Skip to main content
Log in

Sensitivity of CO2 washout to changes in acinar structure in a single-path model of lung airways

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A numerical solution of the convection-diffusion equation with an alveolar source term in a single-path model (SPM) of the lung airways simulates steady state CO2 washout. The SPM is used to examine the effects of independent changes in physiologic and acinar structure parameters on the slope and height of Phase III of the single-breath CO2 washout curve. The parameters investigated include tidal volume, breathing frequency, total cardiac output, pulmonary arterial CO2 tension, functional residual capacity, pulmonary bloodflow distribution, alveolar volume, total acinar airway cross sectional area, and gas-phase molecular diffusivity. Reduced tidal volume causes significant steepening of Phase III, which agrees well with experimental data. Simulations with a fixed frequency and tidal volume show that changes in blood-flow distribution, model airway cross section, and gas diffusivity strongly affect the slope of Phase III while changes in cardiac output and in pulmonary arterial CO2 tension strongly affect the height of Phase III. The paper also discusses differing explanations for the slope of Phase III, including sequential emptying, stratified inhomogeneity, and the issue of asymmetry, in the context of the SPM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bates, D.V.; Macklem, P.T.; Christie, R.V. Pulmonary emphysema. Philadelphia: W.B. Saunders Co.; 1971.

    Google Scholar 

  2. Buohuys, A. Respiratory dead space. In: Fenn, W.O.; Rahn, H., eds. Handbook of Physiology. Section 3: Respiration, Vol. I. Washington, D.C.: Am. Physiol. Soc.; 1964: pp. 699–714.

    Google Scholar 

  3. Cerretelli, P.; DiPrampero, P.E. Gas exchange in exercise. In: Fishman, A.P., ed. Handbook of Physiology, Section 3: The Respiratory System, Vol. IV. Washington, D.C.: Am. Physiol. Soc.; 1987: pp. 297–307.

    Google Scholar 

  4. Cherniak, R.M.; Cherniak, L. Respiration in health and disease. Philadelphia: W.B. Saunders Co.; 1983.

    Google Scholar 

  5. Chilton, A.B.; Stacey, R.W. A mathematical analysis of carbon dioxide respiration in man. Bull. Math. Biophysics. 14; 1952.

  6. Cumming, G.; Horsfield, K.; Jones, J.G.; Muir, D.C.F. The influence of gaseous diffusion on the alveolar plateau at different lung volumes. Respir. Physiol. 2:386–398; 1967.

    CAS  PubMed  Google Scholar 

  7. DuBois, A.B.; Britt, A.G.; Fenn, W.O. Alveolar CO2 during the respiratory cycle. J. Appl. Physiol. 44:325; 1981.

    Google Scholar 

  8. Fletcher, R. The single breath test for carbon dioxide. Arlöv, Sweden: Gerlings; 1986. Thesis.

    Google Scholar 

  9. Haefeli-Bleuer, B.; Weibel, E.R. Morphometry of the human pulmonary acinus. Anatom. Rec. 220:401–414; 1988.

    CAS  Google Scholar 

  10. Hansen, J.E.; Ampaya, E.P.; Bryant, G.H.; Navin, J.J. Human air space shapes, sizes, areas, and volumes. J. Appl. Physiol. 38:990–995; 1975.

    CAS  PubMed  Google Scholar 

  11. Horsfield, K.; Cumming, G. Morphology of the bronchial tree in man. J. Appl. Physiol. 24:373–383; 1968.

    CAS  PubMed  Google Scholar 

  12. Luijendijk, S.C.M.; Zwart, A.; de Vries, W.R.; Salet, W.M. The sloping alveolar plateau at synchronous ventilation. Pflügers Arch. 384:267–277; 1980.

    Article  CAS  PubMed  Google Scholar 

  13. Marthar, R; Castaing, Y; Manier, G.; Guenard, H. Gas exchange alternations in patients with chronic obstructive lung disease. Chest 87(4): 470–475; 1985.

    Google Scholar 

  14. Neufeld, G.R.; Gobran, S.; Baumgardner, J.E.; Aukburg, S.J.; Schreiner, M.; Scherer, P.W. Diffusivity, respiratory rate, and tidal volume influence inert gas expirograms. Respir. Physiol. 84:31–47; 1991.

    Article  CAS  PubMed  Google Scholar 

  15. Paiva, M. Gas transport in the human lung. J. Appl. Physiol. 35:401–410; 1973.

    CAS  PubMed  Google Scholar 

  16. Paiva, M.; Engel, L.A. The anatomical basis for the sloping N2 plateau. Resp. Physiol. 44:325–337; 1981.

    CAS  Google Scholar 

  17. Rohen, J.W.; Yokochi, C. Colar atlas of anatomy. New York: Igaku-Shoin; 1988.

    Google Scholar 

  18. Scherer, P.W.; Gobran, S.; Aukburg, S.J.; Baumgardner, J.E.; Bartkowski, R.; Neufeld, G.R. Numerical and experimental study of steady-state CO2 and inert gas washout. J. Appl. Physiol. 64:1022–1029; 1988.

    CAS  PubMed  Google Scholar 

  19. Scherer, P.W.; Neufeld, G.R.; Aukburg, S.J.; Hess, G.D. Measurement of effective peripheral bronchial cross section from single-breath gas washout. J. Biomech. Eng. 104:290–293; 1983.

    Google Scholar 

  20. Scherer, P.W.; Haselton, F.R. Convective mixing in tube networks. AIChE J. 25:542–544; 1979.

    Article  CAS  Google Scholar 

  21. Scherer, P.W.; Haselton, F.R. A network theory of bronchial gas mixing applied to single breath nitrogen washout. Lung. 158:201–220; 1980.

    CAS  PubMed  Google Scholar 

  22. Scherer, P.W.; Shendalman, L.H.; Greene, N.M. Simultaneous diffusion and convection in single breath lung washout. Bull. of Math. Biophys. 34:393–412; 1972.

    CAS  Google Scholar 

  23. Smidt, U.; Worth, H. Diagnostik des Lungenemphysems auf expiratorischen CO2-Partialdruckkurven mit Hilfe eines Mikroprozessors. Biomed. Technik. 22:357; 1977.

    Google Scholar 

  24. Ultman, J.S.; Blatman, H.S. Longitudinal mixing in pulmonary airways: Analysis of inert gas dispersion in symmetric tube network models. Resp. Physiol. 30:349–367; 1977.

    CAS  Google Scholar 

  25. Weibel, E.R. Morphometry of the human lung. Berlin: Springer-Verlag; 1963.

    Google Scholar 

  26. West, J.B. Respiratory physiology—The essentials. Baltimore: Wiliams and Wilkins; 1985.

    Google Scholar 

  27. West, J.B. Pulmonary pathophysiology—The essentials. Baltimore: Williams and Wilkins; 1987.

    Google Scholar 

  28. West, J.B.; Fowler, K.T.; Hugh-Jones, P.; O’Donell, T.V. The measurement of the inequality of ventilation and perfusion in the lung by analysis of single espirates. Clin. Sci. 16:549; 1957.

    CAS  PubMed  Google Scholar 

  29. Worth, H.; Piiper, J. Diffusion of helium, carbon dioxide, and sulfur hexafluoride in gas mixtures similar to alveolar gas. Respir. Physiol. 32: 155–166; 1978.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwardt, J.D., Gobran, S.R., Neufeld, G.R. et al. Sensitivity of CO2 washout to changes in acinar structure in a single-path model of lung airways. Ann Biomed Eng 19, 679–697 (1991). https://doi.org/10.1007/BF02368076

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368076

Keywords

Navigation