Skip to main content

Oxidative Stress and Redox Signalling in Cardiac Remodelling

  • Chapter
  • First Online:
Studies on Cardiovascular Disorders

Abstract

Cardiac remodelling describes the chronic response to stresses such as myocardial infarction (MI) or chronic hypertension, which generally becomes maladaptive over time, leading to deleterious structural and functional alterations and manifesting clinically as chronic heart failure (CHF). Although the underlying mechanisms are multifactorial, a significant body of evidence points to important roles for oxidative stress and redox signalling. Oxidative stress, occurring when excess reactive oxygen species (ROS) cannot be adequately countered by antioxidant defences, triggers cell dysfunction, energetic deficit or cell death. However, ROS may also have more subtle effects in the process of remodelling through specific modulation of redox-sensitive signalling pathways that alter gene and protein expression and function. ROS are generated from many sources including mitochondria, xanthine oxidase, uncoupled nitric oxide synthases, and NADPH oxidases; the last of these appear to be especially important in redox signalling. This chapter discusses recent advances in delineating the contribution of ROS to some of the principal alterations underlying the remodelling process (i.e., cardiomyocyte hypertrophy, apoptosis, interstitial fibrosis, contractile dysfunction, and chamber dilatation), with a particular emphasis on the role of NADPH oxidase. A better understanding of redox signalling mechanisms may enable the development of new targeted strategies for the prevention and treatment of adverse cardiac remodelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ide T, Tsutsui H, Kinugawa S et al (2000 Feb 4) Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res 86(2):152–157

    Article  PubMed  CAS  Google Scholar 

  2. Kinugawa S, Tsutsui H, Hayashidani S et al (2000 Sept 1) Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: role of oxidative stress. Circ Res 87(5):392–398

    Article  PubMed  CAS  Google Scholar 

  3. Sia YT, Lapointe N, Parker TG et al (2002 May 28) Beneficial effects of long-term use of the antioxidant probucol in heart failure in the rat. Circulation 105(21):2549–2555

    Article  PubMed  CAS  Google Scholar 

  4. Date M, Morita T, Yamashita N et al (2002 Mar 6) The antioxidant N-2-mercaptopropionyl glycine attenuates left ventricular hypertrophy in in vivo murine pressure-overload model. J Am Coll Cardiol 39(5):907–912

    Article  PubMed  CAS  Google Scholar 

  5. Yamamoto M, Yang G, Hong C et al (2003 Nov) Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J Clin Invest 112(9):1395–1406

    PubMed  CAS  Google Scholar 

  6. Shiomi T, Tsutsui H, Matsusaka H et al (2004 Feb 3) Overexpression of glutathione peroxidase prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation 109(4):544–549

    Article  PubMed  CAS  Google Scholar 

  7. Giordano FJ (2005 Mar 1) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115(3):500–508

    PubMed  CAS  Google Scholar 

  8. Tsutsui H, Kinugawa S, Matsushima S (2008 Oct) Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res 81(3):449–456

    Article  PubMed  CAS  Google Scholar 

  9. Takimoto E, Kass DA (2007 Feb 1) Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49(2):241–248

    Article  PubMed  CAS  Google Scholar 

  10. Nishino T, Okamoto K, Eger BT, Pai EF, Nishino T (2008 July) Mammalian xanthine oxidoreductase – mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J 275(13):3278–3289

    Article  PubMed  CAS  Google Scholar 

  11. Sumimoto H (2008 July) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 275(13):3249–3277

    Article  PubMed  CAS  Google Scholar 

  12. Ide T, Tsutsui H, Kinugawa S et al (1999 Aug 20) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85(4):357–363

    Article  PubMed  CAS  Google Scholar 

  13. Redout EM, Wagner MJ, Zuidwijk MJ et al (2007 Sept 1) Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Cardiovasc Res 75(4):770–781

    Article  PubMed  CAS  Google Scholar 

  14. Nojiri H, Shimizu T, Funakoshi M et al (2006 Nov 3) Oxidative stress causes heart failure with impaired mitochondrial respiration. J Biol Chem 281(44):33789–33801

    Article  PubMed  CAS  Google Scholar 

  15. Matsushima S, Ide T, Yamato M et al (2006 Apr 11) Overexpression of mitochondrial peroxiredoxin-3 prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation 113(14):1779–1786

    Article  PubMed  CAS  Google Scholar 

  16. van Empel VPM, Bertrand AT, van der Nagel R et al (2005 June 24) Downregulation of apoptosis-inducing factor in harlequin mutant mice sensitizes the myocardium to oxidative stress-related cell death and pressure overload-induced decompensation. Circ Res 96(12):e92–e101

    Article  PubMed  CAS  Google Scholar 

  17. Ide T, Tsutsui H, Hayashidani S et al (2001 Mar 16) Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ Res 88(5):529–535

    Article  PubMed  CAS  Google Scholar 

  18. Ikeuchi M, Matsusaka H, Kang D et al (2005 Aug 2) Overexpression of mitochondrial transcription factor A ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation 112(5):683–690

    Article  PubMed  CAS  Google Scholar 

  19. Meneshian A, Bulkley GB (2002 July) The physiology of endothelial xanthine oxidase: from urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation 9(3):161–175

    PubMed  CAS  Google Scholar 

  20. Shah AM (2005 June 1) Divergent roles of endothelial nitric oxide synthase in cardiac hypertrophy and chamber dilatation? Cardiovasc Res 66(3):421–422

    Article  PubMed  CAS  Google Scholar 

  21. Lambeth JD (2004 Mar) Nox enzymes and the biology of reactive oxygen. Nat Rev Immunol 4(3):181–189

    Article  PubMed  CAS  Google Scholar 

  22. Cave AC, Brewer AC, Narayanapanicker A et al (2006) NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 8(5–6):691–728

    Article  PubMed  CAS  Google Scholar 

  23. Geiszt M (2006 July 15) NADPH oxidases: New kids on the block. Cardiovasc Res 71(2):289–299

    Article  PubMed  CAS  Google Scholar 

  24. Anilkumar N, Sirker A, Shah AM (2009) Redox sensitive signaling pathways in cardiac remodeling, hypertrophy and failure. Front Biosci 14:3168–3187

    Article  PubMed  CAS  Google Scholar 

  25. McNally JS, Davis ME, Giddens DP et al (2003 Dec 1) Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am J Physiol Heart Circ Physiol 285(6):H2290–H2297

    PubMed  CAS  Google Scholar 

  26. Landmesser U, Dikalov S, Price SR et al (2003 Apr) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111(8):1201–1209

    PubMed  CAS  Google Scholar 

  27. Heineke J, Molkentin JD (2006 Aug) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7(8):589–600

    Article  PubMed  CAS  Google Scholar 

  28. Frey N, Olson EN (2003 Mar 1) Cardiac Hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65(1):45–79

    Article  PubMed  CAS  Google Scholar 

  29. Xiao L, Pimentel DR, Wang J, Singh K, Colucci WS, Sawyer DB (2002 Apr 1) Role of reactive oxygen species and NAD(P)H oxidase in alpha 1-adrenoceptor signaling in adult rat cardiac myocytes. Am J Physiol Cell Physiol 282(4):C926–C934

    PubMed  CAS  Google Scholar 

  30. Kwon SH, Pimentel DR, Remondino A, Sawyer DB, Colucci WS (2003 June 1) H2O2 regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. J Mol Cell Cardiol 35(6):615–621

    Article  PubMed  CAS  Google Scholar 

  31. Hingtgen SD, Tian X, Yang J et al (2006 Sept 14) Nox2-containing NADPH oxidase and Akt activation play a key role in angiotensin II-induced cardiomyocyte hypertrophy. Physiol Genomics 26(3):180–191

    Article  PubMed  CAS  Google Scholar 

  32. Higuchi Y, Otsu K, Nishida K et al (2002 Feb) Involvement of reactive oxygen species-mediated NF-[kappa] B activation in TNF-[alpha]-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol 34(2):233–240

    Article  PubMed  CAS  Google Scholar 

  33. Hirotani S, Otsu K, Nishida K et al (2002 Jan 29) Involvement of nuclear factor-{kappa}B and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation 105(4):509–515

    Article  PubMed  CAS  Google Scholar 

  34. Izumiya Y, Kim S, Izumi Y et al (2003 Oct 31) Apoptosis signal-regulating kinase 1 plays a pivotal role in angiotensin II-induced cardiac hypertrophy and remodeling. Circ Res 93(9):874–883

    Article  PubMed  CAS  Google Scholar 

  35. Kuster GM, Pimentel DR, Adachi T et al (2005 Mar 8) {alpha}-Adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin-1-sensitive oxidative modification of thiols on Ras. Circulation 111(9):1192–1198

    Article  PubMed  CAS  Google Scholar 

  36. Pimentel DR, Amin JK, Xiao L et al (2001 Aug 31) Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res 89(5):453–460

    Article  PubMed  CAS  Google Scholar 

  37. Aikawa R, Nagai T, Tanaka M et al (2001 Dec 14) Reactive oxygen species in mechanical stress-induced cardiac hypertrophy. Biochem Biophys Res Commun 289(4):901–907

    Article  PubMed  CAS  Google Scholar 

  38. Pimentel DR, Adachi T, Ido Y et al (2006 Oct) Strain-stimulated hypertrophy in cardiac myocytes is mediated by reactive oxygen species-dependent Ras S-glutathiolation. J Mol Cell Cardiol 41(4):613–622

    Article  PubMed  CAS  Google Scholar 

  39. Ago T, Liu T, Zhai P et al (2008 June 13) A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell 133(6):978–993

    Article  PubMed  CAS  Google Scholar 

  40. Li JM, Gall NP, Grieve DJ, Chen M, Shah AM (2002 Oct 1) Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40(4):477–484

    Article  PubMed  CAS  Google Scholar 

  41. Kobayashi N, Yoshida K, Nakano S et al (2006 Apr 1) Cardioprotective mechanisms of eplerenone on cardiac performance and remodeling in failing rat hearts. Hypertension 47(4):671–679

    Article  PubMed  CAS  Google Scholar 

  42. Heymes C, Bendall JK, Ratajczak P et al (2003 June 18) Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 41(12):2164–2171

    Article  PubMed  CAS  Google Scholar 

  43. Maack C, Kartes T, Kilter H et al (2003 Sept 30) Oxygen free radical release in human failing myocardium is associated with increased activity of Rac1-GTPase and represents a target for statin treatment. Circulation 108(13):1567–1574

    Article  PubMed  CAS  Google Scholar 

  44. Kim YM, Guzik TJ, Zhang YH et al (2005 Sept 30) A myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human atrial fibrillation. Circ Res 97(7):629–636

    Article  PubMed  CAS  Google Scholar 

  45. Dudley SC Jr, Hoch NE, McCann LA et al (2005 Aug 30) Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: Role of the NADPH and xanthine oxidases. Circulation 112(9):1266–1273

    Article  PubMed  CAS  Google Scholar 

  46. Nakagami H, Takemoto M, Liao JK (2003 July) NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 35(7):851–859

    Article  PubMed  CAS  Google Scholar 

  47. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM (2002 Jan 22) Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105(3):293–296

    Article  PubMed  CAS  Google Scholar 

  48. Satoh M, Ogita H, Takeshita K, Mukai Y, Kwiatkowski DJ, Liao JK (2006 May 9) Requirement of Rac1 in the development of cardiac hypertrophy. PNAS 103(19):7432–7437

    Article  PubMed  CAS  Google Scholar 

  49. Jonathan A, Grieve DJ, Bendall JK et al (2003 Oct 31) Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 93(9):802–805

    Article  CAS  Google Scholar 

  50. Wollert KC, Fiedler B, Gambaryan S et al (2002 Jan 1) Gene transfer of cGMP-dependent protein kinase I enhances the antihypertrophic effects of nitric oxide in cardiomyocytes. Hypertension 39(1):87–92

    Article  PubMed  CAS  Google Scholar 

  51. Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS (1998 Feb 15) Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest 101(4):812–818

    Article  PubMed  CAS  Google Scholar 

  52. Ichinose F, Bloch KD, Wu JC et al (2004 Mar 1) Pressure overload-induced LV hypertrophy and dysfunction in mice are exacerbated by congenital NOS3 deficiency. Am J Physiol Heart Circ Physiol 286(3):H1070–H1075

    Article  PubMed  CAS  Google Scholar 

  53. Scherrer-Crosbie M, Ullrich R, Bloch KD et al (2001 Sept 11) Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation 104(11):1286–1291

    Article  PubMed  CAS  Google Scholar 

  54. Ruetten H, Dimmeler S, Gehring D, Ihling C, Zeiher AM (2005 June 1) Concentric left ventricular remodeling in endothelial nitric oxide synthase knockout mice by chronic pressure overload. Cardiovasc Res 66(3):444–453

    Article  PubMed  CAS  Google Scholar 

  55. Jones SP, Greer JJM, van Haperen R, Duncker DJ, de Crom R, Lefer DJ (2003 Apr 15) Endothelial nitric oxide synthase overexpression attenuates congestive heart failure in mice. Proc Natl Acad Sci U S A 100(8):4891–4896

    Article  PubMed  CAS  Google Scholar 

  56. Janssens S, Pokreisz P, Schoonjans L et al (2004 May 14) Cardiomyocyte-specific overexpression of nitric oxide synthase 3 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circ Res 94(9):1256–1262

    Article  PubMed  CAS  Google Scholar 

  57. Fraccarollo D, Widder JD, Galuppo P et al (2008 Aug 19) Improvement in left ventricular remodeling by the endothelial nitric oxide synthase enhancer AVE9488 after experimental myocardial infarction. Circulation 118(8):818–827

    Article  PubMed  CAS  Google Scholar 

  58. Takimoto E, Champion HC, Li M et al (2005 May 1) Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J Clin Invest 115(5):1221–1231

    PubMed  CAS  Google Scholar 

  59. Moens AL, Takimoto E, Tocchetti CG et al (2008 May 20) Reversal of cardiac hypertrophy and fibrosis from pressure overload by tetrahydrobiopterin: efficacy of recoupling nitric oxide synthase as a therapeutic strategy. Circulation 117(20):2626–2636

    Article  PubMed  CAS  Google Scholar 

  60. Ukai T, Cheng CP, Tachibana H et al (2001 Feb 6) Allopurinol enhances the contractile response to dobutamine and exercise in dogs with pacing-induced heart failure. Circulation 103(5):750–755

    Article  PubMed  CAS  Google Scholar 

  61. Cappola TP, Kass DA, Nelson GS et al (2001 Nov 13) Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation 104(20):2407–2411

    Article  PubMed  CAS  Google Scholar 

  62. Farquharson CAJ, Butler R, Hill A, Belch JJF, Struthers AD (2002 July 9) Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation 106(2):221–226

    Article  PubMed  CAS  Google Scholar 

  63. Minhas KM, Saraiva RM, Schuleri KH et al (2006 Feb 3) Xanthine oxidoreductase inhibition causes reverse remodeling in rats with dilated cardiomyopathy. Circ Res 98(2):271–279

    Article  PubMed  CAS  Google Scholar 

  64. Yamamoto E, Kataoka K, Yamashita T et al (2007 Oct 1) Role of xanthine oxidoreductase in the reversal of diastolic heart failure by candesartan in the salt-sensitive hypertensive rat. Hypertension 50(4):657–662

    Article  PubMed  CAS  Google Scholar 

  65. Hayashi K, Kimata H, Obata K et al (2008 Apr) Xanthine oxidase inhibition improves left ventricular dysfunction in dilated cardiomyopathic hamsters. J Card Fail 14(3):238–244

    Article  PubMed  CAS  Google Scholar 

  66. de Jong JW, Schoemaker RG, de Jonge R et al (2000 Nov) Enhanced expression and activity of xanthine oxidoreductase in the failing heart. J Mol Cell Cardiol 32(11):2083–2089

    Article  PubMed  CAS  Google Scholar 

  67. Xu X, Hu X, Lu Z et al (2008 Nov) Xanthine oxidase inhibition with febuxostat attenuates systolic overload-induced left ventricular hypertrophy and dysfunction in mice. J Card Fail 14(9):746–753

    Article  PubMed  CAS  Google Scholar 

  68. Hare JM, Mangal B, Brown J et al (2008 June 17) Impact of oxypurinol in patients with symptomatic heart failure: results of the OPT-CHF study. J Am Coll Cardiol 51(24):2301–2309

    Article  PubMed  CAS  Google Scholar 

  69. Saraiva RM, Minhas KM, Raju SVY et al (2005 Nov 29) Deficiency of neuronal nitric oxide synthase increases mortality and cardiac remodeling after myocardial infarction: role of nitroso-redox equilibrium. Circulation 112(22):3415–3422

    Article  PubMed  CAS  Google Scholar 

  70. Loyer X, Gomez AM, Milliez P et al (2008 June 24) Cardiomyocyte overexpression of neuronal nitric oxide synthase delays transition toward heart failure in response to pressure overload by preserving calcium cycling. Circulation 117(25):3187–3198

    Article  PubMed  CAS  Google Scholar 

  71. Spinale FG (2007 Oct 1) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87(4):1285–1342

    Article  PubMed  CAS  Google Scholar 

  72. Creemers EEJM, Cleutjens JPM, Smits JFM, Daemen MJAP (2001 Aug 3) Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res 89(3):201–210

    Article  PubMed  CAS  Google Scholar 

  73. Tyagi SC, Campbell SE, Reddy HK, Tjahja E, Voelker DJ (1996 Feb 9) Matrix metalloproteinase activity expression in infarcted, noninfarcted and dilated cardiomyopathic human hearts. Mol Cell Biochem 155(1):13–21

    Article  PubMed  CAS  Google Scholar 

  74. Tyagi SC, Kumar SG, Haas SJ et al (1996 July) Post-transcriptional regulation of extracellular matrix metalloproteinase in human heart end-stage failure secondary to ischemic cardiomyopathy. J Mol Cell Cardiol 28(7):1415–1428

    Article  PubMed  CAS  Google Scholar 

  75. Sivakumar P, Gupta S, Sarkar S, Sen S (2008 Jan) Upregulation of lysyl oxidase and MMPs during cardiac remodeling in human dilated cardiomyopathy. Mol Cell Biochem 307(1–2):159–167

    PubMed  CAS  Google Scholar 

  76. Yan AT, Yan RT, Spinale FG et al (2008 Feb) Relationships between plasma levels of matrix metalloproteinases and neurohormonal profile in patients with heart failure. Eur J Heart Fail 10(2):125–128

    Article  PubMed  CAS  Google Scholar 

  77. Sun Y (2009 Feb 15) Myocardial repair/remodelling following infarction: roles of local factors. Cardiovasc Res 81(3):482–490

    Article  PubMed  CAS  Google Scholar 

  78. Zeisberg EM, Tarnavski O, Zeisberg M et al (2007 Sept) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8):952–961

    Article  PubMed  CAS  Google Scholar 

  79. Sorescu D, Griendling KK (2002 May) Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 8(3):132–140

    Article  PubMed  CAS  Google Scholar 

  80. Siwik DA, Pagano PJ, Colucci WS (2001 Jan 1) Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol 280(1):C53–C60

    PubMed  CAS  Google Scholar 

  81. Tyagi SC, Kumar S, Glover G (1995 July) Induction of tissue inhibitor and matrix metalloproteinase by serum in human heart-derived fibroblast and endomyocardial endothelial cells. J Cell Biochem 58(3):360–371

    Article  PubMed  CAS  Google Scholar 

  82. Wang Y, Rosen H, Madtes DK et al (2007 Nov 2) Myeloperoxidase inactivates TIMP-1 by oxidizing its N-terminal cysteine residue: an oxidative mechanism for regulating proteolysis during inflammation. J Biol Chem 282(44):31826–31834

    Article  PubMed  CAS  Google Scholar 

  83. Kinnula VL, Fattman CL, Tan RJ, Oury TD (2005 Aug 15) Oxidative stress in pulmonary fibrosis: a possible role for redox modulatory therapy. Am J Respir Crit Care Med 172(4):417–422

    Article  PubMed  Google Scholar 

  84. Poli G (2000 June) Pathogenesis of liver fibrosis: role of oxidative stress. Mol Aspect Med 21(3):49–98

    Article  CAS  Google Scholar 

  85. Ha H, Lee HB (2003 Aug 1) Reactive oxygen species and matrix remodeling in diabetic kidney. J Am Soc Nephrol 14(90003):S246–S249

    Article  PubMed  CAS  Google Scholar 

  86. Chen YL, Liu JC, Loh SH et al (2008 Sept 28) Involvement of reactive oxygen species in urotensin II-induced proliferation of cardiac fibroblasts. Eur J Pharmacol 593(1–3):24–29

    Article  PubMed  CAS  Google Scholar 

  87. Johar S, Cave AC, Narayanapanicker A, Grieve DJ, Shah AM (2006 July 1) Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J 20(9):1546–1548

    Article  PubMed  CAS  Google Scholar 

  88. Grieve DJ, Byrne JA, Siva A et al (2006 Feb 21) Involvement of the nicotinamide adenosine dinucleotide phosphate oxidase isoform Nox2 in cardiac contractile dysfunction occurring in response to pressure overload. J Am Coll Cardiol 47(4):817–826

    Article  PubMed  CAS  Google Scholar 

  89. Cucoranu I, Clempus R, Dikalova A et al (2005 Oct 28) NAD(P)H oxidase 4 mediates transforming growth factor-{beta}1-induced differentiation of cardiac fibroblasts Into myofibroblasts. Circ Res 97(9):900–907

    Article  PubMed  CAS  Google Scholar 

  90. Engberding N, Spiekermann S, Schaefer A et al (2004 Oct 12) Allopurinol attenuates left ventricular remodeling and dysfunction after experimental myocardial infarction: a new action for an old drug? Circulation 110(15):2175–2179

    Article  PubMed  CAS  Google Scholar 

  91. Krijnen PAJ, Meischl C, Hack CE et al (2003 Mar 1) Increased Nox2 expression in human cardiomyocytes after acute myocardial infarction. J Clin Pathol 56(3):194–199

    Article  PubMed  CAS  Google Scholar 

  92. Fukui T, Yoshiyama M, Hanatani A, Omura T, Yoshikawa J, Abe Y (2001 Mar 16) Expression of p22-phox and gp91-phox, essential components of NADPH oxidase, increases after myocardial infarction. Biochem Biophys Res Commun 281(5):1200–1206

    Article  PubMed  CAS  Google Scholar 

  93. Doerries C, Grote K, Hilfiker-Kleiner D et al (2007 Mar 30) Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circ Res 100(6):894–903

    Article  PubMed  CAS  Google Scholar 

  94. Looi YH, Grieve DJ, Siva A et al (2008 Feb 1) Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension 51(2):319–325

    Article  PubMed  CAS  Google Scholar 

  95. Frantz S, Brandes RP, Hu K et al (2006 Mar) Left ventricular remodeling after myocardial infarction in mice with targeted deletion of the NADPH oxidase subunit gp91PHOX. Basic Res Cardiol 101(2):127–132

    Article  PubMed  CAS  Google Scholar 

  96. Naumova AV, Chacko VP, Ouwerkerk R, Stull L, Marban E, Weiss RG (2006 Feb 1) Xanthine oxidase inhibitors improve energetics and function after infarction in failing mouse hearts. Am J Physiol Heart Circ Physiol 290(2):H837–H843

    Article  PubMed  CAS  Google Scholar 

  97. Stull LB, Leppo MK, Szweda L, Gao WD, Marban E (2004 Nov 12) Chronic treatment with allopurinol boosts survival and cardiac contractility in murine postischemic cardiomyopathy. Circ Res 95(10):1005–1011

    Article  PubMed  CAS  Google Scholar 

  98. Takemura G, Fujiwara H (2004 Oct) Role of apoptosis in remodeling after myocardial infarction. Pharmacol Ther 104(1):1–16

    Article  PubMed  CAS  Google Scholar 

  99. Gonzalez A, Ravassa S, Lopez B, Loperena I, Querejeta R, Diez J (2006 July) Apoptosis in hypertensive heart disease: a clinical approach. Curr Opin Cardiol 21(4):288–294

    Article  PubMed  Google Scholar 

  100. Wencker D, Chandra M, Nguyen K et al (2003 May) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111(10):1497–1504

    PubMed  CAS  Google Scholar 

  101. Narula J, Haider N, Arbustini E, Chandrashekhar Y (2006 Dec) Mechanisms of disease: apoptosis in heart failure—seeing hope in death. Nat Clin Pract Cardiovasc Med 3(12):681–688

    Article  PubMed  CAS  Google Scholar 

  102. Matsuzawa A, Ichijo H (2008 Nov) Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta Gen Subj 1780(11):1325–1336

    Article  CAS  Google Scholar 

  103. Filomeni G, Ciriolo MR (2006 Nov 1) Redox control of apoptosis: an update. Antioxid Redox Signal 8(11–12):2187–2192

    Article  PubMed  CAS  Google Scholar 

  104. Diaz-Latoud C, Buache E, Javouhey E, Arrigo AP (2005 Mar 1) Substitution of the unique cysteine residue of murine Hsp25 interferes with the protective activity of this stress protein through inhibition of dimer formation. Antioxid Redox Signal 7(3–4):436–445

    Article  PubMed  CAS  Google Scholar 

  105. Shakibaei M, Schulze-Tanzil G, Takada Y, Aggarwal BB (2005 Mar 1) Redox regulation of apoptosis by members of the TNF superfamily. Antioxid Redox Signal 7(3–4):482–496

    Article  PubMed  CAS  Google Scholar 

  106. Grishko V, Pastukh V, Solodushko V, Gillespie M, Azuma J, Schaffer S (2003 Dec 1) Apoptotic cascade initiated by angiotensin II in neonatal cardiomyocytes: role of DNA damage. Am J Physiol Heart Circ Physiol 285(6):H2364–H2372

    PubMed  CAS  Google Scholar 

  107. Goldenberg I, Shainberg A, Jacobson KA, Shneyvays V, Grossman E (2003 Oct) Adenosine protects against angiotensin II-induced apoptosis in rat cardiocyte cultures. Mol Cell Biochem 252(1–2):133–139

    Article  PubMed  CAS  Google Scholar 

  108. Goldenberg I, Grossman E, Jacobson KA, Shneyvays V, Shainberg A (2001 Sept) Angiotensin II-induced apoptosis in rat cardiomyocyte culture: a possible role of AT1 and AT2 receptors. J Hypertens 19(9):1681–1689

    Article  PubMed  CAS  Google Scholar 

  109. Zima AV, Blatter LA (2006 July 15) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71(2):310–321

    Article  PubMed  CAS  Google Scholar 

  110. Goldhaber JI, Ji S, Lamp ST, Weiss JN (1989 June) Effects of exogenous free radicals on electromechanical function and metabolism in isolated rabbit and guinea pig ventricle. Implications for ischemia and reperfusion injury. J Clin Invest 83(6):1800–1809

    Article  PubMed  CAS  Google Scholar 

  111. Gill JS, McKenna WJ, Camm AJ (1995 Mar 16) Free radicals irreversibly decrease Ca2+ currents in isolated guinea-pig ventricular myocytes. Eur J Pharmacol 292(3–4):337–340

    PubMed  CAS  Google Scholar 

  112. Kawakami M, Okabe E (1998 Mar 1) Superoxide anion radical-triggered Ca2+ release from cardiac sarcoplasmic reticulum through ryanodine receptor Ca2+ channel. Mol Pharmacol 53(3):497–503

    PubMed  CAS  Google Scholar 

  113. Zima AV, Copello JA, Blatter LA (2004 Mar 15) Effects of cytosolic NADH/NAD+ levels on sarcoplasmic reticulum Ca2+ release in permeabilized rat ventricular myocytes. J Physiol (Lond) 555(3):727–741

    Article  CAS  Google Scholar 

  114. Oba T, Koshita M, Yamaguchi M (1996 Sept 1) H2O2 modulates twitch tension and increases Po of Ca2+ release channel in frog skeletal muscle. Am J Physiol Cell Physiol 271(3):C810–C818

    CAS  Google Scholar 

  115. Anzai K, Ogawa K, Kuniyasu A, Ozawa T, Yamamoto H, Nakayama H (1998 Aug 28) Effects of hydroxyl radical and sulfhydryl reagents on the open probability of the purified cardiac ryanodine receptor channel incorporated into planar lipid bilayers. Biochem Biophys Res Commun 249(3):938–942

    Article  PubMed  CAS  Google Scholar 

  116. Rowe GT, Manson NH, Caplan M, Hess ML (1983 Nov) Hydrogen peroxide and hydroxyl radical mediation of activated leukocyte depression of cardiac sarcoplasmic reticulum. Participation of the cyclooxygenase pathway. Circ Res 53(5):584–591

    Article  PubMed  CAS  Google Scholar 

  117. Morris TE, Sulakhe PV (1997) Sarcoplasmic reticulum Ca(2+)-pump dysfunction in rat cardiomyocytes briefly exposed to hydroxyl radicals. Free Radic Biol Med 22(1–2):37–47

    Article  PubMed  CAS  Google Scholar 

  118. Adachi T, Weisbrod RM, Pimentel DR et al (2004 Nov) S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10(11):1200–1207

    Article  PubMed  CAS  Google Scholar 

  119. Reeves JP, Bailey CA, Hale CC (1986 Apr 15) Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles. J Biol Chem 261(11):4948–4955

    PubMed  CAS  Google Scholar 

  120. Goldhaber JI (1996 Sept 1) Free radicals enhance Na+/Ca2+ exchange in ventricular myocytes. Am J Physiol Heart Circ Physiol 271(3):H823–H833

    CAS  Google Scholar 

  121. Cerbai E, Ambrosio G, Porciatti F, Chiariello M, Giotti A, Mugelli A (1991 Oct) Cellular electrophysiological basis for oxygen radical-induced arrhythmias. A patch-clamp study in guinea pig ventricular myocytes. Circulation 84(4):1773–1782

    Article  PubMed  CAS  Google Scholar 

  122. Nakaya H, Takeda Y, Tohse N, Kanno M (1992 May) Mechanism of the membrane depolarization induced by oxidative stress in guinea-pig ventricular cells. J Mol Cell Cardiol 24(5):523–534

    Article  PubMed  CAS  Google Scholar 

  123. Gao WD, Liu Y, Marban E (1996 Nov 15) Selective effects of oxygen free radicals on excitation-contraction coupling in ventricular muscle: implications for the mechanism of stunned myocardium. Circulation 94(10):2597–2604

    Article  PubMed  CAS  Google Scholar 

  124. He X, Liu Y, Sharma V et al (2003 July 1) ASK1 associates with troponin T and induces troponin T phosphorylation and contractile dysfunction in cardiomyocytes. Am J Pathol 163(1):243–251

    Article  PubMed  CAS  Google Scholar 

  125. Bolli R (1998 Jun) Causative role of oxyradicals in myocardial stunning: a proven hypothesis. A brief review of the evidence demonstrating a major role of reactive oxygen species in several forms of postischemic dysfunction. Basic Res Cardiol 93(3):156–162

    Article  PubMed  CAS  Google Scholar 

  126. Yano M, Okuda S, Oda T et al (2005 Dec 6) Correction of defective interdomain interaction within ryanodine receptor by antioxidant is a new therapeutic strategy against heart failure. Circulation 112(23):3633–3643

    Article  PubMed  CAS  Google Scholar 

  127. Mochizuki M, Yano M, Oda T et al (2007 Apr 24) Scavenging free radicals by low-dose carvedilol prevents redox-dependent Ca2+ leak via stabilization of ryanodine receptor in heart failure. J Am Coll Cardiol 49(16):1722–1732

    Article  PubMed  CAS  Google Scholar 

  128. Peng T, Lu X, Feng Q (2005 Apr 5) Pivotal role of gp91phox-containing NADH oxidase in lipopolysaccharide-induced tumor necrosis factor-{alpha} expression and myocardial depression. Circulation 111(13):1637–1644

    Article  PubMed  CAS  Google Scholar 

  129. Kim YM, Kattach H, Ratnatunga C, Pillai R, Channon KM, Casadei B (2008) Association of atrial nicotinamide adenine dinucleotide phosphate oxidase activity with the development of atrial fibrillation after cardiac surgery. J Am Coll Cardiol 51(1):68–74

    Article  PubMed  CAS  Google Scholar 

  130. Ambrosio G, Zweier JL, Flaherty JT (1991 Dec) The relationship between oxygen radical generation and impairment of myocardial energy metabolism following post-ischemic reperfusion. J Mol Cell Cardiol 23(12):1359–1374

    Article  PubMed  CAS  Google Scholar 

  131. Mariappan N, Soorappan RN, Haque M, Sriramula S, Francis J (2007 Nov 1) TNF-{alpha}-induced mitochondrial oxidative stress and cardiac dysfunction: restoration by superoxide dismutase mimetic Tempol. Am J Physiol Heart Circ Physiol 293(5):H2726–H2737

    Article  PubMed  CAS  Google Scholar 

  132. Ye G, Metreveli NS, Donthi RV et al (2004 May 1) Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes 53(5):1336–1343

    Article  PubMed  CAS  Google Scholar 

  133. Shen X, Zheng S, Metreveli NS, Epstein PN (2006 Mar 1) Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55(3):798–805

    Article  PubMed  CAS  Google Scholar 

  134. Gaziano JM (2004 Dec) Vitamin E and cardiovascular disease: observational studies. Ann N Y Acad Sci 1031:280–291

    Article  PubMed  CAS  Google Scholar 

  135. Sesso HD, Buring JE, Christen WG et al (2008 Nov 12) Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians’ Health Study II randomized controlled trial. J Am Med Assoc 300(18):2123–2133

    Article  CAS  Google Scholar 

  136. Cook NR, Albert CM, Gaziano JM et al (2007 Aug 13) A randomized factorial trial of vitamins C and E and beta carotene in the secondary prevention of cardiovascular events in women: results from the Women’s Antioxidant Cardiovascular Study. Arch Intern Med 167(15):1610–1618

    Article  PubMed  CAS  Google Scholar 

  137. The Heart Outcomes Prevention Evaluation Study Investigators. (2000 Jan 20) Vitamin E supplementation and cardiovascular events in high-risk patients. N Engl J Med 342(3):154–160

    Article  Google Scholar 

Download references

Acknowledgments

The authors’ work is supported by the British Heart Foundation (RG/08/011/25922 and CVH/99001); the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust; and EU FP6 grant LSHM-CT-2005-018833, EUGeneHeart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay M. Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhang, M., Sirker, A., Shah, A.M. (2010). Oxidative Stress and Redox Signalling in Cardiac Remodelling. In: Sauer, H., Shah, A., Laurindo, F. (eds) Studies on Cardiovascular Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-600-9_21

Download citation

Publish with us

Policies and ethics