Skip to main content

Strong Asymptotic Analysis of OLPs on the Unit Circle by Riemann-Hilbert Approach

  • Chapter
  • First Online:
Analysis as a Life

Part of the book series: Trends in Mathematics ((TM))

  • 536 Accesses

Abstract

In this article, we will deal with the asymptotics of the monic orthogonal Laurent polynomials (OLPs) on the unit circle with respect to a strictly-positive analytic weight by Riemann-Hilbert approach. We first construct a matrix Riemann-Hilbert problem (RHP) which is the Fokas-Its-Kitaev characterization. Then, the strong asymptotic formulas of OLPs are obtained by employing Deift-Zhou steepest descent analysis. Furthermore, the asymptotic formulas of the leading coefficient and the trailing coefficient are simultaneously obtained.

To Professor Heinrich Begehr on the occasion of his 80th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Szegő, Orthogonal Polynomials, 4th edn. AMS Colloquium Publications, vol. 23 (American Mathematical Society, Providence, 1975)

    Google Scholar 

  2. A. Martínez-Finkelshtein, K.T-R. McLaughlin, E.B. Saff, Szegő orthogonal polynomials with respect to an analytic weight: canonical representation and strong asymptotics. Constr. Approx. 24, 319–363 (2006)

    Article  MathSciNet  Google Scholar 

  3. Z.H. Du, J.Y. Du, Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on the unit circle. Chinese Ann. Math. 27A(5), 701–718 (2006)

    MathSciNet  Google Scholar 

  4. Z.H. Du, J.Y. Du, Orthogonal trigonometric polynomials: Riemann-Hilbert analysis and relations with OPUC. Asymptot. Anal. 79, 87–132 (2012)

    MathSciNet  MATH  Google Scholar 

  5. T. Kriecherbauer, K.T-R. McLaughlin, Strong asymptotics of polynomials orthogonal with respect to Freud weights. Int. Math. Res. Not. 6, 299–333 (1999)

    Article  MathSciNet  Google Scholar 

  6. P. Deift, T. Kriecherbauer, K.T-R. McLaughlin, S. Venakides, X. Zhou, Strong asymptotics of orthogonal polynomials with respect to exponential weights. Commun. Pure Appl. Math. 52, 1491–1552 (1999)

    Article  MathSciNet  Google Scholar 

  7. R. Bo, R. Wong, A uniform asymptotic formula for orthogonal polynomials associated with \(\exp \left \{-x^4\right \}\). J. Approx. Theory 98, 146–166 (1999)

    Google Scholar 

  8. A.B.J. Kuijlaars, T.R. Mclaughlin, W.V. Assche, M. Vanlessen, The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1]. Adv. Math. 188(2), 337–398 (2004)

    Article  MathSciNet  Google Scholar 

  9. A.S. Fokas, A.R. Its, A.V. Kitaev, The isomonodromy approach to matrix models in 2D quantum gravity. Commun. Math. Phys. 147(2), 395–430 (1992)

    Article  Google Scholar 

  10. P. Deift, X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problem, asymptotics for the MKdV equation. Ann. Math. 137(2), 295–368 (1993)

    Article  MathSciNet  Google Scholar 

  11. A. Martínez-Finkelshtein, Szegő polynomials: a view from the Riemann-Hilbert window. Electron. Trans. Numer. Anal. 25, 369–392 (2006)

    MathSciNet  MATH  Google Scholar 

  12. A.B.J. Kuijlaars, Riemann-Hilbert analysis for polynomials, in Orthogonal Polynomials and Special Functions: Leuven 2002. Lecture Notes Mathematics, vol. 1817 (Springer, Berlin, 2003), pp. 167–210

    Google Scholar 

  13. P. Deift, Orthogonal polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes in Mathematics, vol. 13 (Courant Institute of Mathematical Sciences, New York, 1999)

    Google Scholar 

  14. A.S. Fokas, A unified approach to boundary value problems, in CBMS-NSF Region Conference Series in Applied Mathematics, vol. 78 (Society for Industrial and Applied Mathematics, Philadelphia, 2008)

    Book  Google Scholar 

  15. H. Begehr, Complex Analytic Methods for Partial Differential Equation: An Introductory Text (World Scientific, Singapore, 1994)

    Book  Google Scholar 

  16. J.K. Lu, Boundary Value Problems For Analytic Functions (World Scientific, Singapore, 1993)

    MATH  Google Scholar 

  17. Y.F. Wang, Y.J. Wang, On Riemann problems for single-periodic polyanalytic functions. Math. Nachr. 287, 1886C1915 (2014)

    Article  MathSciNet  Google Scholar 

  18. Y.F. Wang, P.J. Han, Y.J. Wang, On Riemann problem of automorphic polyanalytic functions connected with a rotation group. Complex Var. Elliptic Equ. 60(8), 1033–1057 (2015)

    Article  MathSciNet  Google Scholar 

  19. F.D. Gakhov, Boundary Value Problems (Pergamon Press, Oxford, 1966)

    Book  Google Scholar 

  20. N.I. Muskhelishvili, Singular Integral Equations, 2nd edn. (Noordhoff, Groningen, 1968)

    MATH  Google Scholar 

  21. J.A. Shohat, J.D. Tamarkin, The Problem of Moments. American Mathematical Society Surveys, vol. II (AMS, New York, 1943)

    Google Scholar 

  22. W.B. Jones, W.J. Thorn, H. Waadeland, A strong Stieltjes moment problem. Trans. Am. Math. Soc. 261, 503–528 (1980)

    Article  MathSciNet  Google Scholar 

  23. A. Bultheel, P. González Vera, E. Hendriksen, O. Njåstad, Orthogonal Rational Functions. Cambridge Monographs on Applied & Computational Mathematics, vol. 5 (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  24. W.B. Jones, O. Njåstad, W.J. Thron, Orthogonal Laurent polynomials and the strong Hamburger moment problem. J. Math. Anal. Appl. 98, 528–554 (1984)

    Article  MathSciNet  Google Scholar 

  25. W.B. Jones, O. Njåstad, Orthogonal Laurent polynomials and strong moment theory: a survey. J. Comput. Appl. Math. 105(1–2), 51–91 (1999)

    Article  MathSciNet  Google Scholar 

  26. K.T-R. McLaughlin, A.H. Vartanian, X. Zhou, Asymptotics of Laurent polynomials of even degree orthogonal with respect to varying exponential weights. Int. Math. Res. Pap. 216, Art. ID 62815 (2006)

    Google Scholar 

  27. K.T-R. McLaughlin, A.H. Vartanian, X. Zhou, Asymptotics of Laurent polynomials of odd degree orthogonal with respect to varying exponential weights. Constr. Approx. 27(2), 149–202 (2008)

    Article  MathSciNet  Google Scholar 

  28. R. Cruz-Barroso, C. Díaz Mendoza, R. Orive, Orthogonal Laurent polynomials. A new algebraic approach. J. Math. Anal. Appl. 408, 40–54 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

While the corresponding author visited Free University Berlin in summer 2005 on basis of State Scholarship Fund Award of China, our group began to explore the application of Riemann-Hilbert approach, and made a debut [3]. During that time Professor H. Begehr carefully reviewed this manuscript and offered a lot of suggestions. All the authors are very grateful to Professor H. Begehr for his long-term support and help.

This work was supported by NNSF for Young Scholars of China (No. 11001206) and NNSF (No. 11171260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyuan Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y., Lu, Y., Du, J. (2019). Strong Asymptotic Analysis of OLPs on the Unit Circle by Riemann-Hilbert Approach. In: Rogosin, S., Çelebi, A. (eds) Analysis as a Life. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-02650-9_8

Download citation

Publish with us

Policies and ethics