Skip to main content

Advertisement

Log in

Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Glycosaminoglycans [GAGs] are essential heteropolysaccharides in vertebrate tissues that are also, in certain cases, employed as virulence factors by microbes. Hyaluronan [HA], heparin, and chondroitin sulfate [CS] are GAGs currently used in various medical applications and together are multi-billion dollar products thus targets for production by animal-free manufacture. By using bacteria as the source of GAGs, the pathogen’s sword may be converted into a plowshare to help avoid potential liabilities springing from the use of animal-derived GAGs including adventitious agents (e.g., prions, pathogens), antigenicity, degradation of the environment, and depletion of endangered species. HA from microbes, which have a chemical structure identical to human HA, has already been commercialized and sold at the ton-scale. Substantial progress towards microbial heparin and CS has been made, but these vertebrate polymers are more complicated structurally than the unsulfated bacterial polysaccharide precursors thus require additional processing steps. This review provides an overview of GAG structure, medical applications, microbial biosynthesis, and the state of bacterial GAG production systems. Representatives of all glycosyltransferase enzymes that polymerize the sugar chains of the three main GAGs have been identified and serve as the core technology to harness, but the proteins involved in sugar precursor formation and chain export steps of biosynthesis are also essential to the GAG production process. In addition, this review discusses future directions and potential important issues. Overall, this area is poised to make great headway to produce safer (both increased purity and more secure supply chains) non-animal GAG-based therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Balazs EA (2004) Viscosupplementation for treatment of osteoarthritis: from initial discovery to current status and results. Surg Technol Int 12:278–289

    Google Scholar 

  • Bali JP, Cousse H, Neuzil E (2001) Biochemical basis of the pharmacologic action of chondroitin sulfates on the osteoarticular system. Semin Arthritis Rheum 31:58–68

    Article  CAS  Google Scholar 

  • Bodevin-Authelet S, Kusche-Gullberg M, Pummill PE, DeAngelis PL, Lindahl U (2005) Biosynthesis of hyaluronan: direction of chain elongation. J Biol Chem 280:8813–8818

    Article  CAS  Google Scholar 

  • Casu B, Grazioli G, Razi N, Guerrini M, Naggi A, Torri G, Oreste P, Tursi F, Zoppetti G, Lindahl U (1994) Heparin-like compounds prepared by chemical modification of capsular polysaccharide from E. coli K5. Carbohydr Res 263:271–284

    Article  CAS  Google Scholar 

  • Chen WY, Marcellin E, Hung J, Nielsen LK (2009) Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus. J Biol Chem 284:18007–18014. doi:10.1074/jbc.M109.011999

    Article  CAS  Google Scholar 

  • Chien LJ, Lee CK (2007a) Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Biotechnol Prog 23:1017–1022. doi:10.1021/bp070036w

    CAS  Google Scholar 

  • Chien LJ, Lee CK (2007b) Hyaluronic acid production by recombinant Lactococcus lactis. Appl Microbiol Biotechnol 77:339–346. doi:10.1007/s00253-007-1153-z

    Article  CAS  Google Scholar 

  • Chong BF, Nielsen LK (2003) Amplifying the cellular reduction potential of Streptococcus zooepidemicus. J Biotechnol 100:33–41

    Article  CAS  Google Scholar 

  • Chong BF, Blank LM, McLaughlin R, Nielsen LK (2005) Microbial hyaluronic acid production. Appl Microbiol Biotechnol 66:341–351. doi:10.1007/s00253-004-1774-4

    Article  CAS  Google Scholar 

  • Chung JY, Wilkie I, Boyce JD, Townsend KM, Frost AJ, Ghoddusi M, Adler B (2001) Role of capsule in the pathogenesis of fowl cholera caused by Pasteurella multocida serogroup A. Infect Immun 69:2487–2492

    Article  CAS  Google Scholar 

  • Cimini D, De Rosa M, Viggiani A, Restaino OF, Carlino E, Schiraldi C (2010a) Improved fructosylated chondroitin production by kfoC overexpression in E. coli K4. J Biotechnol 150:324–331, 10.1016/j.jbiotec.2010.09.954

    Article  CAS  Google Scholar 

  • Cimini D, Restaino OF, Catapano A, De Rosa M, Schiraldi C (2010b) Production of capsular polysaccharide from Escherichia coli K4 for biotechnological applications. Appl Microbiol Biotechnol 85:1779–1787. doi:10.1007/s00253-009-2261-8

    Article  CAS  Google Scholar 

  • Dale JB, Washburn RG, Marques MB, Wessels MR (1996) Hyaluronate capsule and surface M protein in resistance to opsonization of group A streptococci. Infect Immun 64:1495–1501

    CAS  Google Scholar 

  • DeAngelis PL (1999) Molecular directionality of polysaccharide polymerization by the Pasteurella multocida hyaluronan synthase. J Biol Chem 274:26557–26562

    Article  CAS  Google Scholar 

  • DeAngelis PL (2002a) Evolution of glycosaminoglycans and their glycosyltransferases: Implications for the extracellular matrices of animals and the capsules of pathogenic bacteria. Anat Rec 268:317–326

    Article  CAS  Google Scholar 

  • DeAngelis PL (2002b) Microbial glycosaminoglycan glycosyltransferases. Glycobiology 12:9R–16R

    Article  CAS  Google Scholar 

  • DeAngelis PL, Padgett-McCue AJ (2000) Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F. J Biol Chem 275:24124–24129

    Article  CAS  Google Scholar 

  • DeAngelis PL, Weigel PH (1994) Immunochemical confirmation of the primary structure of streptococcal hyaluronan synthase and synthesis of high molecular weight product by the recombinant enzyme. Biochemistry 33:9033–9039

    Article  CAS  Google Scholar 

  • DeAngelis PL, White CL (2002) Identification and molecular cloning of a heparosan synthase from Pasteurella multocida type D. J Biol Chem 277:7209–7213

    Article  CAS  Google Scholar 

  • DeAngelis PL, White CL (2004) Identification of a distinct, cryptic heparosan synthase from Pasteurella multocida types A, D, and F. J Bacteriol 186:8529–8532

    Article  CAS  Google Scholar 

  • DeAngelis PL, Papaconstantinou J, Weigel PH (1993) Molecular cloning, identification, and sequence of the hyaluronan synthase gene from group A Streptococcus pyogenes. J Biol Chem 268:19181–19184

    CAS  Google Scholar 

  • DeAngelis PL, Jing W, Graves MV, Burbank DE, Van Etten JL (1997) Hyaluronan synthase of chlorella virus PBCV-1. Science 278:1800–1803

    Article  CAS  Google Scholar 

  • DeAngelis PL, Jing W, Drake RR, Achyuthan AM (1998) Identification and molecular cloning of a unique hyaluronan synthase from Pasteurella multocida. J Biol Chem 273:8454–8458

    Article  CAS  Google Scholar 

  • DeAngelis PL, Gunay NS, Toida T, Mao WJ, Linhardt RJ (2002) Identification of the capsular polysaccharides of Type D and F Pasteurella multocida as unmodified heparin and chondroitin, respectively. Carbohydr Res 337:1547–1552

    Article  CAS  Google Scholar 

  • DeAngelis PL, Oatman LC, Gay DF (2003) Rapid chemoenzymatic synthesis of monodisperse hyaluronan oligosaccharides with immobilized enzyme reactors. J Biol Chem 278:35199–35203

    Article  CAS  Google Scholar 

  • Duncan G, McCormick C, Tufaro F (2001) The link between heparan sulfate and hereditary bone disease: finding a function for the EXT family of putative tumor suppressor proteins. J Clin Invest 108:511–516. doi:10.1172/JCI13737

    CAS  Google Scholar 

  • Esko JD, Lindahl U (2001) Molecular diversity of heparan sulfate. J Clin Invest 108:169–173

    CAS  Google Scholar 

  • Goa KL, Benfield P (1994) Hyaluronic acid. A review of its pharmacology and use as a surgical aid in ophthalmology, and its therapeutic potential in joint disease and wound healing. Drugs 47:536–566

    Article  CAS  Google Scholar 

  • Heldermon C, DeAngelis PL, Weigel PH (2001) Topological organization of the hyaluronan synthase from Streptococcus pyogenes. J Biol Chem 276:2037–2046

    Article  CAS  Google Scholar 

  • Hodson N, Griffiths G, Cook N, Pourhossein M, Gottfridson E, Lind T, Lidholt K, Roberst IS (2000) Identification that KfiA, a protein essential for the biosynthesis of the Escherichia coli K5 capsular polysaccharide, is an alpha-UDP-GlcNAc glycosyltransferase. The formation of a membrane-associated K5 biosynthetic complex requires KfiA, KfiB, and KfiC. J Biol Chem 275:27311–27315

    CAS  Google Scholar 

  • Izawa N, Serata M, Sone T, Omasa T, Ohtake H (2011) Hyaluronic acid production by recombinant Streptococcus thermophilus. J Biosci Bioeng 111:665–670. doi:10.1016/j.jbiosc.2011.02.005

    Article  CAS  Google Scholar 

  • Jann K, Jann B (1992) Capsules of Escherichia coli, expression and biological significance. Can J Microbiol 38:705–710

    Article  CAS  Google Scholar 

  • Jing W, DeAngelis PL (2000) Dissection of the two transferase activities of the Pasteurella multocida hyaluronan synthase: two active sites exist in one polypeptide. Glycobiology 10:883–889

    Article  CAS  Google Scholar 

  • Jing W, DeAngelis PL (2003) Analysis of the two active sites of the hyaluronan synthase and the chondroitin synthase of Pasteurella multocida. Glycobiology 13:661R–671R

    Article  Google Scholar 

  • Jing W, DeAngelis PL (2004) Synchronized chemoenzymatic synthesis of monodisperse hyaluronan polymers. J Biol Chem 279:42345–42349

    Article  CAS  Google Scholar 

  • Krahulec J, Krahulcova J, Medova M, Velebny V (2005) Influence of KfoG on capsular polysaccharide structure in Escherichia coli K4 strain. Mol Biotechnol 30:129–134. doi:10.1385/MB:30:2:129

    Article  CAS  Google Scholar 

  • Krishnaswamy A, Lincoff AM, Cannon CP (2010) The use and limitations of unfractionated heparin. Crit Pathw Cardiol 9:35–40. doi:10.1097/HPC.0b013e3181d29713

    Article  Google Scholar 

  • Kuberan B, Beeler DL, Lawrence R, Lech M, Rosenberg RD (2003) Rapid two-step synthesis of mitrin from heparosan: a replacement for heparin. J Am Chem Soc 125:12424–12425. doi:10.1021/ja036737g

    Article  CAS  Google Scholar 

  • Kubo M, Ando K, Mimura T, Matsusue Y, Mori K (2009) Chondroitin sulfate for the treatment of hip and knee osteoarthritis: current status and future trends. Life Sci 85:477–483. doi:10.1016/j.lfs.2009.08.005

    Article  CAS  Google Scholar 

  • Kumari K, Weigel PH (1997) Molecular cloning, expression, and characterization of the authentic hyaluronan synthase from group C Streptococcus equisimilis. J Biol Chem 272:32539–32546

    Article  CAS  Google Scholar 

  • Laurent TC, Fraser JR (1992) Hyaluronan. FASEB J 6:2397–2404

    CAS  Google Scholar 

  • Lindahl U, Li JP, Kusche-Gullberg M, Salmivirta M, Alaranta S, Veromaa T, Emeis J, Roberts I, Taylor C, Oreste P, Zopetti G, Naggi A, Torri G, Casu B (2005) Generation of "neoheparin" from E. coli K5 capsular polysaccharide. J Med Chem 48:349–352, 10.1021/jm049812m

    Article  CAS  Google Scholar 

  • Linhardt RJ, Dordick JS, DeAngelis PL, Liu J (2007) Enzymatic synthesis of glycosaminoglycan heparin. Semin Thromb Hemost 33:453–465

    Article  CAS  Google Scholar 

  • Liu L, Wang M, Du G, Chen J (2008) Enhanced hyaluronic acid production of Streptococcus zooepidemicus by an intermittent alkaline-stress strategy. Lett Appl Microbiol 46:383–388. doi:10.1111/j.1472-765X.2008.02325.x

    Article  CAS  Google Scholar 

  • Liu H, Zhang Z, Linhardt RJ (2009a) Lessons learned from the contamination of heparin. Nat Prod Rep 26:313–321. doi:10.1039/b819896a

    Article  CAS  Google Scholar 

  • Liu L, Du G, Chen J, Wang M, Sun J (2009b) Comparative study on the influence of dissolved oxygen control approaches on the microbial hyaluronic acid production of Streptococcus zooepidemicus. Bioprocess Biosyst Eng 32:755–763. doi:10.1007/s00449-009-0300-6

    Article  CAS  Google Scholar 

  • Liu L, Yang H, Zhang D, Du G, Chen J, Wang M, Sun J (2009c) Enhancement of hyaluronic acid production by batch culture of Streptococcus zooepidemicus with n-dodecane as an oxygen vector. J Microbiol Biotechnol 19:596–603

    CAS  Google Scholar 

  • Murano E, Perin D, Khan R, Bergamin M (2011) Hyaluronan: from biomimetic to industrial business strategy. Nat Prod Commun 6:555–572

    CAS  Google Scholar 

  • Naggi A, Torri G, Casu B, Oreste P, Zopetti G, Li JP, Lindahl U (2001) Toward a biotechnological heparin through combined chemical and enzymatic modification of the Escherichia coli K5 polysaccharide. Semin Thromb Hemost 27:437–443. doi:10.1055/s-2001-17954

    Article  CAS  Google Scholar 

  • Ninomiya T, Sugiura N, Tawada A, Sugimoto K, Watanabe H, Kimata K (2002) Molecular cloning and characterization of chondroitin polymerase from Escherichia coli strain K4. J Biol Chem 277:21567–21575

    Article  CAS  Google Scholar 

  • Osawa T, Sugiura N, Shimada H, Hirooka R, Tsuji A, Shirakawa T, Fukuyama K, Kimura M, Kimata K, Kakuta Y (2009) Crystal structure of chondroitin polymerase from Escherichia coli K4. Biochem Biophys Res Commun 378:10–14. doi:10.1016/j.bbrc.2008.08.121

    Article  CAS  Google Scholar 

  • Otto NJ, Solakyildirim K, Linhardt RJ, DeAngelis PL (2011) Comamonas testosteronan synthase, a bifunctional glycosyltransferase that produces a unique heparosan polysaccharide analog. Glycobiology 21:1331–1340. doi:10.1093/glycob/cwr072

    Article  CAS  Google Scholar 

  • Ouskova G, Spellerberg B, Prehm P (2004) Hyaluronan release from Streptococcus pyogenes: export by an ABC transporter. Glycobiology 14:931–938

    Article  CAS  Google Scholar 

  • Prasad SB, Jayaraman G, Ramachandran KB (2010) Hyaluronic acid production is enhanced by the additional co-expression of UDP-glucose pyrophosphorylase in Lactococcus lactis. Appl Microbiol Biotechnol 86:273–283. doi:10.1007/s00253-009-2293-0

    Article  CAS  Google Scholar 

  • Raguenes G, Christen R, Guezennec J, Pignet P, Barbier G (1997) Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. Int J Syst Bacteriol 47:989–995

    Article  CAS  Google Scholar 

  • Restaino OF, Cimini D, De Rosa M, Catapano A, Schiraldi C (2011) High cell density cultivation of Escherichia coli K4 in a microfiltration bioreactor: a step towards improvement of chondroitin precursor production. Microb Cell Fact 10:10. doi:10.1186/1475-2859-10-10

    Article  CAS  Google Scholar 

  • Rodriguez ML, Jann B, Jann K (1988) Structure and serological characteristics of the capsular K4 antigen of Escherichia coli O5:K4:H4, a fructose-containing polysaccharide with a chondroitin backbone. Eur J Biochem 177:117–124

    Article  CAS  Google Scholar 

  • Roman E, Roberts I, Lidholt K, Kusche-Gullberg M (2003) Overexpression of UDP-glucose dehydrogenase in Escherichia coli results in decreased biosynthesis of K5 polysaccharide. Biochem J 374:767–772. doi:10.1042/BJ20030365 BJ20030365

    Article  CAS  Google Scholar 

  • Schiraldi C, Cimini D, De Rosa M (2010) Production of chondroitin sulfate and chondroitin. Appl Microbiol Biotechnol 87:1209–1220. doi:10.1007/s00253-010-2677-1

    Article  CAS  Google Scholar 

  • Silbert JE, Sugumaran G (2002) Biosynthesis of chondroitin/dermatan sulfate. IUBMB Life 54:177–186

    Article  CAS  Google Scholar 

  • Silver RP, Prior K, Nsahlai C, Wright LF (2001) ABC transporters and the export of capsular polysaccharides from gram-negative bacteria. Res Microbiol 152:357–364

    Article  CAS  Google Scholar 

  • Steen JA, Harrison P, Seeman T, Wilkie I, Harper M, Adler B, Boyce JD (2010) Fis is essential for capsule production in Pasteurella multocida and regulates expression of other important virulence factors. PLoS Pathog 6:e1000750. doi:10.1371/journal.ppat.1000750

    Article  Google Scholar 

  • Sugahara K, Kitagawa H (2002) Heparin and heparan sulfate biosynthesis. IUBMB Life 54:163–175

    Article  CAS  Google Scholar 

  • Tlapak-Simmons VL, Baron CA, Gotschall R, Haque D, Canfield WM, Weigel PH (2005) Hyaluronan biosynthesis by class I streptococcal hyaluronan synthases occurs at the reducing end. J Biol Chem 280:13012–13018

    Article  CAS  Google Scholar 

  • Townsend KM, Boyce JD, Chung JY, Frost AJ, Adler B (2001) Genetic organization of Pasteurella multocida cap Loci and development of a multiplex capsular PCR typing system. J Clin Microbiol 39:924–929

    Article  CAS  Google Scholar 

  • Vann WF, Schmidt MA, Jann B, Jann K (1981) The structure of the capsular polysaccharide (K5 antigen) of urinary-tract-infective Escherichia coli 010:K5:H4. A polymer similar to desulfo-heparin. Eur J Biochem 116:359–364

    Article  CAS  Google Scholar 

  • Vercruysse KP, Prestwich GD (1998) Hyaluronate derivatives in drug delivery. Crit Rev Ther Drug Carrier Syst 15:513–555

    CAS  Google Scholar 

  • Wang Z, Dordick JS, Linhardt RJ (2010a) E. coli K5 fermentation and the preparation of heparosan, a bioengineered heparin precursor. Biotechnol Bioeng 107:964–973. doi:10.1002/bit.22898

    Article  CAS  Google Scholar 

  • Wang Z, Ly M, Zhang F, Zhong W, Suen A, Hickey AM, Dordick JS, Linhardt RJ (2010b) Control of the heparosan N-deacetylation leads to an improved bioengineered heparin. Appl Microbiol Biotechnol 91:91–99. doi:10.1007/s00253-011-3231-5

    Article  Google Scholar 

  • Wang Z, Dordick JS, Linhardt RJ (2011) Escherichia coli K5 heparosan fermentation and improvement by genetic engineering. Bioeng Bugs 2:63–67. doi:10.4161/bbug.2.1.14201

    Article  Google Scholar 

  • Ward PN, Field TR, Ditcham WG, Maguin E, Leigh JA (2001) Identification and disruption of two discrete loci encoding hyaluronic acid capsule biosynthesis genes hasA, hasB, and hasC in Streptococcus uberis. Infect Immun 69:392–399

    Article  CAS  Google Scholar 

  • Weigel PH, DeAngelis PL (2007) Hyaluronan Synthases: a decade-plus of novel glycosyltransferases. J Biol Chem 282:36777–36781

    Article  CAS  Google Scholar 

  • Wessels MR, Bronze MS (1994) Critical role of the group A streptococcal capsule in pharyngeal colonization and infection in mice. Proc Natl Acad Sci U S A 91:12238–12242

    Article  CAS  Google Scholar 

  • Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68

    Article  CAS  Google Scholar 

  • Whitfield C, Roberts IS (1999) Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol 31:1307–1319

    Article  CAS  Google Scholar 

  • Widner B, Behr R, Von Dollen S, Tang M, Heu T, Sloma A, Sternberg D, DeAngelis PL, Weigel PH, Brown S (2005) Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol 71:3747–3752

    Article  CAS  Google Scholar 

  • Wu JR, Chen PY, Shien JH, Shyu L, Shieh HK, Chang F, Chang PC (2010) Analysis of the biosynthesis genes and chemical components of the capsule of Avibacterium paragallinarum. Vet Microbiol 145:90–99. doi:10.1016/j.vetmic.2010.03.002

    Article  CAS  Google Scholar 

  • Yu H, Tyo K, Alper H, Klein-Marcuschamer D, Stephanopoulos G (2008) A high-throughput screen for hyaluronic acid accumulation in recombinant Escherichia coli transformed by libraries of engineered sigma factors. Biotechnol Bioeng 101:788–796. doi:10.1002/bit.21947

    Article  CAS  Google Scholar 

  • Zanfardino A, Restaino OF, Notomista E, Cimini C, Schiraldi C, De Rosa M, De Felice M, Varcamonti M (2011) Isolation of an Escherichia coli K4 kfoC mutant over-producing capsular chondroitin. Microb Cell Fact 9:34. doi:10.1186/1475-2859-9-34

    Article  Google Scholar 

  • Zhou X, Chandarajoti K, Pham TQ, Liu R, Liu J (2011) Expression of heparan sulfate sulfotransferases in Kluyveromyces lactis and preparation of 3'-phosphoadenosine-5'-phosphosulfate. Glycobiology 21:771–780. doi:10.1093/glycob/cwr001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank the many colleagues and students who have helped explore this exciting area over the last two decades. I also thank funding agencies including the Oklahoma Center for Advancement of Science and Technology (OCAST), the National Science Foundation, and the National Institutes of Health for past support.

Conflict of interest

The author is Chief Scientist of 4 biotechnology companies (Hyalose, Choncept, Heparinex, and Caisson Biotech) commercializing GAG production, but no corporate funding was used to support this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L. DeAngelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeAngelis, P.L. Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow. Appl Microbiol Biotechnol 94, 295–305 (2012). https://doi.org/10.1007/s00253-011-3801-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3801-6

Keywords

Navigation