Skip to main content

Lie–Butcher Series, Geometry, Algebra and Computation

  • Conference paper
  • First Online:
Discrete Mechanics, Geometric Integration and Lie–Butcher Series

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 267))

Abstract

Lie–Butcher (LB) series are formal power series expressed in terms of trees and forests. On the geometric side LB-series generalizes classical B-series from Euclidean spaces to Lie groups and homogeneous manifolds. On the algebraic side, B-series are based on pre-Lie algebras and the Butcher-Connes-Kreimer Hopf algebra. The LB-series are instead based on post-Lie algebras and their enveloping algebras. Over the last decade the algebraic theory of LB-series has matured. The purpose of this paper is twofold. First, we aim at presenting the algebraic structures underlying LB series in a concise and self contained manner. Secondly, we review a number of algebraic operations on LB-series found in the literature, and reformulate these as recursive formulae. This is part of an ongoing effort to create an extensive software library for computations in LB-series and B-series in the programming language Haskell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Einstein summation convention.

  2. 2.

    Technical issues about divergence of the backward error vector field is discussed in [1].

  3. 3.

    In the computer implementations we are relaxing this to allow \({\text {k}}\) more generally to be a commutative ring, such as e.g. polynomials in a set of indeterminates. In this latter case the \({\text {k}}\)-vector space should instead be called a free \({\text {k}}\)-module. We will not pursue this detail in this exposition.

  4. 4.

    This definition is not strictly categorical, since the mappings \({{\text {inj}}}\) and \(\phi \) are not morphisms inside a category, but mappings from a set to an object of another category. A proper categorical definition of a free object, found in any book on category theory, is based on a forgetful functor mapping the given category into the category of sets. The free functor is the left adjoint of the forgetful functor.

  5. 5.

    Trees with different orderings of the branches are considered different, as embedded in the plane.

  6. 6.

    An associative algebra can be defined by commutative diagrams. The co-algebra structure is obtained by reversing all arrows.

  7. 7.

    Splitting with regard to the coproduct \(\varDelta \).

  8. 8.

    Note that the number under the terms are the coefficients to the terms.

  9. 9.

    Since the action of differentiation operators composes contravariantly, the order of right and left is swapped in the mapping from LB-series to differential equations on manifolds.

References

  1. Benettin, G., Giorgilli, A.: On the hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms. J. Stat. Phys. 74(5–6), 1117–1143 (1994)

    Article  MathSciNet  Google Scholar 

  2. Butcher, J.C.: Coefficients for the study of Runge-Kutta integration processes. J. Aust. Math. Soc. 3(02), 185–201 (1963)

    Article  MathSciNet  Google Scholar 

  3. Butcher, J.C.: An algebraic theory of integration methods. Math. Comput. 26(117), 79–106 (1972)

    Article  MathSciNet  Google Scholar 

  4. Calaque, D., Ebrahimi-Fard, K., Manchon, D.: Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series. Adv. Appl. Math. 47(2), 282–308 (2011)

    Article  MathSciNet  Google Scholar 

  5. Cayley, A.: On the theory of the analytical forms called trees. Philos. Mag. 13(19), 4–9 (1857)

    Google Scholar 

  6. Chapoton, F., Livernet, M.: Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not. 2001(8), 395–408 (2001)

    Google Scholar 

  7. Chartier, P., Hairer, E., Vilmart, G.: Numerical integrators based on modified differential equations. Math. Comput. 76(260), 1941 (2007)

    Article  MathSciNet  Google Scholar 

  8. Chartier, P., Hairer, E., Vilmart, G.: Algebraic structures of B-series. Found. Comput. Math. 10(4), 407–427 (2010)

    Article  MathSciNet  Google Scholar 

  9. Dzhumadil’daev, A., Löfwall, C.: Trees, free right-symmetric algebras, free Novikov algebras and identities. Homol. Homotopy Appl. 4(2), 165–190 (2002)

    Google Scholar 

  10. Ebrahimi-Fard, K., Gracia-Bondía, J.M., Patras, F.: A Lie theoretic approach to renormalization. Commun. Math. Phys. 276(2), 519–549 (2007)

    Article  MathSciNet  Google Scholar 

  11. Ebrahimi-Fard, K., Lundervold, A., Mencattini, I., Munthe-Kaas, H.Z.: Post-Lie algebras and isospectral flows. Symmetry Integr. Geom. Methods Appl. (SIGMA) 11(93) (2015)

    Google Scholar 

  12. Ebrahimi-Fard, K., Lundervold, A., Munthe-Kaas, H.: On the Lie enveloping algebra of a post-Lie algebra. J. Lie Theory 25(4), 1139–1165 (2015)

    Google Scholar 

  13. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Vol. 31. Springer series in computational mathematics (2006)

    Google Scholar 

  14. Hairer, E., Wanner, G.: On the Butcher group and general multi-value methods. Computing 13(1), 1–15 (1974)

    Article  MathSciNet  Google Scholar 

  15. Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-group methods. Acta Numer. 2000(9), 215–365 (2000)

    Article  MathSciNet  Google Scholar 

  16. Lundervold, A., Munthe-Kaas, H.: Backward error analysis and the substitution law for Lie group integrators. Found. Comput. Math. 13(2), 161–186 (2013)

    Article  MathSciNet  Google Scholar 

  17. Munthe-Kaas, H.: Lie-Butcher theory for Runge-Kutta methods. BIT Numer. Math. 35(4), 572–587 (1995)

    Article  MathSciNet  Google Scholar 

  18. Munthe-Kaas, H.: Runge-Kutta methods on Lie groups. BIT Numer. Math. 38(1), 92–111 (1998)

    Article  MathSciNet  Google Scholar 

  19. Munthe-Kaas, H., Krogstad, S.: On enumeration problems in Lie-Butcher theory. Future Gen. Comput. Syst. 19(7), 1197–1205 (2003)

    Article  Google Scholar 

  20. Munthe-Kaas, H., Owren, B.: Computations in a free Lie algebra. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 357(1754), 957–981 (1999)

    Article  MathSciNet  Google Scholar 

  21. Munthe-Kaas, H.Z., Lundervold, A.: On post-Lie algebras, Lie-butcher series and moving frames. Found. Comput. Math. 13(4), 583–613 (2013)

    Article  MathSciNet  Google Scholar 

  22. Munthe-Kaas, H.Z., Wright, W.M.: On the Hopf algebraic structure of Lie group integrators. Found. Comput. Math. 8(2), 227–257 (2008)

    Article  MathSciNet  Google Scholar 

  23. Oudom, J.-M., Guin, D.: On the Lie enveloping algebra of a pre-Lie algebra. J. K-Theory K-Theory Appl. Algebra Geom. Topol. 2(01), 147–167 (2008)

    Google Scholar 

  24. Owren, B., Marthinsen, A.: Runge-Kutta methods adapted to manifolds and based on rigid frames. BIT Numer. Math. 39(1), 116–142 (1999)

    Google Scholar 

  25. Philippe C., Hairer, E., Vilmart, G.: A substitution law for B-series vector fields. Technical Report 5498, INRIA (2005)

    Google Scholar 

  26. Reutenauer, C.: Free Lie Algebras. Oxford University Press (1993)

    Google Scholar 

  27. Vallette, B.: Homology of generalized partition posets. J. Pure Appl. Algebra 208(2), 699–725 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Z. Munthe-Kaas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Munthe-Kaas, H.Z., Føllesdal, K.K. (2018). Lie–Butcher Series, Geometry, Algebra and Computation. In: Ebrahimi-Fard, K., Barbero Liñán, M. (eds) Discrete Mechanics, Geometric Integration and Lie–Butcher Series. Springer Proceedings in Mathematics & Statistics, vol 267. Springer, Cham. https://doi.org/10.1007/978-3-030-01397-4_3

Download citation

Publish with us

Policies and ethics