Advertisement

Genetic Approaches to Improve Common Bean Nutritional Quality: Current Knowledge and Future Perspectives

  • Eleonora Cominelli
  • A. Paula Rodiño
  • Antonio M. De Ron
  • Francesca SparvoliEmail author
Chapter

Abstract

Common bean is the most consumed grain legume and provides up to 15% of total daily calories and 36% of total daily proteins in different regions of Africa and the Americas. Moreover, the inclusion in the diet of common bean reduces risk of obesity, diabetes, cardiovascular diseases, and different types of cancer, due to the presence of different beneficial compounds.

However, common bean proteins are not well balanced in amino acid composition, containing a low amount of sulfur amino acids, and some of them, such as lectins, are toxic. Moreover, the relatively high amount of iron present in the seed is poorly bioavailable mainly due to the presence of phytate. All these aspects reduce common bean nutritional value. Screening natural and induced biodiversity for useful traits, followed by breeding, is a way to improve nutritional quality. In the last decades this approach was undertaken to improve seed protein quality and to increase iron content and bioavailability from this staple crop.

Keywords

Common bean Nutritional quality Seed storage proteins Biofortification Phytic acid 

Notes

Acknowledgement

We kindly acknowledge Dr. Roberto Bollini for critical reading of the chapter.

References

  1. Adams MW, Bedford CL (1973) Breeding food for improved processing and consumers acceptance properties. In: Milner N (ed) Nutritional improvement of food legumes by breeding. Proceedings United Nations Protein Advisory Group, New York, NY, pp 299–304Google Scholar
  2. Aragao FJL, Barros LMG, Sousa MV et al (1999) Expression of a methionine-rich storage albumin from the Brazil nut (Bertholletia excelsa H.B.K., Lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae). Gen Mol Biol 22:445–449CrossRefGoogle Scholar
  3. Ariza-Nieto M, Blair M, Welch R et al (2007) Screening of iron bloavallability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the Caco-2 cell in vitro model. J Agric Food Chem 55:7950–7956PubMedCrossRefPubMedCentralGoogle Scholar
  4. Asare-Marfo D, Birol E, Gonzalez C (2013) Prioritizing countries for biofortification interventions using country-level data. HarvestPlus working paper no. 11. International Food Policy Research Institute (IFPRI), Washington, DCGoogle Scholar
  5. Bardocz S, Brown DS, Grant G et al (1992) Effect of the padrenoreceptor agonist clenbuterol and phytohaemagglutinin on growth, protein synthesis and polyamine metabolism of tissues of the rat. Br J Pharmcol 106:476–482CrossRefGoogle Scholar
  6. Barrett ML, Udani JK (2011) A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): a review of clinical studies on weight loss and glycemic control. Nutr J 10:1–10CrossRefGoogle Scholar
  7. Beebe S (2012) Common bean breeding in the tropics. In: Janick J (ed) Plant breeding reviews, vol 36. Wiley-Blackwell, Hoboken, NJ, pp 357–426CrossRefGoogle Scholar
  8. Beebe S, Gonzalez AV, Rengifo J (2000) Research on trace minerals in the common bean. Food Nutr Bull 21:387–391CrossRefGoogle Scholar
  9. Beebe S, Cajiao C, Mosquera O (2005) Identification of high mineral accessions in sister species of common bean. In: Centro Internacional de Agricultura Tropical. Project IP-1. Bean improvement for the tropics. Annu Rep. CIAT, Cali, pp 59–60Google Scholar
  10. Beiseigel JM, Hunt JR, Glahn RP et al (2007) Iron bioavailability from maize and beans: a comparison of human measurements with Caco-2 cell and algorithm predictions. Am J Clin Nutr 86:388–396PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bender AE, Reaidi GB (1982) Toxicity of kidney beans (Phaseolus vulgaris) with particular reference to lectins. J Plant Foods 4:15–22CrossRefGoogle Scholar
  12. Blair MW (2013) Mineral biofortification strategies for food staples: the example of common bean. J Agric Food Chem 61(35):8287–8294PubMedCrossRefPubMedCentralGoogle Scholar
  13. Blair MW, Izquierdo P (2012) Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. Theor Appl Genet 125:1015–1031PubMedCrossRefPubMedCentralGoogle Scholar
  14. Blair MW, Astudillo C, Restrepo J et al (2005) Anaĺisis multi-locacional de lińeas de frij́ol arbustivo con alto contenido de hierro en el departamento de Nariño. Fitotec Colombiana 5:20–27Google Scholar
  15. Blair MW, Astudillo C, Grusak M et al (2009a) Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Mol Breed 23:197–207CrossRefGoogle Scholar
  16. Blair MW, Sandoval T, Caldas G (2009b) Quantitative trait locus analysis of seed phosphorus and seed phytate content in a recombinant inbred line population of common bean. Crop Sci 49:237–246CrossRefGoogle Scholar
  17. Blair MW, González LF, Kimani PM, Butare L (2010a) Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa. Theor Appl Genet 121:237–248PubMedPubMedCentralCrossRefGoogle Scholar
  18. Blair MW, Medina J, Astudillo C et al (2010b) QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population. Theor Appl Genet 121:1059–1070PubMedCrossRefPubMedCentralGoogle Scholar
  19. Blair MW, Monserrate F, Beebe S et al (2010c) Registration of high mineral common bean germplasm lines NUA35 and NUA56 from the red-mottled seed class. J Plant Registr 4:55–59CrossRefGoogle Scholar
  20. Blair MW, Astudillo C, Rengifo J et al (2011) QTL analyses for seed iron and zinc concentrations in an intra-genepool population of Andean common beans (Phaseolus vulgaris L.). Theor Appl Genet 122:511–521PubMedCrossRefPubMedCentralGoogle Scholar
  21. Blair MW, Herrera A, Sandoval T et al (2012) Inheritance of seed phytate and phosphorus levels in common bean (Phaseolus vulgaris L.) and association with newly-mapped candidate genes. Mol Breed 30:1265–1277CrossRefGoogle Scholar
  22. Blair MW, Izquierdo P, Astudillo C (2013) A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Front Plant Sci 4:275PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bollini R, Carnovale E, Campion B (1999) Removal of anti nutritional factors from bean (Phaseolus vulgaris L.) seeds. Biotechnol Agron Soc Environ 3:217–219Google Scholar
  24. Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bourne MC (1967) Size, density and hardshell in dry beans. Food Technol 21:335–338Google Scholar
  26. Boy E, Haas JD, Petry N et al (2017) Efficacy of iron-biofortified crops. Afr J Food Agric Nutr Dev 17:11879–11892CrossRefGoogle Scholar
  27. Broughton WJ, Hernández G, Blair M et al (2003) Beans (Phaseolus spp.) – model food legumes. Plant and Soil 252:55–128CrossRefGoogle Scholar
  28. Burr HK, Kon S, Morris HJ (1968) Cooking rates of dry beans as influenced by moisture content and temperature and time of storage. Food Technol 22:336–338Google Scholar
  29. Burrow MD, Ludden PW, Bliss FA (1993) Suppression of phaseolin and lectins in seeds of common bean Phaseolus vulgaris L.: increased accumulation of 54 kDa polypeptides is not associated with higher methionine concentrations. Mol Genet Genomics 241:431–439Google Scholar
  30. Cakmak I, Pfeiffer W, McClafferty B (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20CrossRefGoogle Scholar
  31. Campion B, Perrone D, Galasso I (2009a) Common bean (Phaseolus vulgaris L.) lines devoid of major lectin proteins. Plant Breed 128:199–204CrossRefGoogle Scholar
  32. Campion B, Sparvoli F, Doria E et al (2009b) Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:1211–1221PubMedCrossRefGoogle Scholar
  33. Campion B, Glahn R, Tava A (2013) Genetic reduction of antinutrients in common bean (Phaseolus vulgaris L.) seed, increases nutrients and in vitro iron bioavailability without depressing main agronomic traits. Field Crop Res 141:27–37CrossRefGoogle Scholar
  34. Casquero PA, Lema M, Santalla M et al (2006) Performance of common bean landraces from Spain in the Atlantic and Mediterranean environments. Genet Resour Crop Evol 53:1021–1032CrossRefGoogle Scholar
  35. Chiozzotto R, Ramírez M, Talbi C et al (2018) Characterization of the symbiotic nitrogen-fixing common bean low phytic acid (lpa1) mutant response to water stress. Genes 9:2CrossRefGoogle Scholar
  36. Cichy K, Caldas G, Snapp S et al (2009) QTL analysis of seed iron, zinc, and phosphorus levels in an Andean bean population. Crop Sci 49:1742–1750CrossRefGoogle Scholar
  37. Cominelli E, Orozco-Arroyo G, Sparvoli F (2017) Phytic acid biosynthesis and transport in Phaseolus vulgaris: exploitation of new genomic resources. In: Marsolais F, Perez de la Vega M, Santalla M (eds) The common bean genome – compendium of plant genomes. Springer, Cham, pp 167–186Google Scholar
  38. Cominelli E, Confalonieri M, Carlessi M et al (2018) Phytic acid transport in Phaseolus vulgaris: a new low phytic acid mutant in the PvMRP1 gene and study of the PvMRPs promoters in two different plant systems. Plant Sci 270:1–12PubMedCrossRefGoogle Scholar
  39. Confalonieri M, Bollini R, Berardo N et al (1992) Influence of phytohemagglutinin on the agronomic performance of beans (Phaseolus vulgaris L). Plant Breed 109:329–334CrossRefGoogle Scholar
  40. Cvitanich C, Przybyłowicz WJ, Urbanski DF et al (2010) Iron and ferritin accumulate in separate cellular locations in Phaseolus seeds. BMC Plant Biol 10:26PubMedPubMedCentralCrossRefGoogle Scholar
  41. de Araújo R, Miglioranza E, Montalvan R et al (2003) Genotype × environment interaction effects on the iron content of common bean grains. Crop Breed Appl Biotechnol 3:269–274CrossRefGoogle Scholar
  42. De Ron AM, Papa R, Bitocchi E et al (2015) Common bean. In: De Ron AM (ed) Grain legumes, series: handbook of plant breeding. Springer, New York, NY, pp 1–36CrossRefGoogle Scholar
  43. De Ron AM, Santalla M, Rodiño AP et al (2016) Judía. In: Ruiz de Galarreta JI, Prohens J, Tierno R (eds) Las variedades locales en la mejora genética de plantas. Servicio Central de Publicaciones del Gobierno Vasco, Vitoria, pp 155–170Google Scholar
  44. Delaney DE, Bliss FA (1991) Selection for increased percentage phaseolin in common bean: 1. Comparison of selection for seed protein alleles and S1 family recurrent selection. Theor Appl Genet 81:301–305PubMedCrossRefPubMedCentralGoogle Scholar
  45. Donangelo CM, Woodhouse LR, King SM et al (2003) Iron and zinc absorption from two bean (Phaseolus vulgaris L.) genotypes in young women. J Agric Food Chem 51:5137–5143PubMedCrossRefGoogle Scholar
  46. Doria E, Campion B, Sparvoli F et al (2012) Anti-nutrient components and metabolites with health implications in seeds of 10 common bean (Phaseolus vulgaris L. and Phaseolus lunatus L.) landraces cultivated in southern Italy. J Food Compos Anal 26:72–80CrossRefGoogle Scholar
  47. Escribano MR, Santalla M, De Ron AM (1990) Preliminary study of quality characters in populations of common bean from the northwestern Iberian Peninsula. An Aula Dei 20(1-2):189–198Google Scholar
  48. FAO/WHO (1991) Protein quality evolution. Report of joint FAO/WHO Expert Consultation. Food and Nutrition Paper 51. Rome, FAO/WHOGoogle Scholar
  49. FAO/WHO (2004) Vitamin and mineral requirements in human nutrition. Geneva, FAO/WHOGoogle Scholar
  50. Fileppi M, Galasso I, Tagliabue G et al (2010) Characterisation of structural genes involved in phytic acid biosynthesis in common bean (Phaseolus vulgaris L.). Mol Breed 25:453–470CrossRefGoogle Scholar
  51. Ganesan K, Xu B (2017) Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits. Int J Mol Sci 18:11Google Scholar
  52. Genovese MI, Lajolo FM (1996) Effect of bean (Phaseolus vulgaris) albumins on phaseolin in vitro digestibility, role of trypsin inhibitors. J Food Biochem 20:275–294CrossRefGoogle Scholar
  53. Genovese MI, Lajolo FM (1998) Influence of naturally acid-soluble proteins from bean (Phaseolus vulgaris L.) on in vitro digestibility determination. Food Chem 62:315–323CrossRefGoogle Scholar
  54. Gepts P, Bliss FA (1984) Enhanced available methionine concentration associated with higher phaseolin levels in common bean seeds. Theor Appl Gen 69:47–53CrossRefGoogle Scholar
  55. Ghaderi A, Hosfield GL, Adams MW et al (1984) Variability in culinary quality component interrelationship, and breeding implications in navy and pinto beans. J Am Hort Sci 109:85–90Google Scholar
  56. Guzman-Maldonado S, Martinez O, Acosta-Gallegos J et al (2003) Putative quantitative trait loci for physical and chemical components of common bean. Crop Sci 43:1029–1035CrossRefGoogle Scholar
  57. Haas JD, Luna SV, Lung'aho MG et al (2016) Consuming iron biofortified beans increases iron status in rwandan women after 128 days in a randomized controlled feeding trial. J Nutr 146:1586–1592PubMedCrossRefGoogle Scholar
  58. Hangen L, Bennink MR (2003) Consumption of black beans and navy beans (Phaseolus vulgaris) resduced azoxymethane-induced colon cancer in rats. Nutr Cancer 44:60–65Google Scholar
  59. Hart JJ, Tako E, Kochian LV et al (2015) Identification of black bean (Phaseolus vulgaris L.) polyphenols that inhibit and promote iron uptake by Caco-2 cells. J Agric Food Chem 63:5950–5956PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hart JJ, Tako E, Glahn RP (2017) Characterization of polyphenol effects on inhibition and promotion of iron uptake by Caco-2 cells. J Agric Food Chem 65:3285–3294PubMedCrossRefPubMedCentralGoogle Scholar
  61. Hoffman LM, Donaldson DD (1985) Characterization of two Phaseolus vulgaris phytohemagglutinin genes closely linked on the chromosome. EMBO J 4:883–889PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hoppler M, Egli I, Petry N et al (2014) Iron speciation in beans (Phaseolus vulgaris) biofortified by common breeding. J Food Sci 79:C1629–C1634PubMedCrossRefPubMedCentralGoogle Scholar
  63. Hosfield GL, Uebersax MA (1980) Variability in physicochemical properties and nutritional components of tropical and domestic dry bean germplasm. J Am Soc Hort Sci 105:246–252Google Scholar
  64. Hosfield GL, Uebersax MA, Isleib TG (1984) Seasonal and genotypic effects on yield and physic-chemical seed characteristics related to food quality in dry, edible beans. J Am Soc Hort Sci 109:182–189Google Scholar
  65. Islam F, Basford K, Jara C et al (2002) Seed compositional and disease resistance differences among gene pools in cultivated common bean. Genet Resour Crop Evol 49:285–293CrossRefGoogle Scholar
  66. Jivotovskaya AV, Senyuk VI, Rota VI et al (1996) Proteolysis of phaseolin in relation to its structure. J Agric Food Chem 44:3768–3772CrossRefGoogle Scholar
  67. Joshi J, Pandurangan S, Diapari M et al (2017) Comparison of gene families: storage and other seed proteins. In: Perez de la Vega M, Santalla M, Marsolais F (eds) The common bean genome. Compendium of plant genome series. Springer, pp 201–218Google Scholar
  68. Kelly JD, Bliss FA (1975) Quality factors affecting the nutritive value of bean seed protein. Crop Sci 15:757–760CrossRefGoogle Scholar
  69. Kruger J, Minnis-Ndimba R, Mtshali C et al (2015) Novel in situ evaluation of the role minerals play in the development of the hard-to-cook (HTC) defect of cowpeas and its effect on the in vitro mineral bioaccessibility. Food Chem 174:365–371PubMedCrossRefPubMedCentralGoogle Scholar
  70. Layer P, Carlson G, Dimagno E (1985) Partially purified white bean amylase inhibitor reduces starch digestion in vitro and inactivates intraduodenal amylase in humans. Gastroenterology 88:1895–1902PubMedCrossRefPubMedCentralGoogle Scholar
  71. Layer P, Zinsmeister A, Dimagno E (1986) Effects of decreasing intraluminal amylase activity on starch digestion and postprandial gastrointestinal function in humans. Gastroenterology 91:41–48PubMedCrossRefPubMedCentralGoogle Scholar
  72. Le Berre-Anton V, Bompard-Gilles C, Payan F et al (1997) Characterization and functional properties of the α-amylase inhibitor (α-AI) from kidney bean (Phaseolus vulgaris) seeds. Biochim Biophys Acta 1343:31–40PubMedCrossRefPubMedCentralGoogle Scholar
  73. Lioi L, Sparvoli F, Galasso I et al (2003) Lectin-related resistance factors against bruchids evolved through a number of duplication events. Theor Appl Genet 107:814–822PubMedCrossRefPubMedCentralGoogle Scholar
  74. Mahajan R, Zargar S, Salgotra R et al (2017) Linkage disequilibrium based association mapping of micronutrients in common bean (Phaseolus vulgaris L.): a collection of Jammu & Kashmir, India. 3 Biotech 7:295PubMedPubMedCentralCrossRefGoogle Scholar
  75. Marentes E, Grusak MA (1998) Iron transport and storage within the seed coat and embryo of developing seeds of pea (Pisum sativum L.). Seed Sci Res 8:367–375CrossRefGoogle Scholar
  76. Marquez UM, Lajolo FM (1981) Composition and digestibility of albumin, globulins and glutelins from Pahseolus vulgaris L. J Agric Food Chem 29:1068–1074PubMedCrossRefPubMedCentralGoogle Scholar
  77. Marsolais F, Pajak A, Yin F et al (2010) Proteomic analysis of common bean seed with storage protein deficiency reveals up-regulation of sulfur-rich proteins and starch and raffinose metabolic enzymes, and down-regulation of the secretory pathway. J Proteomics 73:1587–1600PubMedCrossRefPubMedCentralGoogle Scholar
  78. Martins S, Melo P, Faria L (2016) Genetic parameters and breeding strategies for high levels of iron and zinc in Phaseolus vulgaris L. Genet Mol Res 15:2Google Scholar
  79. McClean PE, Lee RK, Otto C et al (2002) Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). J Hered 93:148–152CrossRefPubMedGoogle Scholar
  80. McClean P, Cannon S, Gepts P, Hudson M, Jackson S, Rokhsar D, Schmutz J, Vance C (2008) Towards a whole genome sequence of common bean (Phaseolus vulgaris L.): background, approaches, applications. http://arsftfbean.uprm.edu/bic/wpcontent/uploads/2018/04/Bean_Genomics_Status_2008.pdf
  81. Montoya CA, Leterme P, Victoria NF et al (2008a) The susceptibility of phaseolin to in vitro proteolysis is highly variable across Phaseolus vulgaris bean varieties. J Agric Food Chem 56:2183–2191PubMedCrossRefGoogle Scholar
  82. Montoya CA, Leterme P, Beebe S et al (2008b) Phaseolin type and heat treatment influence the biochemistry of protein digestion in rat intestine. Br J Nutr 99:531–539PubMedCrossRefPubMedCentralGoogle Scholar
  83. Montoya CA, Lallès JP, Beebe S et al (2009) Susceptibility of phaseolin (Phaseolus vulgaris) subunits to trypsinolysis and influence of dietary level of raw phaseolin on protein digestion in the small intestine of rats. Br J Nutr 101:1324–1332PubMedCrossRefPubMedCentralGoogle Scholar
  84. Montoya CA, Lallès JP, Beebe S et al (2010) Phaseolin diversity as a possible strategy to improve the nutritional value of common beans (Phaseolus vulgaris). Food Res Int 43:443–449CrossRefGoogle Scholar
  85. Morari D, Stepurina T, Rotari V (2008) Calcium ions make phytohemagglutinin resistant to trypsin proteolysis. J Agric Food Chem 56:3764–3771PubMedCrossRefPubMedCentralGoogle Scholar
  86. Mulambu J, Andersson M, Palenberg M et al (2017) Iron beans in Rwanda: crop development and delivery experience. Afr J Food Agric Nutr Dev 17:12026–12050CrossRefGoogle Scholar
  87. Murgia I, Arosio P, Tarantino D et al (2012) Biofortification for combating ‘hidden hunger’ for iron. Trends Plant Sci 17:47–55PubMedCrossRefPubMedCentralGoogle Scholar
  88. Murray-Kolb LE, Wenger MJ, Scott SP et al (2017) Consumption of iron-biofortified beans positively affects cognitive performance in 18- to 27-year-old Rwandan Female College students in an 18-week randomized controlled efficacy trial. J Nutr 147:2109–2117PubMedPubMedCentralGoogle Scholar
  89. Mutschler MA, Bliss FA (1981) Inheritance of bean seed globulin content and its relationship to protein content on quality. Crop Sci 21:289–294CrossRefGoogle Scholar
  90. Osborn TC, Bliss FA (1985) Effects of genetically removing lectin seed protein on horticultural and seed characteristics of common bean. J Am Soc Hortic Sci 110:484–488Google Scholar
  91. Osborn TC, Alexander DC, Sun SSM et al (1988) Insecticidal activity and lectin homology of arcelin seed protein. Science 240:207–210CrossRefGoogle Scholar
  92. Osborn TC, Hartweck LM, Harmsen RH et al (2003) Registration of Phaseolus vulgaris genetic stocks with altered seed protein compositions. Crop Sci 43:1570–1571CrossRefGoogle Scholar
  93. Palmer RM, Pusztai A, Bain P et al (1987) Changes in rates of tissue protein synthesis in rats induced in vivo by consumption of kidney bean lectins. Comp Biochem Physiol 88C:179–183Google Scholar
  94. Pandurangan S, Diapari M, Yin F et al (2016) Genomic analysis of storage protein deficiency in genetically related lines of common bean (Phaseolus vulgaris). Front Plant Sci 7:389PubMedPubMedCentralCrossRefGoogle Scholar
  95. Panzeri D, Cassani E, Doria E et al (2011) A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters ABA sensitivity. New Phytol 191:70–83PubMedCrossRefPubMedCentralGoogle Scholar
  96. Pérez S, Oparinde A, Birol E et al (2015) Consumer acceptance of an iron bean variety in Northwest Guatemala: the role of information and repeated messaging. International association of agricultural economists conference, 9–14 Aug 2015, Milan, ItalyGoogle Scholar
  97. Petry N, Egli I, Zeder C et al (2010) Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J Nutr 140:1977–1982PubMedCrossRefGoogle Scholar
  98. Petry N, Egli I, Gahutu JB et al (2012) Stable iron isotope studies in Rwandese women indicate that the common bean has limited potential as a vehicle for iron biofortification. J Nutr 142:492–497PubMedCrossRefGoogle Scholar
  99. Petry N, Egli I, Campion B (2013) Genetic reduction of phytate in common bean (Phaseolus vulgaris L.) seeds increases iron absorption in young women. J Nutr 143:1219–1224PubMedCrossRefPubMedCentralGoogle Scholar
  100. Petry N, Egli I, Gahutu JB, Tugirimana PL, Boy E, Hurrell R (2014) Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status. J Nutr 144:1681–1687PubMedCrossRefPubMedCentralGoogle Scholar
  101. Petry N, Boy E, Wirth JP et al (2015) Review: the potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients 7:1144–1173PubMedPubMedCentralCrossRefGoogle Scholar
  102. Petry N, Rohner F, Gahutu JB et al (2016) In Rwandese women with low iron status, iron absorption from low-phytic acid beans and biofortified beans is comparable, but low-phytic acid beans cause adverse gastrointestinal symptoms. J Nutr 146:970–975PubMedCrossRefPubMedCentralGoogle Scholar
  103. Prasai N, Asare-Marfo D (2015) Biofortification Priority Index: a global strategy tool for investing in crop biofortification. http://www.harvestplus.org/knowledge-market/BPI.
  104. Pueyo JJ, Hunt DC, Chrispeels MJ (1993) Activation of bean (Phaseolus vulgaris) α-amylase inhibitor requires proteolytic processing of the proprotein. Plant Physiol 101:1341–1348PubMedPubMedCentralCrossRefGoogle Scholar
  105. Pusztai A (1991) Plant lectins. Cambridge University Press, Cambridge, pp 1–263Google Scholar
  106. Pusztai A, Grant G, Spencer RJ et al (1993) Kidney bean lectin-induced Escherichia coli overgrowth in the small intestine is blocked by GNA, a mannose-specific lectin. J Appl Bacteriol 75:360–368PubMedCrossRefPubMedCentralGoogle Scholar
  107. Quenzer NM, Huffman VL, Burns EE (1978) Some factors affecting pinto bean quality. J Food Sci 43:1059–1061CrossRefGoogle Scholar
  108. Reed S, Neuman H, Glahn RP et al (2017) Characterizing the gut (Gallus gallus) microbiota following the consumption of an iron biofortified Rwandan cream seeded carioca (Phaseolus vulgaris L.) bean-based diet. PLoS One 12:e0182431PubMedPubMedCentralCrossRefGoogle Scholar
  109. Ribeiro ND, Jost E, Cerutti T et al (2008) Micromineral composition of common bean cultivars and its application in crop breeding. Bragantia 67:267–273CrossRefGoogle Scholar
  110. Romero-Andreas J, Yandell BS, Bliss FA (1986) Bean arcelin: 1. Inheritance of a novel seed protein of Phaseolus vulgaris L. and its effect on seed composition. Theor Appl Genet 72:123–128PubMedCrossRefPubMedCentralGoogle Scholar
  111. Saltzman A, Birol E, Oparinde A et al (2017) Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential. Ann N Y Acad Sci 1390:104–114PubMedCrossRefPubMedCentralGoogle Scholar
  112. Santalla M, De Ron AM, Voysest O (2001) European bean market classes. In: Amurrio M, Santalla M, De Ron AM (eds) Catalogue of bean genetic resources. Fundación Pedro Barrié de la Maza/PHASELIEU-FAIR3463/MBG-CSIC, Pontevedra, pp 77–94Google Scholar
  113. Santimone M, Koukiekolo R, Moreau Y et al (2004) Porcine pancreatic alpha-amylase inhibition by the kidney bean (Phaseolus vulgaris) inhibitor (alpha-AI1) and structural changes in the alpha-amylase inhibitor complex. Biochim Biophys Acta 1696:181–190PubMedCrossRefPubMedCentralGoogle Scholar
  114. Sarwar Gilani G, Wu Xiao C, Cockell KA (2012) Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br J Nutr 108(Suppl 2):S315–S332PubMedCrossRefPubMedCentralGoogle Scholar
  115. Schmutz J, McClean PE, Mamidi S et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713PubMedCrossRefGoogle Scholar
  116. Singh SP, Gepts P, Debouck DG (1991) Races of common bean (Phaseolus vulgaris Fabaceae). Econ Bot 45:379–396CrossRefGoogle Scholar
  117. Sparvoli F, Cominelli E (2015) Seed biofortification and phytic acid reduction: a conflict of interest for the plant? Plants 4:728–755PubMedPubMedCentralCrossRefGoogle Scholar
  118. Sparvoli F, Daminati MG, Bollini R (1994) Biochemical and molecular characterisation of a Phaseolus vulgaris mutant lacking the major lectin related seed proteins. Ann Rep Bean Improv Coop 37:110Google Scholar
  119. Sparvoli F, Bollini R, Cominelli E (2015) Nutritional value. In: De Ron AM (ed) Grain legumes, Handbook of plant breeding, vol 10. Springer, New York, NY, pp 291–325CrossRefGoogle Scholar
  120. Sparvoli F, Laureati M, Pilu R et al (2016) Exploitation of common bean flours with low antinutrient content for making nutritionally enhanced biscuits. Front Plant Sci 7:928PubMedPubMedCentralCrossRefGoogle Scholar
  121. Sperotto RA, Ricachenevsky FK (2017) Common bean Fe biofortification using model species’ lessons. Front Plant Sci 8:2187PubMedPubMedCentralCrossRefGoogle Scholar
  122. Streit LG, Beach LR, Register JC et al (2001) Association of the Brazil nut protein gene and Kunitz trypsin inhibitor alleles with soybean protease inhibitor activity and agronomic traits. Crop Sci 41:1757–1760CrossRefGoogle Scholar
  123. Tabe LM, Droux M (2002) Limits to sulfur accumulation in transgenic lupin seeds expressing a foreign sulfur-rich protein. Plant Physiol 128:1137–1148PubMedPubMedCentralCrossRefGoogle Scholar
  124. Taylor M, Chapman R, Beyaert R et al (2008) Seed storage protein deficiency improves sulphur amino acid content in common bean (Phaseolus vulgaris): redirection of sulphur from c-glutamyl-S-methylcysteine. J Agric Food Chem 56:5647–5654PubMedCrossRefGoogle Scholar
  125. The World Health Report (2002) Quantifying selected major risks to health. WHO, Geneva, p 4 http://www.who.int/whr/2002/chapter4/en/index3.html Google Scholar
  126. Thompson MD, Brick MA, McGinley JN et al (2009) Chemical composition and mammary cancer inhibitory activity of dry bean. Crop Sci 49:179–186CrossRefGoogle Scholar
  127. Van Beem J, Kornegay J, Lareo L (1992) Nutritive value of the nuña popping bean. Econ Bot 46(2):164–170CrossRefGoogle Scholar
  128. Vasconcelos IM, Oliveira JTA (2004) Antinutritional properties of plant lectins. Toxicon 44:385–403PubMedCrossRefGoogle Scholar
  129. Vitale A, Bollini R (1995) Legume storage proteins. In: Kigel J, Galili G (eds) Seed development and germination. Dekker, New York, NY, pp 73–102Google Scholar
  130. Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M et al (2016) Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol 17:32PubMedPubMedCentralCrossRefGoogle Scholar
  131. Voelker TA, Staswick P, Chrispeels MJ (1986) Molecular analysis of two phytohemagglutinin genes and their expression in Phaseolus vulgaris cv. Pinto, a lectin-deficient cultivar of the bean. EMBO J 5:3075–3082PubMedPubMedCentralCrossRefGoogle Scholar
  132. Voysest O (2000) Mejoramiento genético del frijol (Phaseolus vulgaris L.). Legado de variedades de América Latina 1930–1999. CIAT, CaliGoogle Scholar
  133. Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364PubMedCrossRefPubMedCentralGoogle Scholar
  134. Welch RM, House WA (1984) Factors affecting the bioavailability of mineral nutrients in plant foods. In: Welch RM, Gabelman WH (eds) Crops as sources of nutrients for humans. American Society of Agronomy, Madison, WI, pp 37–54Google Scholar
  135. Yin F, Pajak A, Chapman R et al (2011) Analysis of common bean expressed sequence tags identifies sulfur metabolic pathways active in seed and sulfur-rich proteins highly expressed in the absence of phaseolin and major lectins. BMC Genomics 12:268PubMedPubMedCentralCrossRefGoogle Scholar
  136. Zaugg I, Magni C, Panzeri D et al (2013) QUES, a new Phaseolus vulgaris genotype resistant to common bean weevils, contains the Arcelin-8 allele coding for new lectin-related variants. Theor Appl Gen 126:647–661CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Eleonora Cominelli
    • 1
  • A. Paula Rodiño
    • 2
  • Antonio M. De Ron
    • 2
  • Francesca Sparvoli
    • 1
    Email author
  1. 1.Institute of Agricultural Biology and Biotechnology (IBBA)Italian National Research Council (CNR)MilanItaly
  2. 2.Biology of Agrosystems, Misión Biológica de Galicia (MBG)Spanish National Research Council (CSIC)PontevedraSpain

Personalised recommendations