Skip to main content

Oncomodulatory Role of the Human Cytomegalovirus in Glioblastoma

  • Chapter
  • First Online:
CNS Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1490 Accesses

Abstract

The most malignant form of primary CNS tumors, glioblastoma (GBM), is rapidly fatal in most patients despite current therapies. Recently, it has been shown that a “tumor stem cell-like” population (CD133 positive) exists within GBMs, which can drive tumor initiation and may be responsible for tumor recurrence (Singh et al., 2004). Other studies have shown that a platelet-derived growth factor receptor (PDGFR)-alpha positive subset of neural precursor cells (NPCs) in the adult brain may give rise to glioma-like lesions in vivo when PDGFR-alpha (PDGFRα) signaling is activated in these cells and their differentiation is “blocked” (Jackson et al., 2006). These data suggest that a stimulus capable of inducing chronic activation of the PDGFR-α in adult NPCs, blocking their differentiation, and promoting oncogenic signaling would be an ideal candidate for a glioma-inducing agent. Our laboratory was the first to show that human cytomegalovirus (HCMV) nucleic acids and proteins are present in over 90% of human malignant gliomas (Cobbs et al., 2002), and these data were recently confirmed by others (Mitchell et al., 2008). HCMV, a neurotropic beta-herpesvirus, persistently infects over 70% of the adult population worldwide, is the most common cause of congenital CNS disease in humans and can establish a lifelong persistent CNS infection (Britt and Alford, 1996). Mouse models of CMV infection show that the virus can be reactivated from latency specifically in the NPCs of the subventricular zone (SVZ) (Tsutsui et al., 2002). In human embryonic neural precursor stem cells, HCMV gene expression is activated at the onset of differentiation (Odeberg et al., 2006) and can arrest the progression from the NPC state toward terminal neuronal/glial phenotypes. In addition, HCMV gene products (such as the immediate-early-1, IE1, gene) can cause DNA mutations and deregulation of myriad pathways involved in maintaining cell homeostasis (Castillo and Kowalik, 2002). Our unpublished data demonstrate that the HCMV IE1 gene product is preferentially expressed in the CD133+, stem-like subpopulation of glioblastoma-derived primary neurospheres, suggesting that the virus may be selectively reactivated in and modulate the biology of this tumor cell pool (Fig. 19.1). In addition, we recently discovered that HCMV infection potently and selectively activates the PDGFRα tyrosine kinase signaling pathway in human glioma and fibroblast cells (Fig. 19.2) and that the HCMV IE1 and PDGFRα proteins co-localize in human primary GBM in situ (Fig. 19.3). We showed that HCMV infection causes activation of signaling pathways downstream of PDGFRα that promote glioma cell survival, proliferation, and invasion, such as PI3K-Akt, PLC-gamma, and FAK (Cobbs et al., 2007). Using genetic approaches to knock down the receptor, we determined that PDGFRα is required for cellular infection by HCMV (Soroceanu et al., 2008). We also found that sustained expression of the essential IE1 viral gene augments the proliferation rate and cell cycle progression of glioblastoma cells by sustained activation of Akt, down-regulation of p53, and inactivation of the Rb tumor suppressor protein (Cobbs et al., 2008). Taken together, our data suggest that HCMV infection and gene expression in human NPCs, particularly in the PDGFRα positive subpopulation of NPC, could potentially cause oncogenic transformation by blockade of differentiation, by increased proliferation, and by causing increased self-renewal capacity of neural stem cells and accumulation of genetic alterations. Therefore, HCMV is an important marker of brain tumors and a potential target for novel therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiba-Masago, S., Baba, S., Li, R.Y., Shinmura, Y., Kosugi, I., Arai, Y., Nishimura, M., and Tsutsui, Y. (1999). Murine cytomegalovirus immediate-early promoter directs astrocyte- specific expression in transgenic mice. Am J Pathol 154, 735–743.

    Article  PubMed  CAS  Google Scholar 

  • Assanah, M., Lochhead, R., Ogden, A., Bruce, J., Goldman, J., and Canoll, P. (2006). Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 26, 6781–6790.

    Article  PubMed  CAS  Google Scholar 

  • Bao, S., Wu, Q., McLendon, R., Hao, Y., Shi, Q., Hjelmeland, A., Dewhirst, M., Bigner, D.D., and Rich, J.N. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760.

    Google Scholar 

  • Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J., et al. (2001). CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4, 702–710.

    Article  PubMed  CAS  Google Scholar 

  • Bresnahan, W.A., and Shenk, T. (2000). A subset of viral transcripts packaged within human cytomegalovirus particles. Science 288, 2373–2376.

    Article  PubMed  CAS  Google Scholar 

  • Britt, W.J., and Alford, C.A. (1996). Cytomegalovirus. In Fields Virology, Third Edition, B.N. Fields, D.M. Knipe, and P.M. Howley, eds. (New York, Raven Press), pp. 2493–2523.

    Google Scholar 

  • Cancer Genome Atlas Research Network (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068.

    Google Scholar 

  • Casarosa, P., Bakker, R.A., Verzijl, D., Navis, M., Timmerman, H., Leurs, R., and Smit, M.J. (2001). Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J Biol Chem 276, 1133–1137.

    Article  PubMed  CAS  Google Scholar 

  • Castillo, J.P., Frame, F.M., Rogoff, H.A., Pickering, M.T., Yurochko, A.D., and Kowalik, T.F. (2005). Human cytomegalovirus IE1-72 activates ataxia telangiectasia mutated kinase and a p53/p21-mediated growth arrest response. J Virol 79, 11467–11475.

    Article  PubMed  CAS  Google Scholar 

  • Castillo, J.P., and Kowalik, T.F. (2002). Human cytomegalovirus immediate early proteins and cell growth control. Gene 290, 19–34.

    Article  PubMed  CAS  Google Scholar 

  • Castillo, J.P., and Kowalik, T.F. (2004). HCMV infection: modulating the cell cycle and cell death. Int Rev Immunol 23, 113–139.

    Article  PubMed  CAS  Google Scholar 

  • Chee, M.S., Satchwell, S.C., Preddie, E., Weston, K.M., and Barrell, B.G. (1990). Human cytomegalovirus encodes three G protein-coupled receptor homologues. Nature 344, 774–777.

    Article  PubMed  CAS  Google Scholar 

  • Cheeran, M.C., Hu, S., Ni, H.T., Sheng, W., Palmquist, J.M., Peterson, P.K., and Lokensgard, J.R. (2005). Neural precursor cell susceptibility to human cytomegalovirus diverges along glial or neuronal differentiation pathways. J Neurosci Res 82, 839–850.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Knutson, E., Kurosky, A., and Albrecht, T. (2001). Degradation of p21cip1 in cells productively infected with human cytomegalovirus. J Virol 75, 3613–3625.

    Article  PubMed  CAS  Google Scholar 

  • Cinatl, J., Jr., Bittoova, M., Margraf, S., Vogel, J.U., Cinatl, J., Preiser, W., and Doerr, H.W. (2000). Cytomegalovirus infection decreases expression of thrombospondin-1 and - 2 in cultured human retinal glial cells: effects of antiviral agents. J Infect Dis 182, 643–651.

    Article  PubMed  CAS  Google Scholar 

  • Cinatl, J., Jr., Cinatl, J., Vogel, J.U., Kotchetkov, R., Driever, P.H., Kabickova, H., Kornhuber, B., Schwabe, D., and Doerr, H.W. (1998). Persistent human cytomegalovirus infection induces drug resistance and alteration of programmed cell death in human neuroblastoma cells. Cancer Res 58, 367–372.

    PubMed  CAS  Google Scholar 

  • Cinatl, J., Jr., Cinatl, J., Vogel, J.U., Rabenau, H., Kornhuber, B., and Doerr, H.W. (1996). Modulatory effects of human cytomegalovirus infection on malignant properties of cancer cells. Intervirology 39, 259–269.

    PubMed  Google Scholar 

  • Cinatl, J., Jr., Kotchetkov, R., Scholz, M., Cinatl, J., Vogel, J.U., Driever, P.H., and Doerr, H.W. (1999). Human cytomegalovirus infection decreases expression of thrombospondin- 1 independent of the tumor suppressor protein p53. Am J Pathol 155, 285–292.

    Article  PubMed  CAS  Google Scholar 

  • Cobbs, C.S., Harkins, L., Samanta, M., Gillespie, G.Y., Bharara, S., King, P.H., Nabors, L.B., Cobbs, C.G., and Britt, W.J. (2002). Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res 62, 3347–3350.

    PubMed  CAS  Google Scholar 

  • Cobbs, C.S., Soroceanu, L., Denham, S., Zhang, W., Britt, W.J., Pieper, R., and Kraus, M.H. (2007). Human cytomegalovirus induces cellular tyrosine kinase signaling and promotes glioma cell invasiveness. J Neurooncol 85, 271–280.

    Article  PubMed  CAS  Google Scholar 

  • Cobbs, C.S., Soroceanu, L., Denham, S., Zhang, W., and Kraus, M.H. (2008). Modulation of oncogenic phenotype in human glioma cells by cytomegalovirus IE1-mediated mitogenicity. Cancer Res 68, 724–730.

    Article  PubMed  CAS  Google Scholar 

  • Ding, Q., Stewart, J., Jr., Olman, M.A., Klobe, M.R., and Gladson, C.L. (2003). The pattern of enhancement of Src kinase activity on platelet-derived growth factor stimulation of glioblastoma cells is affected by the integrin engaged. J Biol Chem 278, 39882–39891.

    Article  PubMed  CAS  Google Scholar 

  • Erlandsson, A., Brannvall, K., Gustafsdottir, S., Westermark, B., and Forsberg-Nilsson, K. (2006). Autocrine/Paracrine platelet-derived growth factor regulates proliferation of neural progenitor cells. Cancer Res 66, 8042–8048.

    Article  PubMed  CAS  Google Scholar 

  • Fish, K.N., Stenglein, S.G., Ibanez, C., and Nelson, J.A. (1995). Cytomegalovirus persistence in macrophages and endothelial cells. Scand J Infect Dis Suppl 99, 34–40.

    PubMed  CAS  Google Scholar 

  • Fritschy, J.M., Brandner, S., Aguzzi, A., Koedood, M., Luscher, B., and Mitchell, P.J. (1996). Brain cell type specificity and gliosis-induced activation of the human cytomegalovirus immediate-early promoter in transgenic mice. J Neurosci 16, 2275–2282.

    PubMed  CAS  Google Scholar 

  • Gomez, G.G., and Kruse, C.A. (2006). Mechanisms of malignant glioma immune resistance and sources of immunosuppression. Gene Ther Mol Biol 10, 133–146.

    PubMed  Google Scholar 

  • Goodrum, F.D., Jordan, C.T., High, K., and Shenk, T. (2002). Human cytomegalovirus gene expression during infection of primary hematopoietic progenitor cells: a model for latency. Proc Natl Acad Sci USA 99, 16255–16260.

    Article  PubMed  CAS  Google Scholar 

  • Grefte, A., Harmsen, M.C., van der Giessen, M., Knollema, S., van Son, W.J., and The, T.H. (1994). Presence of human cytomegalovirus (HCMV) immediate early mRNA but not ppUL83 (lower matrix protein pp65) mRNA in polymorphonuclear and mononuclear leukocytes during active HCMV infection. J Gen Virol 75, 1989–1998.

    Article  PubMed  CAS  Google Scholar 

  • Hagemeier, C., Walker, S.M., Sissons, P.J., and Sinclair, J.H. (1992). The 72 K IE1 and 80 K IE2 proteins of human cytomegalovirus independently trans-activate the c-fos, c-myc and hsp70 promoters via basal promoter elements. J Gen Virol 73, 2385–2393.

    Article  PubMed  CAS  Google Scholar 

  • Harkins, L., Volk, A.L., Samanta, M., Mikolaenko, I., Britt, W.J., Bland, K.I., and Cobbs, C.S. (2002). Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet 360, 1557–1563.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, M.L., Blankenship, C., and Shenk, T. (2000). Human cytomegalovirus UL69 protein is required for efficient accumulation of infected cells in the G1 phase of the cell cycle. Proc Natl Acad Sci USA 97, 2692–2696.

    Article  PubMed  CAS  Google Scholar 

  • Hemmati, H.D., Nakano, I., Lazareff, J.A., Masterman-Smith, M., Geschwind, D.H., Bronner-Fraser, M., and Kornblum, H.I. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100, 15178–15183.

    Article  PubMed  CAS  Google Scholar 

  • Holland, E.C. (2001a). Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet 2, 120–129.

    Article  PubMed  CAS  Google Scholar 

  • Holland, E.C. (2001b). Progenitor cells and glioma formation. Curr Opin Neurol 14, 683–688.

    Article  PubMed  CAS  Google Scholar 

  • Hume, A.J., Finkel, J.S., Kamil, J.P., Coen, D.M., Culbertson, M.R., and Kalejta, R.F. (2008). Phosphorylation of retinoblastoma protein by viral protein with cyclin-dependent kinase function. Science 320, 797–799.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, E.L., Garcia-Verdugo, J.M., Gil-Perotin, S., Roy, M., Quinones-Hinojosa, A., VandenBerg, S., and Alvarez-Buylla, A. (2006). PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51, 187–199.

    Article  PubMed  CAS  Google Scholar 

  • Jault, F.M., Jault, J.M., Ruchti, F., Fortunato, E.A., Clark, C., Corbeil, J., Richman, D.D., and Spector, D.H. (1995). Cytomegalovirus infection induces high levels of cyclins, phosphorylated Rb, and p53, leading to cell cycle arrest. J Virol 69, 6697–6704.

    PubMed  CAS  Google Scholar 

  • Johnson, R.A., Huong, S.M., and Huang, E.S. (2000). Activation of the mitogen-activated protein kinase p38 by human cytomegalovirus infection through two distinct pathways: a novel mechanism for activation of p38. J Virol 74, 1158–1167.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, R.A., Wang, X., Ma, X.L., Huong, S.M., and Huang, E.S. (2001). Human cytomegalovirus up-regulates the phosphatidylinositol 3-kinase (PI3-K) pathway: inhibition of PI3-K activity inhibits viral replication and virus-induced signaling. J Virol 75, 6022–6032.

    Article  PubMed  CAS  Google Scholar 

  • Kalejta, R.F., Bechtel, J.T., and Shenk, T. (2003). Human cytomegalovirus pp71 stimulates cell cycle progression by inducing the proteasome-dependent degradation of the retinoblastoma family of tumor suppressors. Mol Cell Biol 23, 1885–1895.

    Article  PubMed  CAS  Google Scholar 

  • Kawataki, T., Naganuma, H., Sasaki, A., Yoshikawa, H., Tasaka, K., and Nukui, H. (2000). Correlation of thrombospondin-1 and transforming growth factor-beta expression with malignancy of glioma. Neuropathology 20, 161–169.

    Article  PubMed  CAS  Google Scholar 

  • Kline, J.N., Hunninghake, G.M., He, B., Monick, M.M., and Hunninghake, G.W. (1998). Synergistic activation of the human cytomegalovirus major immediate early promoter by prostaglandin E2 and cytokines. Exp Lung Res 24, 3–14.

    Article  PubMed  CAS  Google Scholar 

  • Kovacs, A., Weber, M.L., Burns, L.J., Jacob, H.S., and Vercellotti, G.M. (1996). Cytoplasmic sequestration of p53 in cytomegalovirus-infected human endothelial cells. Am J Pathol 149, 1531–1539.

    PubMed  CAS  Google Scholar 

  • Lau, S.K., Chen, Y.Y., Chen, W.G., Diamond, D.J., Mamelak, A.N., Zaia, J.A., and Weiss, L.M. (2005). Lack of association of cytomegalovirus with human brain tumors. Mod Pathol 18, 838–843.

    Article  PubMed  CAS  Google Scholar 

  • Li, R.Y., Baba, S., Kosugi, I., Arai, Y., Kawasaki, H., Shinmura, Y., Sakakibara, S.I., Okano, H., and Tsutsui, Y. (2001). Activation of murine cytomegalovirus immediate-early promoter in cerebral ventricular zone and glial progenitor cells in transgenic mice. Glia 35, 41–52.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Tonna-DeMasi, M., Park, E., Schuller-Levis, G., and Quinn, M.R. (1998). Taurine chloramine inhibits production of nitric oxide and prostaglandin E2 in activated C6 glioma cells by suppressing inducible nitric oxide synthase and cyclooxygenase-2 expression. Brain Res Mol Brain Res 59, 189–195.

    Article  PubMed  CAS  Google Scholar 

  • Luo, M.H., and Fortunato, E.A. (2007). Long-term infection and shedding of human cytomegalovirus in T98G glioblastoma cells. J Virol 81, 10424–10436.

    Article  PubMed  CAS  Google Scholar 

  • Maciejewski, J.P., Bruening, E.E., Donahue, R.E., Sellers, S.E., Carter, C., Young, N.S., and St Jeor, S. (1993). Infection of mononucleated phagocytes with human cytomegalovirus. Virology 195, 327–336.

    Article  PubMed  CAS  Google Scholar 

  • Margraf, S., Bittoova, M., Vogel, J.U., Kotchekov, R., Doerr, H.W., and Cinatl, J., Jr. (2001). Antisense oligonucleotide ISIS 2922 targets IE-expression and prevents HCMV-IE-induced suppression of TSP-1 and TSP-2 expression. Nucleosides Nucleotides Nucleic Acids 20, 1425–1428.

    Article  PubMed  CAS  Google Scholar 

  • Maussang, D., Verzijl, D., van Walsum, M., Leurs, R., Holl, J., Pleskoff, O., Michel, D., van Dongen, G.A., and Smit, M.J. (2006). Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc Natl Acad Sci USA 103, 13068–13073.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, D., Archer G, Bigner D, Friedman A, Friedman H, Reardon D, Vredenburgh J, Herndon J, McLendon R, Sampson JH (2007). RNA loaded dendritic cells targeting cytomegalovirus in patients with malignant gliomas. Neuro-Oncology 9, 509.

    Google Scholar 

  • Mitchell, D., Xie, W, Schmittling, R, Learn C, Friedman, A, McLendon RE, Sampson JH (2008). Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro-Oncology 10, 10–18.

    Article  PubMed  Google Scholar 

  • Nakamizo, A., Marini, F., Amano, T., Khan, A., Studeny, M., Gumin, J., et al. (2005). Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65, 3307–3318.

    PubMed  CAS  Google Scholar 

  • Odeberg, J., Wolmer, N., Falci, S., Westrgren, M., Seiger, A., Soderberg-Naucler, C. (2006). Human cytomegalovirus inhibits neuronal differentiation and induces apoptosis in human neural precursor cells. J Virol 80, 8929–8939.

    Article  PubMed  CAS  Google Scholar 

  • Odeberg, J., Wolmer, N., Falci, S., Westgren, M., Sundtrom, E., Seiger, A., Soderberg-Naucler, C. (2007). Late human cytomegalovirus (HCMV) proteins inhibit differentiation of human neural precursor cells into astrocytes. J Nerosci Res 85, 583–593.

    Article  CAS  Google Scholar 

  • Ogura, T., Tanaka, J., Kamiya, S., Sato, H., Ogura, H., and Hatano, M. (1986). Human cytomegalovirus persistent infection in a human central nervous system cell line: production of a variant virus with different growth characteristics. J Gen Virol 67, 2605–2616.

    Article  PubMed  Google Scholar 

  • Oh, J.W., Drabik, K., Kutsch, O., Choi, C., Tousson, A., and Benveniste, E.N. (2001). CXC chemokine receptor 4 expression and function in human astroglioma cells. J Immunol 166, 2695–2704.

    PubMed  CAS  Google Scholar 

  • Pfenninger, C.V., Roschupkina, T., Hertwig, F., Kottwitz, D., Englund, E., Bengzon, J., Jacobsen, S.E., and Nuber, U.A. (2007). CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res 67, 5727–5736.

    Article  PubMed  CAS  Google Scholar 

  • Pleskoff, O., Treboute, C., Brelot, A., Heveker, N., Seman, M., and Alizon, M. (1997). Identification of a chemokine receptor encoded by human cytomegalovirus as a cofactor for HIV-1 entry. Science 276, 1874–1878.

    Article  PubMed  CAS  Google Scholar 

  • Poltermann, S., Schlehofer, B., Steindorf, K., Schnitzler, P., Geletneky, K., and Schlehofer, J.R. (2006). Lack of association of herpesviruses with brain tumors. J Neurovirol 12, 90–99.

    Article  PubMed  CAS  Google Scholar 

  • Prins, R.M., Cloughesy, T.F., and Liau, L.M. (2008). Cytomegalovirus immunity after vaccination with autologous glioblastoma lysate. N Engl J Med 359, 539–541.

    Article  PubMed  CAS  Google Scholar 

  • Rahbar A, P.I., Orrego A, Straat K, Wolmer N, Tammik L, Soderberg-Naucler C (2007). The level of HCMV infection in human malignant glioblastoma is of predictive value for patient survival. In 11-th International CMV Workshop Abstract Book, pp. 158.

    Google Scholar 

  • Reinhardt, B., Mertens, T., Mayr-Beyrle, U., Frank, H., Luske, A., Schierling, K., and Waltenberger, J. (2005). HCMV infection of human vascular smooth muscle cells leads to enhanced expression of functionally intact PDGF beta-receptor. Cardiovasc Res 67, 151–160.

    Article  PubMed  CAS  Google Scholar 

  • Sabatier J, U.-C.E., Pommepuy I, Labrousse F, Allart S, (2005). Detection of human cytomegalovirus genome and gene products in central nervous system tumours. Br J Cancer 92, 747–750.

    Article  PubMed  CAS  Google Scholar 

  • Samanta, M., Harkins, L., Klemm, K., Britt, W.J., and Cobbs, C.S. (2003). High prevalence of human cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma. J Urol 170, 998–1002.

    Article  PubMed  Google Scholar 

  • Scheurer, M.E., El-Zein, R., Bondy, M.L., Harkins, L., and Cobbs, C.S. (2007). RE: “Lack of association of herpesviruses with brain tumors”. J Neurovirol 13, 85; author reply 86–87.

    Article  PubMed  Google Scholar 

  • Scholz, M., Blaheta, R.A., Wittig, B., Cinatl, J., Vogel, J.U., Doerr, H.W., and Cinatl, J., Jr. (2000). Cytomegalovirus-infected neuroblastoma cells exhibit augmented invasiveness mediated by beta1alpha5 integrin (VLA-5). Tissue Antigens 55, 412–421.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Y., Zhu, H., and Shenk, T. (1997). Human cytomagalovirus IE1 and IE2 proteins are mutagenic and mediate “hit-and-run” oncogenic transformation in cooperation with the adenovirus E1A proteins. Proc Natl Acad Sci USA 94, 3341–3345.

    Article  PubMed  CAS  Google Scholar 

  • Shih, A.H., and Holland, E.C. (2006). Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett 232, 139–147.

    Article  PubMed  CAS  Google Scholar 

  • Singh, S.K., Clarke, I.D., Terasaki, M., Bonn, V.E., Hawkins, C., Squire, J., and Dirks, P.B. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res 63, 5821–5828.

    PubMed  CAS  Google Scholar 

  • Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., and Dirks, P.B. (2004). Identification of human brain tumour initiating cells. Nature 432, 396–401.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S., Bentz GL, Alexander S, Yuorochko AD (2004). Human cytomegalovirus induces monocyte differentiation and migration as a strategy for dissemination and persistence. J Virol 78, 4444–4453.

    Article  PubMed  CAS  Google Scholar 

  • Soderberg-Naucler, C. (2006). Does cytomegalovirus play a causative role in the development of various inflammatory diseases and cancer? J Intern Med 259, 219–246.

    Article  PubMed  CAS  Google Scholar 

  • Soderberg-Naucler, C. (2008). HCMV microinfections in inflammatory diseases and cancer. J Clin Virol 41, 218–223.

    Google Scholar 

  • Soroceanu, L., Akhavan, A., and Cobbs, C.S. (2008). Platelet-derived growth factor-alpha receptor activation is required for human cytomegalovirus infection. Nature 455, 391–395.

    Article  PubMed  CAS  Google Scholar 

  • Streblow, D.N., Soderberg-Naucler, C., Vieira, J., Smith, P., Wakabayashi, E., Ruchti, F., Mattison, K., Altschuler, Y., and Nelson, J.A. (1999). The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99, 511–520.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, S., Kimura, T., and Ikuta, K. (1998). [Superoxide generation and human cytomegalovirus infection]. Nippon Rinsho 56, 75–78.

    PubMed  CAS  Google Scholar 

  • Takano, T., Lin, J.H., Arcuino, G., Gao, Q., Yang, J., and Nedergaard, M. (2001). Glutamate release promotes growth of malignant gliomas. Nat Med 7, 1010–1015.

    Article  PubMed  CAS  Google Scholar 

  • Tenan, M., Fulci, G., Albertoni, M., Diserens, A.C., Hamou, M.F., El Atifi-Borel, M., Feige, J.J., Pepper, M.S., and Van Meir, E.G. (2000). Thrombospondin-1 is downregulated by anoxia and suppresses tumorigenicity of human glioblastoma cells. J Exp Med 191, 1789–1798.

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui, Y., Kawasaki, H., and Kosugi, I. (2002). Reactivation of latent cytomegalovirus infection in mouse brain cells detected after transfer to brain slice cultures. J Virol 76, 7247–7254.

    Article  PubMed  CAS  Google Scholar 

  • Yurochko, A.D., Kowalik, T.F., Huong, S.M., and Huang, E.S. (1995). Human cytomegalovirus upregulates NF-kappa B activity by transactivating the NF-kappa B p105/p50 and p65 promoters. J Virol 69, 5391–5400.

    PubMed  CAS  Google Scholar 

  • Zhu, H., Cong, J.P., Yu, D., Bresnahan, W.A., and Shenk, T.E. (2002). From the Cover: Inhibition of cyclooxygenase 2 blocks human cytomegalovirus replication. Proc Natl Acad Sci USA 99, 3932–3937.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, H., Shen, Y., and Shenk, T. (1995). Human cytomegalovirus IE1 and IE2 proteins block apoptosis. J Virol 69, 7960–7970.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. William Britt (UAB) for reagents and useful discussions. We thank Dr. Cecilia Soderberg Naucler (Karolinska Institute) and Dr. Duane Mitchell (Duke University) for sharing with us unpublished results of on-going clinical trials using anti-CMV therapies in glioma patients. We thank Dr. Nick Loizos (Imclone, Inc.) for the IMC-3G3 antibody and Loui Harkins for technical help with immunohistochemical analyses. We thank Alex Zider for help with the immunofluorescence and confocal microscopy and Roxanne Martinez for help with editing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles S. Cobbs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Soroceanu, L., Cobbs, C.S. (2009). Oncomodulatory Role of the Human Cytomegalovirus in Glioblastoma. In: Meir, E. (eds) CNS Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-553-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-553-8_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-552-1

  • Online ISBN: 978-1-60327-553-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics