Skip to main content

Genetic Approaches to Improve Common Bean Nutritional Quality: Current Knowledge and Future Perspectives

  • Chapter
  • First Online:
Quality Breeding in Field Crops

Abstract

Common bean is the most consumed grain legume and provides up to 15% of total daily calories and 36% of total daily proteins in different regions of Africa and the Americas. Moreover, the inclusion in the diet of common bean reduces risk of obesity, diabetes, cardiovascular diseases, and different types of cancer, due to the presence of different beneficial compounds.

However, common bean proteins are not well balanced in amino acid composition, containing a low amount of sulfur amino acids, and some of them, such as lectins, are toxic. Moreover, the relatively high amount of iron present in the seed is poorly bioavailable mainly due to the presence of phytate. All these aspects reduce common bean nutritional value. Screening natural and induced biodiversity for useful traits, followed by breeding, is a way to improve nutritional quality. In the last decades this approach was undertaken to improve seed protein quality and to increase iron content and bioavailability from this staple crop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MW, Bedford CL (1973) Breeding food for improved processing and consumers acceptance properties. In: Milner N (ed) Nutritional improvement of food legumes by breeding. Proceedings United Nations Protein Advisory Group, New York, NY, pp 299–304

    Google Scholar 

  • Aragao FJL, Barros LMG, Sousa MV et al (1999) Expression of a methionine-rich storage albumin from the Brazil nut (Bertholletia excelsa H.B.K., Lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae). Gen Mol Biol 22:445–449

    Article  CAS  Google Scholar 

  • Ariza-Nieto M, Blair M, Welch R et al (2007) Screening of iron bloavallability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the Caco-2 cell in vitro model. J Agric Food Chem 55:7950–7956

    Article  CAS  PubMed  Google Scholar 

  • Asare-Marfo D, Birol E, Gonzalez C (2013) Prioritizing countries for biofortification interventions using country-level data. HarvestPlus working paper no. 11. International Food Policy Research Institute (IFPRI), Washington, DC

    Google Scholar 

  • Bardocz S, Brown DS, Grant G et al (1992) Effect of the padrenoreceptor agonist clenbuterol and phytohaemagglutinin on growth, protein synthesis and polyamine metabolism of tissues of the rat. Br J Pharmcol 106:476–482

    Article  CAS  Google Scholar 

  • Barrett ML, Udani JK (2011) A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): a review of clinical studies on weight loss and glycemic control. Nutr J 10:1–10

    Article  Google Scholar 

  • Beebe S (2012) Common bean breeding in the tropics. In: Janick J (ed) Plant breeding reviews, vol 36. Wiley-Blackwell, Hoboken, NJ, pp 357–426

    Chapter  Google Scholar 

  • Beebe S, Gonzalez AV, Rengifo J (2000) Research on trace minerals in the common bean. Food Nutr Bull 21:387–391

    Article  Google Scholar 

  • Beebe S, Cajiao C, Mosquera O (2005) Identification of high mineral accessions in sister species of common bean. In: Centro Internacional de Agricultura Tropical. Project IP-1. Bean improvement for the tropics. Annu Rep. CIAT, Cali, pp 59–60

    Google Scholar 

  • Beiseigel JM, Hunt JR, Glahn RP et al (2007) Iron bioavailability from maize and beans: a comparison of human measurements with Caco-2 cell and algorithm predictions. Am J Clin Nutr 86:388–396

    Article  CAS  PubMed  Google Scholar 

  • Bender AE, Reaidi GB (1982) Toxicity of kidney beans (Phaseolus vulgaris) with particular reference to lectins. J Plant Foods 4:15–22

    Article  CAS  Google Scholar 

  • Blair MW (2013) Mineral biofortification strategies for food staples: the example of common bean. J Agric Food Chem 61(35):8287–8294

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Izquierdo P (2012) Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. Theor Appl Genet 125:1015–1031

    Article  PubMed  Google Scholar 

  • Blair MW, Astudillo C, Restrepo J et al (2005) Anaĺisis multi-locacional de lińeas de frij́ol arbustivo con alto contenido de hierro en el departamento de Nariño. Fitotec Colombiana 5:20–27

    Google Scholar 

  • Blair MW, Astudillo C, Grusak M et al (2009a) Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Mol Breed 23:197–207

    Article  CAS  Google Scholar 

  • Blair MW, Sandoval T, Caldas G (2009b) Quantitative trait locus analysis of seed phosphorus and seed phytate content in a recombinant inbred line population of common bean. Crop Sci 49:237–246

    Article  CAS  Google Scholar 

  • Blair MW, González LF, Kimani PM, Butare L (2010a) Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa. Theor Appl Genet 121:237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair MW, Medina J, Astudillo C et al (2010b) QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population. Theor Appl Genet 121:1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Monserrate F, Beebe S et al (2010c) Registration of high mineral common bean germplasm lines NUA35 and NUA56 from the red-mottled seed class. J Plant Registr 4:55–59

    Article  Google Scholar 

  • Blair MW, Astudillo C, Rengifo J et al (2011) QTL analyses for seed iron and zinc concentrations in an intra-genepool population of Andean common beans (Phaseolus vulgaris L.). Theor Appl Genet 122:511–521

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Herrera A, Sandoval T et al (2012) Inheritance of seed phytate and phosphorus levels in common bean (Phaseolus vulgaris L.) and association with newly-mapped candidate genes. Mol Breed 30:1265–1277

    Article  CAS  Google Scholar 

  • Blair MW, Izquierdo P, Astudillo C (2013) A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Front Plant Sci 4:275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bollini R, Carnovale E, Campion B (1999) Removal of anti nutritional factors from bean (Phaseolus vulgaris L.) seeds. Biotechnol Agron Soc Environ 3:217–219

    CAS  Google Scholar 

  • Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourne MC (1967) Size, density and hardshell in dry beans. Food Technol 21:335–338

    Google Scholar 

  • Boy E, Haas JD, Petry N et al (2017) Efficacy of iron-biofortified crops. Afr J Food Agric Nutr Dev 17:11879–11892

    Article  CAS  Google Scholar 

  • Broughton WJ, Hernández G, Blair M et al (2003) Beans (Phaseolus spp.) – model food legumes. Plant and Soil 252:55–128

    Article  CAS  Google Scholar 

  • Burr HK, Kon S, Morris HJ (1968) Cooking rates of dry beans as influenced by moisture content and temperature and time of storage. Food Technol 22:336–338

    Google Scholar 

  • Burrow MD, Ludden PW, Bliss FA (1993) Suppression of phaseolin and lectins in seeds of common bean Phaseolus vulgaris L.: increased accumulation of 54 kDa polypeptides is not associated with higher methionine concentrations. Mol Genet Genomics 241:431–439

    Google Scholar 

  • Cakmak I, Pfeiffer W, McClafferty B (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20

    Article  CAS  Google Scholar 

  • Campion B, Perrone D, Galasso I (2009a) Common bean (Phaseolus vulgaris L.) lines devoid of major lectin proteins. Plant Breed 128:199–204

    Article  CAS  Google Scholar 

  • Campion B, Sparvoli F, Doria E et al (2009b) Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor Appl Genet 118:1211–1221

    Article  CAS  PubMed  Google Scholar 

  • Campion B, Glahn R, Tava A (2013) Genetic reduction of antinutrients in common bean (Phaseolus vulgaris L.) seed, increases nutrients and in vitro iron bioavailability without depressing main agronomic traits. Field Crop Res 141:27–37

    Article  Google Scholar 

  • Casquero PA, Lema M, Santalla M et al (2006) Performance of common bean landraces from Spain in the Atlantic and Mediterranean environments. Genet Resour Crop Evol 53:1021–1032

    Article  Google Scholar 

  • Chiozzotto R, Ramírez M, Talbi C et al (2018) Characterization of the symbiotic nitrogen-fixing common bean low phytic acid (lpa1) mutant response to water stress. Genes 9:2

    Article  CAS  Google Scholar 

  • Cichy K, Caldas G, Snapp S et al (2009) QTL analysis of seed iron, zinc, and phosphorus levels in an Andean bean population. Crop Sci 49:1742–1750

    Article  CAS  Google Scholar 

  • Cominelli E, Orozco-Arroyo G, Sparvoli F (2017) Phytic acid biosynthesis and transport in Phaseolus vulgaris: exploitation of new genomic resources. In: Marsolais F, Perez de la Vega M, Santalla M (eds) The common bean genome – compendium of plant genomes. Springer, Cham, pp 167–186

    Google Scholar 

  • Cominelli E, Confalonieri M, Carlessi M et al (2018) Phytic acid transport in Phaseolus vulgaris: a new low phytic acid mutant in the PvMRP1 gene and study of the PvMRPs promoters in two different plant systems. Plant Sci 270:1–12

    Article  CAS  PubMed  Google Scholar 

  • Confalonieri M, Bollini R, Berardo N et al (1992) Influence of phytohemagglutinin on the agronomic performance of beans (Phaseolus vulgaris L). Plant Breed 109:329–334

    Article  CAS  Google Scholar 

  • Cvitanich C, Przybyłowicz WJ, Urbanski DF et al (2010) Iron and ferritin accumulate in separate cellular locations in Phaseolus seeds. BMC Plant Biol 10:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Araújo R, Miglioranza E, Montalvan R et al (2003) Genotype × environment interaction effects on the iron content of common bean grains. Crop Breed Appl Biotechnol 3:269–274

    Article  Google Scholar 

  • De Ron AM, Papa R, Bitocchi E et al (2015) Common bean. In: De Ron AM (ed) Grain legumes, series: handbook of plant breeding. Springer, New York, NY, pp 1–36

    Chapter  Google Scholar 

  • De Ron AM, Santalla M, Rodiño AP et al (2016) Judía. In: Ruiz de Galarreta JI, Prohens J, Tierno R (eds) Las variedades locales en la mejora genética de plantas. Servicio Central de Publicaciones del Gobierno Vasco, Vitoria, pp 155–170

    Google Scholar 

  • Delaney DE, Bliss FA (1991) Selection for increased percentage phaseolin in common bean: 1. Comparison of selection for seed protein alleles and S1 family recurrent selection. Theor Appl Genet 81:301–305

    Article  CAS  PubMed  Google Scholar 

  • Donangelo CM, Woodhouse LR, King SM et al (2003) Iron and zinc absorption from two bean (Phaseolus vulgaris L.) genotypes in young women. J Agric Food Chem 51:5137–5143

    Article  CAS  PubMed  Google Scholar 

  • Doria E, Campion B, Sparvoli F et al (2012) Anti-nutrient components and metabolites with health implications in seeds of 10 common bean (Phaseolus vulgaris L. and Phaseolus lunatus L.) landraces cultivated in southern Italy. J Food Compos Anal 26:72–80

    Article  CAS  Google Scholar 

  • Escribano MR, Santalla M, De Ron AM (1990) Preliminary study of quality characters in populations of common bean from the northwestern Iberian Peninsula. An Aula Dei 20(1-2):189–198

    Google Scholar 

  • FAO/WHO (1991) Protein quality evolution. Report of joint FAO/WHO Expert Consultation. Food and Nutrition Paper 51. Rome, FAO/WHO

    Google Scholar 

  • FAO/WHO (2004) Vitamin and mineral requirements in human nutrition. Geneva, FAO/WHO

    Google Scholar 

  • Fileppi M, Galasso I, Tagliabue G et al (2010) Characterisation of structural genes involved in phytic acid biosynthesis in common bean (Phaseolus vulgaris L.). Mol Breed 25:453–470

    Article  CAS  Google Scholar 

  • Ganesan K, Xu B (2017) Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits. Int J Mol Sci 18:11

    Google Scholar 

  • Genovese MI, Lajolo FM (1996) Effect of bean (Phaseolus vulgaris) albumins on phaseolin in vitro digestibility, role of trypsin inhibitors. J Food Biochem 20:275–294

    Article  CAS  Google Scholar 

  • Genovese MI, Lajolo FM (1998) Influence of naturally acid-soluble proteins from bean (Phaseolus vulgaris L.) on in vitro digestibility determination. Food Chem 62:315–323

    Article  CAS  Google Scholar 

  • Gepts P, Bliss FA (1984) Enhanced available methionine concentration associated with higher phaseolin levels in common bean seeds. Theor Appl Gen 69:47–53

    Article  CAS  Google Scholar 

  • Ghaderi A, Hosfield GL, Adams MW et al (1984) Variability in culinary quality component interrelationship, and breeding implications in navy and pinto beans. J Am Hort Sci 109:85–90

    Google Scholar 

  • Guzman-Maldonado S, Martinez O, Acosta-Gallegos J et al (2003) Putative quantitative trait loci for physical and chemical components of common bean. Crop Sci 43:1029–1035

    Article  CAS  Google Scholar 

  • Haas JD, Luna SV, Lung'aho MG et al (2016) Consuming iron biofortified beans increases iron status in rwandan women after 128 days in a randomized controlled feeding trial. J Nutr 146:1586–1592

    Article  CAS  PubMed  Google Scholar 

  • Hangen L, Bennink MR (2003) Consumption of black beans and navy beans (Phaseolus vulgaris) resduced azoxymethane-induced colon cancer in rats. Nutr Cancer 44:60–65

    Google Scholar 

  • Hart JJ, Tako E, Kochian LV et al (2015) Identification of black bean (Phaseolus vulgaris L.) polyphenols that inhibit and promote iron uptake by Caco-2 cells. J Agric Food Chem 63:5950–5956

    Article  CAS  PubMed  Google Scholar 

  • Hart JJ, Tako E, Glahn RP (2017) Characterization of polyphenol effects on inhibition and promotion of iron uptake by Caco-2 cells. J Agric Food Chem 65:3285–3294

    Article  CAS  PubMed  Google Scholar 

  • Hoffman LM, Donaldson DD (1985) Characterization of two Phaseolus vulgaris phytohemagglutinin genes closely linked on the chromosome. EMBO J 4:883–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppler M, Egli I, Petry N et al (2014) Iron speciation in beans (Phaseolus vulgaris) biofortified by common breeding. J Food Sci 79:C1629–C1634

    Article  CAS  PubMed  Google Scholar 

  • Hosfield GL, Uebersax MA (1980) Variability in physicochemical properties and nutritional components of tropical and domestic dry bean germplasm. J Am Soc Hort Sci 105:246–252

    CAS  Google Scholar 

  • Hosfield GL, Uebersax MA, Isleib TG (1984) Seasonal and genotypic effects on yield and physic-chemical seed characteristics related to food quality in dry, edible beans. J Am Soc Hort Sci 109:182–189

    Google Scholar 

  • Islam F, Basford K, Jara C et al (2002) Seed compositional and disease resistance differences among gene pools in cultivated common bean. Genet Resour Crop Evol 49:285–293

    Article  Google Scholar 

  • Jivotovskaya AV, Senyuk VI, Rota VI et al (1996) Proteolysis of phaseolin in relation to its structure. J Agric Food Chem 44:3768–3772

    Article  CAS  Google Scholar 

  • Joshi J, Pandurangan S, Diapari M et al (2017) Comparison of gene families: storage and other seed proteins. In: Perez de la Vega M, Santalla M, Marsolais F (eds) The common bean genome. Compendium of plant genome series. Springer, pp 201–218

    Google Scholar 

  • Kelly JD, Bliss FA (1975) Quality factors affecting the nutritive value of bean seed protein. Crop Sci 15:757–760

    Article  CAS  Google Scholar 

  • Kruger J, Minnis-Ndimba R, Mtshali C et al (2015) Novel in situ evaluation of the role minerals play in the development of the hard-to-cook (HTC) defect of cowpeas and its effect on the in vitro mineral bioaccessibility. Food Chem 174:365–371

    Article  CAS  PubMed  Google Scholar 

  • Layer P, Carlson G, Dimagno E (1985) Partially purified white bean amylase inhibitor reduces starch digestion in vitro and inactivates intraduodenal amylase in humans. Gastroenterology 88:1895–1902

    Article  CAS  PubMed  Google Scholar 

  • Layer P, Zinsmeister A, Dimagno E (1986) Effects of decreasing intraluminal amylase activity on starch digestion and postprandial gastrointestinal function in humans. Gastroenterology 91:41–48

    Article  CAS  PubMed  Google Scholar 

  • Le Berre-Anton V, Bompard-Gilles C, Payan F et al (1997) Characterization and functional properties of the α-amylase inhibitor (α-AI) from kidney bean (Phaseolus vulgaris) seeds. Biochim Biophys Acta 1343:31–40

    Article  PubMed  Google Scholar 

  • Lioi L, Sparvoli F, Galasso I et al (2003) Lectin-related resistance factors against bruchids evolved through a number of duplication events. Theor Appl Genet 107:814–822

    Article  CAS  PubMed  Google Scholar 

  • Mahajan R, Zargar S, Salgotra R et al (2017) Linkage disequilibrium based association mapping of micronutrients in common bean (Phaseolus vulgaris L.): a collection of Jammu & Kashmir, India. 3 Biotech 7:295

    Article  PubMed  PubMed Central  Google Scholar 

  • Marentes E, Grusak MA (1998) Iron transport and storage within the seed coat and embryo of developing seeds of pea (Pisum sativum L.). Seed Sci Res 8:367–375

    Article  CAS  Google Scholar 

  • Marquez UM, Lajolo FM (1981) Composition and digestibility of albumin, globulins and glutelins from Pahseolus vulgaris L. J Agric Food Chem 29:1068–1074

    Article  CAS  PubMed  Google Scholar 

  • Marsolais F, Pajak A, Yin F et al (2010) Proteomic analysis of common bean seed with storage protein deficiency reveals up-regulation of sulfur-rich proteins and starch and raffinose metabolic enzymes, and down-regulation of the secretory pathway. J Proteomics 73:1587–1600

    Article  CAS  PubMed  Google Scholar 

  • Martins S, Melo P, Faria L (2016) Genetic parameters and breeding strategies for high levels of iron and zinc in Phaseolus vulgaris L. Genet Mol Res 15:2

    Google Scholar 

  • McClean PE, Lee RK, Otto C et al (2002) Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). J Hered 93:148–152

    Article  CAS  PubMed  Google Scholar 

  • McClean P, Cannon S, Gepts P, Hudson M, Jackson S, Rokhsar D, Schmutz J, Vance C (2008) Towards a whole genome sequence of common bean (Phaseolus vulgaris L.): background, approaches, applications. http://arsftfbean.uprm.edu/bic/wpcontent/uploads/2018/04/Bean_Genomics_Status_2008.pdf

  • Montoya CA, Leterme P, Victoria NF et al (2008a) The susceptibility of phaseolin to in vitro proteolysis is highly variable across Phaseolus vulgaris bean varieties. J Agric Food Chem 56:2183–2191

    Article  CAS  PubMed  Google Scholar 

  • Montoya CA, Leterme P, Beebe S et al (2008b) Phaseolin type and heat treatment influence the biochemistry of protein digestion in rat intestine. Br J Nutr 99:531–539

    Article  CAS  PubMed  Google Scholar 

  • Montoya CA, Lallès JP, Beebe S et al (2009) Susceptibility of phaseolin (Phaseolus vulgaris) subunits to trypsinolysis and influence of dietary level of raw phaseolin on protein digestion in the small intestine of rats. Br J Nutr 101:1324–1332

    Article  CAS  PubMed  Google Scholar 

  • Montoya CA, Lallès JP, Beebe S et al (2010) Phaseolin diversity as a possible strategy to improve the nutritional value of common beans (Phaseolus vulgaris). Food Res Int 43:443–449

    Article  CAS  Google Scholar 

  • Morari D, Stepurina T, Rotari V (2008) Calcium ions make phytohemagglutinin resistant to trypsin proteolysis. J Agric Food Chem 56:3764–3771

    Article  CAS  PubMed  Google Scholar 

  • Mulambu J, Andersson M, Palenberg M et al (2017) Iron beans in Rwanda: crop development and delivery experience. Afr J Food Agric Nutr Dev 17:12026–12050

    Article  CAS  Google Scholar 

  • Murgia I, Arosio P, Tarantino D et al (2012) Biofortification for combating ‘hidden hunger’ for iron. Trends Plant Sci 17:47–55

    Article  CAS  PubMed  Google Scholar 

  • Murray-Kolb LE, Wenger MJ, Scott SP et al (2017) Consumption of iron-biofortified beans positively affects cognitive performance in 18- to 27-year-old Rwandan Female College students in an 18-week randomized controlled efficacy trial. J Nutr 147:2109–2117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mutschler MA, Bliss FA (1981) Inheritance of bean seed globulin content and its relationship to protein content on quality. Crop Sci 21:289–294

    Article  CAS  Google Scholar 

  • Osborn TC, Bliss FA (1985) Effects of genetically removing lectin seed protein on horticultural and seed characteristics of common bean. J Am Soc Hortic Sci 110:484–488

    CAS  Google Scholar 

  • Osborn TC, Alexander DC, Sun SSM et al (1988) Insecticidal activity and lectin homology of arcelin seed protein. Science 240:207–210

    Article  CAS  Google Scholar 

  • Osborn TC, Hartweck LM, Harmsen RH et al (2003) Registration of Phaseolus vulgaris genetic stocks with altered seed protein compositions. Crop Sci 43:1570–1571

    Article  Google Scholar 

  • Palmer RM, Pusztai A, Bain P et al (1987) Changes in rates of tissue protein synthesis in rats induced in vivo by consumption of kidney bean lectins. Comp Biochem Physiol 88C:179–183

    CAS  Google Scholar 

  • Pandurangan S, Diapari M, Yin F et al (2016) Genomic analysis of storage protein deficiency in genetically related lines of common bean (Phaseolus vulgaris). Front Plant Sci 7:389

    Article  PubMed  PubMed Central  Google Scholar 

  • Panzeri D, Cassani E, Doria E et al (2011) A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters ABA sensitivity. New Phytol 191:70–83

    Article  CAS  PubMed  Google Scholar 

  • Pérez S, Oparinde A, Birol E et al (2015) Consumer acceptance of an iron bean variety in Northwest Guatemala: the role of information and repeated messaging. International association of agricultural economists conference, 9–14 Aug 2015, Milan, Italy

    Google Scholar 

  • Petry N, Egli I, Zeder C et al (2010) Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J Nutr 140:1977–1982

    Article  CAS  PubMed  Google Scholar 

  • Petry N, Egli I, Gahutu JB et al (2012) Stable iron isotope studies in Rwandese women indicate that the common bean has limited potential as a vehicle for iron biofortification. J Nutr 142:492–497

    Article  CAS  PubMed  Google Scholar 

  • Petry N, Egli I, Campion B (2013) Genetic reduction of phytate in common bean (Phaseolus vulgaris L.) seeds increases iron absorption in young women. J Nutr 143:1219–1224

    Article  CAS  PubMed  Google Scholar 

  • Petry N, Egli I, Gahutu JB, Tugirimana PL, Boy E, Hurrell R (2014) Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status. J Nutr 144:1681–1687

    Article  CAS  PubMed  Google Scholar 

  • Petry N, Boy E, Wirth JP et al (2015) Review: the potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients 7:1144–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petry N, Rohner F, Gahutu JB et al (2016) In Rwandese women with low iron status, iron absorption from low-phytic acid beans and biofortified beans is comparable, but low-phytic acid beans cause adverse gastrointestinal symptoms. J Nutr 146:970–975

    Article  CAS  PubMed  Google Scholar 

  • Prasai N, Asare-Marfo D (2015) Biofortification Priority Index: a global strategy tool for investing in crop biofortification. http://www.harvestplus.org/knowledge-market/BPI.

  • Pueyo JJ, Hunt DC, Chrispeels MJ (1993) Activation of bean (Phaseolus vulgaris) α-amylase inhibitor requires proteolytic processing of the proprotein. Plant Physiol 101:1341–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pusztai A (1991) Plant lectins. Cambridge University Press, Cambridge, pp 1–263

    Google Scholar 

  • Pusztai A, Grant G, Spencer RJ et al (1993) Kidney bean lectin-induced Escherichia coli overgrowth in the small intestine is blocked by GNA, a mannose-specific lectin. J Appl Bacteriol 75:360–368

    Article  CAS  PubMed  Google Scholar 

  • Quenzer NM, Huffman VL, Burns EE (1978) Some factors affecting pinto bean quality. J Food Sci 43:1059–1061

    Article  CAS  Google Scholar 

  • Reed S, Neuman H, Glahn RP et al (2017) Characterizing the gut (Gallus gallus) microbiota following the consumption of an iron biofortified Rwandan cream seeded carioca (Phaseolus vulgaris L.) bean-based diet. PLoS One 12:e0182431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ribeiro ND, Jost E, Cerutti T et al (2008) Micromineral composition of common bean cultivars and its application in crop breeding. Bragantia 67:267–273

    Article  CAS  Google Scholar 

  • Romero-Andreas J, Yandell BS, Bliss FA (1986) Bean arcelin: 1. Inheritance of a novel seed protein of Phaseolus vulgaris L. and its effect on seed composition. Theor Appl Genet 72:123–128

    Article  CAS  PubMed  Google Scholar 

  • Saltzman A, Birol E, Oparinde A et al (2017) Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential. Ann N Y Acad Sci 1390:104–114

    Article  PubMed  Google Scholar 

  • Santalla M, De Ron AM, Voysest O (2001) European bean market classes. In: Amurrio M, Santalla M, De Ron AM (eds) Catalogue of bean genetic resources. Fundación Pedro Barrié de la Maza/PHASELIEU-FAIR3463/MBG-CSIC, Pontevedra, pp 77–94

    Google Scholar 

  • Santimone M, Koukiekolo R, Moreau Y et al (2004) Porcine pancreatic alpha-amylase inhibition by the kidney bean (Phaseolus vulgaris) inhibitor (alpha-AI1) and structural changes in the alpha-amylase inhibitor complex. Biochim Biophys Acta 1696:181–190

    Article  CAS  PubMed  Google Scholar 

  • Sarwar Gilani G, Wu Xiao C, Cockell KA (2012) Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br J Nutr 108(Suppl 2):S315–S332

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, McClean PE, Mamidi S et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SP, Gepts P, Debouck DG (1991) Races of common bean (Phaseolus vulgaris Fabaceae). Econ Bot 45:379–396

    Article  Google Scholar 

  • Sparvoli F, Cominelli E (2015) Seed biofortification and phytic acid reduction: a conflict of interest for the plant? Plants 4:728–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparvoli F, Daminati MG, Bollini R (1994) Biochemical and molecular characterisation of a Phaseolus vulgaris mutant lacking the major lectin related seed proteins. Ann Rep Bean Improv Coop 37:110

    Google Scholar 

  • Sparvoli F, Bollini R, Cominelli E (2015) Nutritional value. In: De Ron AM (ed) Grain legumes, Handbook of plant breeding, vol 10. Springer, New York, NY, pp 291–325

    Chapter  Google Scholar 

  • Sparvoli F, Laureati M, Pilu R et al (2016) Exploitation of common bean flours with low antinutrient content for making nutritionally enhanced biscuits. Front Plant Sci 7:928

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperotto RA, Ricachenevsky FK (2017) Common bean Fe biofortification using model species’ lessons. Front Plant Sci 8:2187

    Article  PubMed  PubMed Central  Google Scholar 

  • Streit LG, Beach LR, Register JC et al (2001) Association of the Brazil nut protein gene and Kunitz trypsin inhibitor alleles with soybean protease inhibitor activity and agronomic traits. Crop Sci 41:1757–1760

    Article  CAS  Google Scholar 

  • Tabe LM, Droux M (2002) Limits to sulfur accumulation in transgenic lupin seeds expressing a foreign sulfur-rich protein. Plant Physiol 128:1137–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor M, Chapman R, Beyaert R et al (2008) Seed storage protein deficiency improves sulphur amino acid content in common bean (Phaseolus vulgaris): redirection of sulphur from c-glutamyl-S-methylcysteine. J Agric Food Chem 56:5647–5654

    Article  CAS  PubMed  Google Scholar 

  • The World Health Report (2002) Quantifying selected major risks to health. WHO, Geneva, p 4 http://www.who.int/whr/2002/chapter4/en/index3.html

    Google Scholar 

  • Thompson MD, Brick MA, McGinley JN et al (2009) Chemical composition and mammary cancer inhibitory activity of dry bean. Crop Sci 49:179–186

    Article  CAS  Google Scholar 

  • Van Beem J, Kornegay J, Lareo L (1992) Nutritive value of the nuña popping bean. Econ Bot 46(2):164–170

    Article  Google Scholar 

  • Vasconcelos IM, Oliveira JTA (2004) Antinutritional properties of plant lectins. Toxicon 44:385–403

    Article  CAS  PubMed  Google Scholar 

  • Vitale A, Bollini R (1995) Legume storage proteins. In: Kigel J, Galili G (eds) Seed development and germination. Dekker, New York, NY, pp 73–102

    Google Scholar 

  • Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M et al (2016) Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol 17:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voelker TA, Staswick P, Chrispeels MJ (1986) Molecular analysis of two phytohemagglutinin genes and their expression in Phaseolus vulgaris cv. Pinto, a lectin-deficient cultivar of the bean. EMBO J 5:3075–3082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voysest O (2000) Mejoramiento genético del frijol (Phaseolus vulgaris L.). Legado de variedades de América Latina 1930–1999. CIAT, Cali

    Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  CAS  PubMed  Google Scholar 

  • Welch RM, House WA (1984) Factors affecting the bioavailability of mineral nutrients in plant foods. In: Welch RM, Gabelman WH (eds) Crops as sources of nutrients for humans. American Society of Agronomy, Madison, WI, pp 37–54

    Google Scholar 

  • Yin F, Pajak A, Chapman R et al (2011) Analysis of common bean expressed sequence tags identifies sulfur metabolic pathways active in seed and sulfur-rich proteins highly expressed in the absence of phaseolin and major lectins. BMC Genomics 12:268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaugg I, Magni C, Panzeri D et al (2013) QUES, a new Phaseolus vulgaris genotype resistant to common bean weevils, contains the Arcelin-8 allele coding for new lectin-related variants. Theor Appl Gen 126:647–661

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We kindly acknowledge Dr. Roberto Bollini for critical reading of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Sparvoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cominelli, E., Rodiño, A.P., De Ron, A.M., Sparvoli, F. (2019). Genetic Approaches to Improve Common Bean Nutritional Quality: Current Knowledge and Future Perspectives. In: Qureshi, A., Dar, Z., Wani, S. (eds) Quality Breeding in Field Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-04609-5_5

Download citation

Publish with us

Policies and ethics