro analysis in simulated human gastrointestinal model. Int J Polym Sci 2010:1–10

    Article  CAS  Google Scholar 

  • Chen Y, Mao W, Tao H, Zhu W, Qi X, Chen Y, Li H, Zhao C, Yang Y, Hou Y, Wang C, Li N (2011) Structural characterization and antioxidant properties of an exopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp. Y16. Bioresour Technol 102:8179–8184

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Mao WJ, Yang YP, Teng XC, Zhu WM, Qi XH, Chen YL, Zhao CQ, Hou YJ, Wang CY, Li N (2012) Structure and antioxidant activity of an extracellular polysaccharide from coral-associated fungus, Aspergillus versicolor LCJ-5-4. Carbohydr Polym 87:218–226

    Article  CAS  PubMed  Google Scholar 

  • Chen YL, Mao WJ, Tao HW, Zhu WM, Yan MX, Liu X, Guo TT, Guo T (2015) Preparation and characterization of a novel extracellular polysaccharide with antioxidant activity, from the mangrove-associated fungus Fusarium oxysporum. Mar Biotechnol 17:219–228

    Article  CAS  Google Scholar 

  • Chevolot L, Mulloy B, Ratiskol J, Foucault A, Colliec-Jouault S (2001) A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohydr Res 330:529–535

    Article  CAS  PubMed  Google Scholar 

  • Church FC, Meade JB, Treanor RE, Whinna HC (1989) Antithrombin activity of fucoidan. The interaction of fucoidan with heparin cofactor II, antithrombin III, and thrombin. J Biol Chem 264:3618–3623

    CAS  PubMed  Google Scholar 

  • Ciancia M, Quintana I, Vizcarguenaga MI, Kasulin L, de Dios A, Estevez JM, Cerezo AS (2007) Polysaccharides from the green seaweeds Codium fragile and C. vermilara with controversial effects on hemostasis. Int J Biol Macromol 41:641–649

    Article  CAS  PubMed  Google Scholar 

  • Colliec S, Fischer AM, Taponbretaudiere J, Boisson C, Durand P, Jozefonvicz J (1991) Anticoagulant properties of a fucoidan fraction. Thromb Res 64:143–154

    Article  CAS  PubMed  Google Scholar 

  • Colliec S, Boisson-Vidal C, Jozefonvicz J (1994) A low molecular weight fucoidan fraction from the brown seaweed Pelvetia canaliculata. Phytochemistry 35:697–700

    Article  CAS  Google Scholar 

  • Colliec-Jouault S, Chevolot L, Helley D, Ratiskol J, Bros A, Sinquin C, Roger O, Fischer AM (2001) Characterization, chemical modifications and in vitro anticoagulant properties of an exopolysaccharide produced by Alteromonas infernus. Biochim Biophys Acta 1528:141–151

    Article  CAS  PubMed  Google Scholar 

  • Colliec-Jouault S, Millet J, Helley D, Sinquin C, Fischer AM (2003) Effect of low-molecular-weight fucoidan on experimental arterial thrombosis in the rabbit and rat. J Thromb Haemost 1:1114–1115

    Article  CAS  PubMed  Google Scholar 

  • Colliec-Jouault S, Bavington C, Delbarre-Ladrat C (2012) Heparin-like entities from marine organisms. Handb Exp Pharmacol 207:423–449

    Article  CAS  Google Scholar 

  • Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792

    Article  CAS  Google Scholar 

  • Cumashi A, Ushakova NA, Preobrazhenskaya ME, D’Incecco A, Piccoli A, Totani L, Tinari N, Morozevich GE, Berman AE, Bilan MI, Usov AI, Ustyuzhanina NE, Grachev AA, Sanderson CJ, Kelly M, Rabinovich GA, Iacobelli S, Nifantiev NE, Nazio CI (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17:541–552

    Article  CAS  PubMed  Google Scholar 

  • Daniele MA, Boyd DA, Adams AA, Ligler FS (2015) Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications. Adv Healthc Mater 4:11–28

    Article  CAS  PubMed  Google Scholar 

  • de Jesus Raposo MF, de Morais AMB, de Morais RMSC (2015) Marine polysaccharides from algae with potential biomedical applications. Mar Drugs 13:2967–3028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175

    Article  Google Scholar 

  • DeAngelis PL (2012) Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow. Appl Microbiol Biotechnol 94:295–305

    Article  CAS  PubMed  Google Scholar 

  • Deming J (1998) Deep ocean environmental biotechnology. Curr Opin Biotechnol 9:283–287

    Article  CAS  PubMed  Google Scholar 

  • Deniaud-Bouet E, Hardouin K, Potin P, Kloareg B, Herve C (2017) A review about brown algal cell walls and fucose-containing sulfated polysaccharides: cell wall context, biomedical properties and key research challenges. Carbohydr Polym 175:395–408

    Article  CAS  PubMed  Google Scholar 

  • Deux JF, Meddahi-Pelle A, Le Blanche AF, Feldman LJ, Colliec-Jouault S, Bree F, Boudghene F, Michel JB, Letourneur D (2002) Low molecular weight fucoidan prevents neointimal hyperplasia in rabbit iliac artery in-stent restenosis model. Arterioscler ThrombVasc Biol 22:1604–1609

    Article  CAS  Google Scholar 

  • Durand E, Helley D, Zen AAH, Dujols C, Bruneval P, Colliec-Jouault S, Fischer AM, Lafont A (2008) Effect of low molecular weight fucoidan and low molecular weight heparin in a rabbit model of arterial thrombosis. J Vasc Res 45:529–537

    Article  CAS  PubMed  Google Scholar 

  • Fedorov SN, Ermakova SP, Zvyagintseva TN, Stonik VA (2013) Anticancer and cancer preventive properties of marine polysaccharides: some results and prospects. Mar Drugs 11:4876–4901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finore I, Di Donato P, Mastascusa V, Nicolaus B, Poli A (2014) Fermentation technologies for the optimization of marine microbial exopolysaccharide production. Mar Drugs 12:3005–3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foley SA, Szegezdi E, Mulloy B, Samali A, Tuohy MG (2011) An unfractionated fucoidan from ascophyllum nodosum: extraction, characterization, and apoptotic effects in vitro. J Nat Prod 74:1851–1861

    Article  CAS  PubMed  Google Scholar 

  • Follin B, Juhl M, Cohen S, Pedersen AE, Gad M, Kastrup J, Ekblond A (2015) Human adipose-derived stromal cells in a clinically applicable injectable alginate hydrogel: phenotypic and immunomodulatory evaluation. Cytotherapy 17:1104–1118

    Article  CAS  PubMed  Google Scholar 

  • Fonseca RJ, Oliveira SN, Melo FR, Pereira MG, Benevides NM, Mourao PA (2008) Slight differences in sulfation of algal galactans account for differences in their anticoagulant and venous antithrombotic activities. Thromb Haemost 99:539–545

    Article  CAS  PubMed  Google Scholar 

  • Freeman I, Cohen S (2009) The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials 30:2122–2131

    Article  CAS  PubMed  Google Scholar 

  • Freitas F, Torres CAV, Reis MAM (2017) Engineering aspects of microbial exopolysaccharide production. Bioresour Technol 245:1674–1683

    Article  CAS  PubMed  Google Scholar 

  • Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72:455–482

    Article  CAS  PubMed  Google Scholar 

  • Gardeva E, Toshkova R, Yossifova L, Minkova K, Gigova L (2012) Cytotoxic and apoptogenic potential of red microalgal polysaccharides. Biotechnol Biotechnol Equip 26:3167–3172

    Article  CAS  Google Scholar 

  • Geresh S, Mamontov A, Weinstein J (2002) Sulfation of extracellular polysaccharides of red microalgae: preparation, characterization and properties. J Biochem Biophys Methods 50:179–187

    Article  CAS  PubMed  Google Scholar 

  • Han F, Yao W, Yang X, Liu X, Gao X (2005) Experimental study on anticoagulant and antiplatelet aggregation activity of a chemically sulfated marine polysaccharide YCP. Int J Biol Macromol 36:201–207

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa Y, Hayashi T, Lee JB, Ozawa T, Sakuragawa N (2000) Activation of heparin cofactor II by calcium spirulan. J Biol Chem 275:11379–11382

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Hayashi T, Kojima I (1996) A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Res Hum Retrovir 12:1463–1471

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Nakano T, Hashimoto M, Kanekiyo K, Hayashi T (2008) Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection. Int Immunopharmacol 8:109–116

    Article  CAS  PubMed  Google Scholar 

  • Hemmingson JA, Falshaw R, Furneaux RH, Thompson K (2006) Structure and antiviral activity of the galactofucan sulfates extracted from Undaria Pinnatifida (Phaeophyta). J Appl Phycol 18:185–193

    Article  CAS  Google Scholar 

  • Heymann D, Ruiz-Velasco C, Chesneau J, Ratiskol J, Sinquin C, Colliec-Jouault S (2016) Anti-metastatic properties of a marine bacterial exopolysaccharide-based derivative designed to mimic glycosaminoglycans. Molecules 21:309. https://doi.org/10.3390/molecules21030309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda Y, Charef S, Ouidja M-O, Barbier-Chassefiere V, Sineriz F, Duchesnay A, Narasimprakash H, Martelly I, Kern P, Barritault D, Petit E, Papy-Garcia D (2011) Synthesis and biological activities of a library of glycosaminoglycans mimetic oligosaccharides. Biomaterials 32:769–776

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF, Labes A, Wieses J (2011) Bio-mining the microbial treasures of the ocean : new natural products. Biotechnol Adv 29:468–482

    Article  CAS  PubMed  Google Scholar 

  • Jiao GL, Yu GL, Zhang JZ, Ewart HS (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9:196–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Z, Han YX, Han XR (2013) Degraded iota-carrageenan can induce apoptosis in human osteosarcoma cells via the Wnt/-Catenin signaling pathway. Nutr Cancer 65:126–131

    Article  CAS  PubMed  Google Scholar 

  • Jurd KM, Rogers DJ, Blunden G, McLellan DS (1995) Anticoagulant properties of sulphated polysaccharides and a proteoglycan from Codium fragile ssp. atlanticum. J Appl Phycol 7:339–345

    Article  CAS  Google Scholar 

  • Kalitnik AA, Barabanova AOB, Nagorskaya VP, Reunov AV, Glazunov VP, Solov’eva TF, Yermak IM (2013) Low molecular weight derivatives of different carrageenan types and their antiviral activity. J Appl Phycol 25:65–72

    Article  CAS  Google Scholar 

  • Khil’chenko SR, Zaporozhets TS, Shevchenko NM, Zvyagintseva TN, Vogel U, Seeberger P, Lepenies B (2011) Immunostimulatory activity of fucoidan from the brown alga fucus evanescens: role of sulfates and acetates. J Carbohydr Chem 30:291–305

    Article  CAS  Google Scholar 

  • Khotimchenko YS (2010) The antitumor properties of nonstarch polysaccharides: carrageenans, alginates, and pectins. Russ J Mar Biol 36:401–412

    Article  CAS  Google Scholar 

  • Kim M, Yim JH, Kim SY, Kim HS, Lee WG, Kim SJ, Kang PS, Lee CK (2012) In vitro inhibition of influenza A virus infection by marine microalga-derived sulfated polysaccharide p-KG03. Antivir Res 93:253–259

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi S, Tanigawa N, Nakagawa H, Soeda S, Shimeno H (2003) Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem Pharmacol 65:173–179

    Article  CAS  PubMed  Google Scholar 

  • Kralovec JA, Metera KL, Kumar JR, Watson LV, Girouard GS, Guan Y, Carr RI, Barrow CJ, Ewart HS (2007) Immunostimulatory principles from Chlorella pyrenoidosa – Part 1: isolation and biological assessment in vitro. Phytomedicine 14:57–64

    Article  CAS  PubMed  Google Scholar 

  • Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 22:511–521

    Article  CAS  PubMed  Google Scholar 

  • Kwak JY (2014) Fucoidan as a marine anticancer agent in preclinical development. Mar Drugs 12:851–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  PubMed  Google Scholar 

  • Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8:2435–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KY, Kong HJ, Larson RG, Mooney DJ (2003) Hydrogel formation via cell crosslinking. Adv Mater 15:1828–1832

    Article  CAS  Google Scholar 

  • Lee J-B, Hayashi K, Hirata M, Kuroda E, Suzuki E, Kubo Y, Hayashi T (2006) Antiviral sulfated polysaccharide from navicula directa, a diatom collected from deep-sea water in Toyama Bay. Biol Pharm Bull 29:2135–2139

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Silva EA, Mooney DJ (2011) Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8:153–170

    Article  CAS  PubMed  Google Scholar 

  • Levy-Ontman O, Huleihel M, Hamias R, Wolak T, Paran E (2017) An anti-inflammatory effect of red microalga polysaccharides in coronary artery endothelial cells. Atherosclerosis 264:11–18

    Article  CAS  PubMed  Google Scholar 

  • Liu RM, Bignon J, Haroun-Bouhedja F, Bittoun P, Vassy J, Fermandjian S, Wdzieczak-Bakala J, Boisson-Vidal C (2005) Inhibitory effect of fucoidan on the adhesion of adenocarcinoma cells to fibronectin. Anticancer Res 25:2129–2133

    CAS  PubMed  Google Scholar 

  • Luyt CE, Meddahi-Pelle A, Ho-Tin-Noe B, Colliec-Jouault S, Guezennec J, Louedec L, Prats HE, Jacob MP, Osborne-Pellegrin M, Letourneur D, Michel JB (2003) Low-molecular-weight fucoidan promotes therapeutic revascularization in a rat model of critical hindlimb ischemia. J Pharmacol Exp Ther 305:24–30

    Article  CAS  PubMed  Google Scholar 

  • Martin M, Portetelle D, Michel G, Vandenbol M (2014) Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Appl Microbiol Biotechnol 98:2917–2935

    Article  CAS  PubMed  Google Scholar 

  • Martins A, Vieira H, Gaspar H, Santos S (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs 12:1066–1101

    Article  PubMed  PubMed Central  Google Scholar 

  • Matou S, Helley D, Chabut D, Bros A, Fischer A-M (2002) Effect of fucoidan on fibroblast growth factor-2-induced angiogenesis in vitro. Thromb Res 106:213–221

    Article  CAS  PubMed  Google Scholar 

  • Matou S, Colliec-Jouault S, Galy-Fauroux I, Ratiskol J, Sinquin C, Guezennec J, Fischer A-M, Helley D (2005) Effect of an oversulfated exopolysaccharide on angiogenesis induced by fibroblast growth factor-2 or vascular endothelial growth factor in vitro. Biochem Pharmacol 69:751–759

    Article  CAS  PubMed  Google Scholar 

  • Matsuda M, Shigeta S, Okutani K (1999) Antiviral activities of marine Pseudomonas polysaccharides and their oversulfated derivatives. Mar Biotechnol 1:68–73

    Article  CAS  Google Scholar 

  • Mauray S, Sternberg C, Theveniaux J, Millet J, Sinquin C, Taponbretaudiere J, Fischer AM (1995) Venous antithrombotic and anticoagulant activities of a fucoidan fraction. Thromb Haemost 74:1280–1285

    Article  CAS  PubMed  Google Scholar 

  • Mayer AMS, Rodriguez AD, Berlinck RGS, Fusetani N (2011) Marine pharmacology in 2007–2008: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 153:191–222

    Article  PubMed  CAS  Google Scholar 

  • Millet J, Jouault SC, Mauray S, Theveniaux J, Sternberg C, Boisson Vidal C, Fischer AM (1999) Antithrombotic and anticoagulant activities of a low molecular weight fucoidan by the subcutaneous route. J Thromb Haemost 81:391–395

    Article  CAS  Google Scholar 

  • Mishima T, Murata J, Toyoshima M, Fujii H, Nakajima M, Hayashi T, Kato T, Saiki I (1998) Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis. Clin Exp Metastasis 16:541–550

    Article  CAS  PubMed  Google Scholar 

  • Miura Y, Fukuda T, Seto H, Hoshino Y (2016) Development of glycosaminoglycan mimetics using glycopolymers. Polym J 48:229–237

    Article  CAS  Google Scholar 

  • Mori N, Nakasone K, Tomimori K, Ishikawa C (2012) Beneficial effects of fucoidan in patients with chronic hepatitis C virus infection. World J Gastroenterol 18:2225–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moshaverinia A, Xu XT, Chen C, Akiyama K, Snead ML, Shi ST (2013) Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration. Acta Biomater 9:9343–9350

    Article  CAS  PubMed  Google Scholar 

  • Moussavou G, Kwak DH, Obiang-Obonou BW, Maranguy CAO, Dinzouna-Boutamba SD, Lee DH, Pissibanganga OGM, Ko K, Seo JI, Choo YK (2014) Anticancer effects of different seaweeds on human colon and breast cancers. Mar Drugs 12:4898–4911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murano E, Perin D, Khan R, Bergamin M (2011) Hyaluronan: from biomimetic to industrial business strategy. Nat Prod Commun 6:555–572

    CAS  PubMed  Google Scholar 

  • Muzzarelli RAA, Greco F, Busilacchi A, Sollazzo V, Gigante A (2012) Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: a review. Carbohydr Polym 89:723–739

    Article  CAS  PubMed  Google Scholar 

  • Naderi-Meshkin H, Andreas K, Matin MM, Sittinger M, Bidkhori HR, Ahmadiankia N, Bahrami AR, Ringe J (2014) Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering. Cell Biol Int 38:72–84

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Kim D, Jiang ZD, Ueno M, Okimura T, Yamaguchi K, Oda T (2012) Immunostimulatory activities of the sulfated polysaccharide ascophyllan from Ascophyllum nodosum in in vivo and in vitro systems. Biosci Biotechnol Biochem 76:1573–1576

    Article  CAS  PubMed  Google Scholar 

  • Nandini CD, Itoh N, Sugahara K (2005) Novel 70-kDa chondroitin Sulfate/Dermatan sulfate hybrid chains with a unique heterogenous sulfation pattern from shark skin, which exhibit neuritogenic activity and binding activities for growth factors and neurotrophic factors. J Biol Chem 280:4058–4069

    Article  CAS  PubMed  Google Scholar 

  • Nardella A, Chaubet F, Boisson Vidal C, Blondin C, Durand P, Jozefonvicz J (1996) Anticoagulant low molecular weight fucans produced by radical process and ion exchange chromatography of high molecular weight fucans extracted from the brown seaweed Ascophyllum nodosum. Carbohydr Res 289:201–208

    Article  CAS  PubMed  Google Scholar 

  • Nicolaus B, Kambourova M, Oner ET (2010) Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol 31:1145–1158

    Article  CAS  PubMed  Google Scholar 

  • Nishino T, Nagumo T (1992) Anticoagulant and antithrombin activities of oversulfated fucans. Carbohydr Res 229:355–362

    Article  CAS  PubMed  Google Scholar 

  • Nishino T, Aizu Y, Nagumo T (1991) The influence of sulfate content and molecular weight of a fucan sulfate from the brown seaweed Ecklonia kurome on its antithrombin activity. Thromb Res 64:723–731

    Article  CAS  PubMed  Google Scholar 

  • Okami Y (1986) Marine microorganisms as a source of bioactive agents. Microb Ecol 12:65–78

    Article  CAS  PubMed  Google Scholar 

  • Oreste P, Zoppetti G (2012) Semi-synthetic heparinoids. Handb Exp Pharmacol 207:403–422

    Article  CAS  Google Scholar 

  • Park H, Kang SW, Kim BS, Mooney DJ, Lee KY (2009) Shear-reversibly crosslinked alginate hydrogels for tissue engineering. Macromol Biosci 9:895–901

    Article  CAS  PubMed  Google Scholar 

  • Pavao MSG (2014) Glycosaminoglycans analogs from marine invertebrates: structure, biological effects, and potential as new therapeutics. Front Cell Infect Microbiol 4:123. https://doi.org/10.3389/fcimb.2014.00123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit AC, Noiret N, Guezennec J, Gondrexon N, Colliec-Jouault S (2007) Ultrasonic depolymerization of an exopolysaccharide produced by a bacterium isolated from a deep-sea hydrothermal vent polychaete annelid. Ultrason Sonochem 14:107–112

    Article  CAS  PubMed  Google Scholar 

  • Pomin VH (2015) Marine non-glycosaminoglycan sulfated glycans as potential pharmaceuticals. Pharmaceuticals (Basel) 8:848–864

    Article  CAS  Google Scholar 

  • Praillet C, Grimaud JA, Lortat-Jacob H (1998a) Proteoglycans as therapeutic agents (I). M S-Med Sci 14:412–420

    Google Scholar 

  • Praillet C, Lortat-Jacob H, Grimaud JA (1998b) Proteoglycans and pathology (ll). M S-Med Sci 14:421–428

    Google Scholar 

  • Puvaneswary S, Raghavendran HB, Talebian S, Murali MR, Mahmod SA, Singh S, Kamarul T (2016) Incorporation of Fucoidan in β-Tricalcium phosphate-Chitosan scaffold prompts the differentiation of human bone marrow stromal cells into osteogenic lineage. Sci Rep-UK 6:24202. https://doi.org/10.1038/srep24202

    Article  CAS  Google Scholar 

  • Qi HM, Zhang QB, Zhao TT, Hu RG, Zhang K, Li Z (2006) In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). Bioorg Med Chem Lett 16:2441–2445

    Article  CAS  PubMed  Google Scholar 

  • Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88

    Article  CAS  PubMed  Google Scholar 

  • Ramirez F, Rifkin DB (2003) Cell signaling events: a view from the matrix. Matrix Biol 22:101–107

    Article  CAS  PubMed  Google Scholar 

  • Raposo MFD, de Morais R, de Morais A (2013) Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs 11:233–252

    Article  PubMed  Google Scholar 

  • Rechter S, Konig T, Auerochs S, Thulke S, Walter H, Dornenburg H, Walter C, Marschall M (2006) Antiviral activity of Arthrospira-derived spirulan-like substances. Antivir Res 72:197–206

    Article  CAS  PubMed  Google Scholar 

  • Rederstorff E, Rethore G, Weiss P, Sourice S, Beck-Cormier S, Mathieu E, Maillasson M, Jacques Y, Colliec-Jouault S, Fellah BH, Guicheux J, Vinatier C (2017) Enriching a cellulose hydrogel with a biologically active marine exopolysaccharide for cell-based cartilage engineering. J Tissue Eng Regen Med 11:1152–1164

    Article  CAS  PubMed  Google Scholar 

  • Re’em T, Tsur-Gang O, Cohen S (2010) The effect of immobilized RGD peptide in macroporous alginate scaffolds on TGF beta 1-induced chondrogenesis of human mesenchymal stem cells. Biomaterials 31:6746–6755

    Article  PubMed  CAS  Google Scholar 

  • Re’em T, Kaminer-Israeli Y, Ruvinov E, Cohen S (2012) Chondrogenesis of hMSC in affinity-bound TGF-beta scaffolds. Biomaterials 33:751–761

    Article  PubMed  CAS  Google Scholar 

  • Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592

    Article  CAS  PubMed  Google Scholar 

  • Rioux LE, Turgeon SL, Beaulieu M (2009) Effect of season on the composition of bioactive polysaccharides from the brown seaweed Saccharina longicruris. Phytochemistry 70:1069–1075

    Article  CAS  PubMed  Google Scholar 

  • Roger O, Kervarec N, Ratiskol J, Colliec-Jouault S, Chevolot L (2004) Structural studies of the main exopolysaccharide produced by the deep-sea bacterium Alteromonas infernus. Carbohydr Res 339:2371–2380

    Article  CAS  PubMed  Google Scholar 

  • Rougeaux H, Kervarec N, Pichon R, Guezennec J (1999) Structure of the exopolysaccharide of Vibrio diabolicus isolated from a deep-sea hydrothermal vent. Carbohydr Res 322:40–45

    Article  CAS  PubMed  Google Scholar 

  • Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53

    Article  CAS  PubMed  Google Scholar 

  • Ruiz Velasco C, Baud’huin M, Sinquin C, Maillasson M, Heymann D, Colliec-Jouault S, Padrines M (2011) Effects of a sulfated exopolysaccharide produced by Altermonas infernus on bone biology. Glycobiology 21:781–795

    Article  CAS  PubMed  Google Scholar 

  • Ruoslahti E, Yamaguchi Y (1991) Proteoglycans as modulators of growth factors activities. Cell 64:867–869

    Article  CAS  PubMed  Google Scholar 

  • Saboural P, Chaubet F, Rouzet F, Al-Shoukr F, Ben Azzouna R, Bouchemal N, Picton L, Louedec L, Maire M, Rolland L, Potier G, Le Guludec D, Letourneur D, Chauvierre C (2014) Purification of a low molecular weight fucoidan for SPECT molecular imaging of myocardial infarction. Mar Drugs 12:4851–4867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadovskaya I, Souissi A, Souissi S, Grard T, Lencel P, Greene CM, Duin S, Dmitrenok PS, Chizhov AO, Shashkov AS, Usov AI (2014) Chemical structure and biological activity of a highly branched (1 -> 3,1 -> 6)-beta-D-glucan from Isochrysis galbana. Carbohydr Polym 111:139–148

    Article  CAS  PubMed  Google Scholar 

  • Schaeffer DJ, Krylov VS (2000) Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol Environ Saf 45:208–227

    Article  CAS  PubMed  Google Scholar 

  • Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 6:496. https://doi.org/10.3389/fmicb.2015.00496

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnabelrauch M, Scharnweber D, Schiller J (2013) Sulfated glycosaminoglycans as promising artificial extracellular matrix components to improve the regeneration of tissues. Curr Med Chem 20:2501–2523

    Article  CAS  PubMed  Google Scholar 

  • Senni K, Pereira J, Gueniche F, Delbarre-Ladrat C, Sinquin C, Ratiskol J, Godeau G, Fischer A-M, Helley D, Colliec-Jouault S (2011) Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering. Mar Drugs 9:1664–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senni K, Gueniche F, Changotade S, Septier D, Sinquin C, Ratiskol J, Lutomski D, Godeau G, Guezennec J, Colliec-Jouault S (2013) Unusual glycosaminoglycans from a deep sea hydrothermal bacterium improve fibrillar collagen structuring and fibroblast activities in engineered connective tissues. Mar Drugs 11:1351–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seol YJ, Lee JY, Park YJ, Lee YM, Young K, Rhyu IC, Lee SJ, Han SB, Chung CP (2004) Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett 26:1037–1041

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam M, Mody KH (2000) Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents. Curr Sci 79:1672–1683

    CAS  Google Scholar 

  • Sheng J, Yu F, Xin Z, Zhao L, Zhu X, Hu Q (2007) Preparation, identification and their antitumor activities in vitro of polysaccharides from Chlorella pyrenoidosa. Food Chem 105:533–539

    Article  CAS  Google Scholar 

  • Shin S, Park JY, Lee JY, Park H, Park YD, Lee KB, Whang CM, Lee SH (2007) “On the fly” continuous generation of alginate fibers using a microfluidic device. Langmuir 23:9104–9108

    Article  CAS  PubMed  Google Scholar 

  • Siddhanta AK, Shanmugam M, Mody KH, Goswami AM, Ramavat BK (1999) Sulphated polysaccharides of Codium dwarkense Boergs. from the west coast of India: chemical composition and blood anticoagulant activity. Int J Biol Macromol 26:151–154

    Article  CAS  PubMed  Google Scholar 

  • Smit A (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16:245–262

    Article  CAS  Google Scholar 

  • Sogawa K, Yamada T, Sumida T, Hamakawa H, Kuwabara H, Matsuda M, Muramatsu Y, Kose H, Matsumoto K, Sasaki Y, Okutani K, Kondo K, Monden Y (2000) Induction of apoptosis and inhibition of DNA topoisomerase-I in K-562 cells by a marine microalgal polysaccharide. Life Sci 66:PL227–PL231

    Article  CAS  PubMed  Google Scholar 

  • Sun JC, Tan HP (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6:1285–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Wang L, Zhou Y (2012) Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum. Carbohydr Polym 87:1206–1210

    Article  CAS  Google Scholar 

  • Sun LQ, Chu JL, Sun ZL, Chen LH (2016) Physicochemical properties, immunomodulation and antitumor activities of polysaccharide from Pavlova viridis. Life Sci 144:156–161

    Article  CAS  PubMed  Google Scholar 

  • Tseng CK (2001) Algal biotechnology industries and research activities in China. J Appl Phycol 13:375–380

    Article  Google Scholar 

  • Ueno M, Cho K, Isaka S, Nishiguchi T, Yamaguchi K, Kim D, Oda T (2018) Inhibitory effect of sulphated polysaccharide porphyran (isolated from Porphyra yezoensis) on RANKL-induced differentiation of RAW264.7 cells into osteoclasts. Phytother Res 32:452–458

    Article  CAS  PubMed  Google Scholar 

  • Ustyuzhanina NE, Bilan MI, Ushakova NA, Usov AI, Kiselevskiy MV, Nifantiev NE (2014) Fucoidans: pro- or antiangiogenic agents? Glycobiology 24:1265–1274

    Article  CAS  PubMed  Google Scholar 

  • Vo T-S, Kim S-K (2010) Potential anti-HIV agents from marine resources: an overview. Mar Drugs 8:2871–2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Chen B, Rao X, Huang J, Li M (2007) Optimization of culturing conditions of Porphyridium cruentum using uniform design. World J Microbiol Biotechnol 23:1345–1350

    Article  Google Scholar 

  • Wang W, Wang S-X, Guan H-S (2012) The antiviral activities and mechanisms of marine polysaccharides: an overview. Mar Drugs 10:2795–2816

    Article  PubMed  PubMed Central  Google Scholar 

  • Wijesinghe W, Jeon YJ (2012) Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: a review. Carbohydr Polym 88:13–20

    Article  CAS  Google Scholar 

  • Yamada T, Ogamo A, Saito T, Watanabe J, Uchiyama H, Nakagawa Y (1997) Preparation and anti-HIV activity of low-molecular-weight carrageenans and their sulfated derivatives. Carbohydr Polym 32:51–55

    Article  CAS  Google Scholar 

  • Yang XB, Gao XD, Han F, Tan RX (2005a) Sulfation of a polysaccharide produced by a marine filamentous fungus Phoma herbarum YS4108 alters its antioxidant properties in vitro. Biochim Biophys Acta Gen Subj 1725:120–127

    Article  CAS  Google Scholar 

  • Yang XB, Gao XD, Han F, Xu BS, Song YC, Tan RX (2005b) Purification, characterization and enzymatic degradation of YCP, a polysaccharide from marine filamentous fungus Phoma herbarum YS4108. Biochimie 87:747–754

    Article  CAS  PubMed  Google Scholar 

  • Yang J-S, Xie Y-J, He W (2011) Research progress on chemical modification of alginate: a review. Carbohydr Polym 84:33–39

    Article  CAS  Google Scholar 

  • Yim JH, Kim SJ, Ahn SH, Lee CK, Rhie KT, Lee HK (2004) Antiviral effects of sulfated exopolysaccharide from the marine microalga Gyrodinium impudicum strain KG03. Mar Biotechnol 6:17–25

    Article  CAS  Google Scholar 

  • Yim JH, Son E, Pyo S, Lee HK (2005) Novel sulfated polysaccharide derived from red-tide microalga Gyrodinium impudicum strain KG03 with immunostimulating activity in vivo. Mar Biotechnol 7:331–338

    Article  CAS  Google Scholar 

  • Yu G, Guan H, Ioanoviciu AS, Sikkander SA, Thanawiroon C, Tobacman JK, Toida T, Linhardt RJ (2002) Structural studies on kappa-carrageenan derived oligosaccharides. Carbohydr Res 337:433–440

    Article  CAS  PubMed  Google Scholar 

  • Zanchetta P, Lagarde N, Guezennec J (2003) A new bone-healing material: a hyaluronic acid-like bacterial exopolysaccharide. Calcif Tissue Int 72:74–79

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZS, Zhang QB, Wang J, Song HF, Zhang H, Niu XZ (2010) Regioselective syntheses of sulfated porphyrans from porphyra haitanensis and their antioxidant and anticoagulant activities in vitro. Carbohydr Polym 79:1124–1129

    Article  CAS  Google Scholar 

  • Zhang ZY, Teruya K, Eto H, Shirahata S (2013) Induction of apoptosis by low-molecular-weight fucoidan through calcium- and caspase-dependent mitochondrial pathways in MDA-MB-231 breast cancer cells. Biosci Biotechnol Biochem 77:235–242

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Sun Y, Xin H, Zhang Y, Li Z, Xu Z (2004) In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus. Pharmacol Res 50:47–53

    Article  CAS  PubMed  Google Scholar 

  • Zuniga EA, Matsuhiro B, Mejias E (2006) Preparation of a low-molecular weight fraction by free radical depolymerization of the sulfated galactan from Schizymenia binderi (Gigartinales, Rhodophyta) and its anticoagulant activity. Carbohydr Polym 66:208–215

    Article  CAS  Google Scholar 

  • Zykwinska A, Marquis M, Sinquin C, Cuenot S, Colliec-Jouault S (2016) Assembly of HE800 exopolysaccharide produced by a deep-sea hydrothermal bacterium into microgels for protein delivery applications. Carbohydr Polym 142:213–221

    Article  CAS  PubMed  Google Scholar 

  • Zykwinska A, Berre LT-L, Sinquin C, Ropartz D, Rogniaux H, Colliec-Jouault S, Delbarre-Ladrat C (2018) Enzymatic depolymerization of the GY785 exopolysaccharide produced by the deep-sea hydrothermal bacterium Alteromonas infernus: structural study and enzyme activity assessment. Carbohydr Polym 188:101–107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the CNRS in the framework of the GDR GAG (GDR 3739).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Colliec-Jouault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Colliec-Jouault, S., Zykwinska, A. (2019). Marine Glycosaminoglycans (GAGs) and GAG-Mimetics: Applications in Medicine and Tissue Engineering. In: Cohen, E., Merzendorfer, H. (eds) Extracellular Sugar-Based Biopolymers Matrices. Biologically-Inspired Systems, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-12919-4_15

Download citation

Publish with us

Policies and ethics