Skip to main content

Continuous Non-invasive Monitoring of Cardiac Output and Lung Volume Based on CO2 Kinetics

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2019

Abstract

The gas exchange properties of the lung have long been known to theoretically support the non-invasive measurement of cardiac output and lung volume [1]. Methods based on carbon dioxide (CO2) elimination kinetics are among the first and most extensively studied [2]. From a clinical perspective, they are also the most attractive not only because of the particular physiologic and physical-biochemical characteristics of CO2, but also because of its universal availability. Furthermore, CO2-based methods are perfectly adaptable to clinical simplified measurement devices and modern intensive care unit (ICU) equipment such as mechanical ventilators or anesthesia machines. In this chapter, we will review characteristic features of CO2 kinetics and its measurement and present a novel capnodynamic method for the continuous and non-invasive measurement of end-expiratory lung volume and effective pulmonary blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laszlo G. Respiratory measurements of cardiac output: from elegant idea to useful test. J Appl Physiol. 2004;96:428–37.

    Article  Google Scholar 

  2. Peyton PJ. Pulmonary carbon dioxide elimination for cardiac output monitoring in peri-operative and critical care patients: history and current status. J Healthc Eng. 2013;4:203–22.

    Article  Google Scholar 

  3. Lumb AB. Chapter 9: Carbon dioxide. In: Lumb AB, editor. Nunn's Applied Respiratory Physiology. 8th ed. London: Elsevier; 2017. p. 151–167.e2.

    Chapter  Google Scholar 

  4. Fick A. Ueber diffusion. Annalen der Physik und Chemie. 1855;170:59–86.

    Article  Google Scholar 

  5. Kim TS, Rahn H, Farhi LE. Estimation of true venous and arterial PCO2 by gas analysis of a single breath. J Appl Physiol. 1966;21:1338–44.

    Article  CAS  Google Scholar 

  6. Cade WT, Nabar SR, Keyser RE. Reproducibility of the exponential rise technique of CO2 rebreathing for measuring PvCO2 and CvCO2 to non-invasively estimate cardiac output during incremental, maximal treadmill exercise. Eur J Appl Physiol. 2004;91:669–76.

    Article  Google Scholar 

  7. Jaffe MB. Infrared measurement of carbon dioxide in the human breath: “breathe-through” devices from Tyndall to the present day. Anesth Analg. 2008;107:890–904.

    Article  Google Scholar 

  8. Fletcher R. On-line expiratory CO2 monitoring. Int J Clin Monit Comput. 1986;3:155–63.

    Article  CAS  Google Scholar 

  9. Gedeon A, Forslund L, Hedenstierna G, et al. A new method for noninvasive bedside determination of pulmonary blood flow. Med Biol Eng Comput. 1980;18:411–8.

    Article  CAS  Google Scholar 

  10. Capek JMJ, Roy RJR. Noninvasive measurement of cardiac output using partial CO2 rebreathing. IEEE Trans Biomed Eng. 1988;35:653–61.

    Article  CAS  Google Scholar 

  11. Bosman RJ, Stoutenbeek CP, Zandstra DF. Non-invasive pulmonary blood flow measurement by means of CO2 analysis of expiratory gases. Intensive Care Med. 1991;17:98–102.

    Article  CAS  Google Scholar 

  12. Haryadi DG, Orr JA, Kuck K, et al. Partial CO2 rebreathing indirect Fick technique for non-invasive measurement of cardiac output. J Clin Monit Comput. 2000;16:361–74.

    Article  CAS  Google Scholar 

  13. Peyton PJ. Continuous minimally invasive peri-operative monitoring of cardiac output by pulmonary capnotracking: comparison with thermodilution and transesophageal echocardiography. J Clin Monit Comput. 2012;26:121–32.

    Article  Google Scholar 

  14. Peyton PJ. Performance of a second generation pulmonary capnotracking system for continuous monitoring of cardiac output. J Clin Monit Comput. 2018;32:1057–64.

    Article  Google Scholar 

  15. Hällsjö Sander C, Hallback M, Wallin M, et al. Novel continuous capnodynamic method for cardiac output assessment during mechanical ventilation. Br J Anaesth. 2014;112:824–31.

    Article  Google Scholar 

  16. Tusman G, Sipmann FS, Borges JB, et al. Validation of Bohr dead space measured by volumetric capnography. Intensive Care Med. 2011;37:870–4.

    Article  Google Scholar 

  17. Sander CH, Sigmundsson T, Hallbäck M, et al. A modified breathing pattern improves the performance of a continuous capnodynamic method for estimation of effective pulmonary blood flow. J Clin Monit Comput. 2017;31:717–25.

    Article  Google Scholar 

  18. Devaquet J, Jonson B, Niklason L, et al. Effects of inspiratory pause on CO2 elimination and arterial PCO2 in acute lung injury. J Appl Physiol. 2008;105:1944–9.

    Article  Google Scholar 

  19. Vincent J-L, Rhodes A, Perel A, et al. Clinical review: update on hemodynamic monitoring--a consensus of 16. Crit Care. 2011;15:229.

    Article  Google Scholar 

  20. Saugel B, Vincent JL. Cardiac output monitoring. Curr Opin Crit Care. 2018;24:165–72.

    Article  Google Scholar 

  21. Mehta Y. Newer methods of cardiac output monitoring. World J Cardiol. 2014;6:1022–9.

    Article  Google Scholar 

  22. Bignami E, Guarnieri M, Gemma M. Fluid management in cardiac surgery patients: pitfalls, challenges and solutions. Minerva Anestesiol. 2017;83:638–51.

    PubMed  Google Scholar 

  23. Schwardt JD, Gobran SR, Neufeld GR, et al. Sensitivity of CO2 washout to changes in acinar structure in a single-path model of lung airways. Ann Biomed Eng. 1991;19:679–97.

    Article  CAS  Google Scholar 

  24. Tusman G, Böhm SH, Suarez Sipmann F, et al. Lung recruitment and positive end-expiratory pressure have different effects on CO2 elimination in healthy and sick lungs. Anesth Analg. 2010;111:968–77.

    PubMed  Google Scholar 

  25. Tusman G, Areta M, Climente C, et al. Effect of pulmonary perfusion on the slopes of single-breath test of CO2. J Appl Physiol. 2005;99:650–5.

    Article  CAS  Google Scholar 

  26. Peyton PJ, Chong SW. Minimally invasive measurement of cardiac output during surgery and critical care: a meta-analysis of accuracy and precision. Anesthesiology. 2010;113:1220–35.

    Article  Google Scholar 

  27. Peyton PJ, Thompson D, Junor P. Non-invasive automated measurement of cardiac output during stable cardiac surgery using a fully integrated differential CO2 Fick method. J Clin Monit Comput. 2008;22:285–92.

    Article  Google Scholar 

  28. Karlsson J, Winberg P, Scarr B, et al. Validation of capnodynamic determination of cardiac output by measuring effective pulmonary blood flow: a study in anaesthetised children and piglets. Br J Anaesth. 2018;121:550–8.

    Article  CAS  Google Scholar 

  29. Hällsjö Sander C, Hallback M, Suarez-Sipmann F, et al. A novel continuous capnodynamic method for cardiac output assessment in a porcine model of lung lavage. Acta Anaesthesiol Scand. 2015;59:1022–31.

    Article  Google Scholar 

  30. Sigmundsson TS. Performance of a capnodynamic method estimating effective pulmonary blood flow during transient and sustained hypercapnia. J Clin Monit Comput. 2018;32:311–9.

    Article  Google Scholar 

  31. Montenij LJ, Buhre WF, Jansen JR, et al. Methodology of method comparison studies evaluating the validity of cardiac output monitors: a stepwise approach and checklist. Br J Anaesth. 2016;116:750–8.

    Article  CAS  Google Scholar 

  32. Peyton PJ, Robinson GJB, McCall PR, Thompson B. Noninvasive measurement of intrapulmonary shunting. J Cardiothorac Vasc Anesth. 2004;18:47–52.

    Article  Google Scholar 

  33. Gedeon A. Non-invasive pulmonary blood flow for optimal PEEP. Clin Physiol. 1985;5:49–58.

    Article  Google Scholar 

  34. Hedenstierna G. The recording of FRC--is it of importance and can it be made simple? Intensive Care Med. 1993;19:365–6.

    Article  CAS  Google Scholar 

  35. Brismar B, Hedenstierna G, Lundquist H, et al. Pulmonary densities during anesthesia with muscular relaxation--a proposal of atelectasis. Anesthesiology. 1985;62:422–8.

    Article  CAS  Google Scholar 

  36. Gattinoni L, Caironi P, Cressoni M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006;354:1775–86.

    Article  CAS  Google Scholar 

  37. de Matos GF, Stanzani F, Passos RH, et al. How large is the lung recruitability in early acute respiratory distress syndrome: a prospective case series of patients monitored by computed tomography. Crit Care. 2012;16:R4.

    Article  Google Scholar 

  38. Heinze H, Eicheler W. Measurements of functional residual capacity during intensive care treatment: the technical aspects and its possible clinical applications. Acta Anaesthesiol Scand. 2009;53:1121–30.

    Article  CAS  Google Scholar 

  39. Frerichs I, Amato MBP, van Kaam AH, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2017;72:83–93.

    Article  Google Scholar 

  40. Olegard C, Sondergaard SR, Houltz E, et al. Estimation of functional residual capacity at the bedside using standard monitoring equipment: a modified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction. Anesth Analg. 2005;101:206–12.

    Article  Google Scholar 

  41. Brewer LM, Haryadi DG, Orr JA. Measurement of functional residual capacity of the lung by partial CO2 rebreathing method during acute lung injury in animals. Respir Care. 2007;52:1480–9.

    PubMed  Google Scholar 

  42. Gedeon A, Krill P, Osterlund B. Pulmonary blood flow (cardiac output) and the effective lung volume determined from a short breath hold using the differential Fick method. J Clin Monit Comput. 2002;17:313–21.

    Article  Google Scholar 

  43. Albu G, Wallin M, Hallbäck M, et al. Comparison of static end-expiratory and effective lung volumes for gas exchange in healthy and surfactant-depleted lungs. Anesthesiology. 2013;119:101–10.

    Article  Google Scholar 

  44. Hällsjö Sander C, Lönnqvist P-A, Hallbäck M, et al. Capnodynamic assessment of effective lung volume during cardiac output manipulations in a porcine model. J Clin Monit Comput. 2016;30:761–9.

    Article  Google Scholar 

  45. Slutsky AR. Reduction in pulmonary blood volume during positive end-expiratory pressure. J Surg Res. 1983;35:181–7.

    Article  CAS  Google Scholar 

  46. Chiumello D, Carlesso E, Cadringher P, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55.

    Article  Google Scholar 

  47. González-López A, García-Prieto E, Batalla-Solís E, et al. Lung strain and biological response in mechanically ventilated patients. Intensive Care Med. 2012;38:240–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Suarez-Sipmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suarez-Sipmann, F., Tusman, G., Wallin, M. (2019). Continuous Non-invasive Monitoring of Cardiac Output and Lung Volume Based on CO2 Kinetics. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2019. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-06067-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06067-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06066-4

  • Online ISBN: 978-3-030-06067-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics