Skip to main content

Advertisement

Log in

Human cytomegalovirus induces cellular tyrosine kinase signaling and promotes glioma cell invasiveness

  • Lab Investigation-Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Given our previous findings that human cytomegalovirus (HCMV) nucleic acids and proteins are expressed in human malignant glioma in vivo, we investigated cellular signaling events associated with HCMV infection of human glioma and astroglial cells. HCMV infection caused rapid activation of the phosphatidylinositol-3 kinase (PI-3K) effector AKT kinase in human astro-glial and fibroblast cells, and induced tyrosine phosphorylation of phospholipase Cγ (PLCγ). Co-immunoprecipitation experiments revealed association of the p85 regulatory subunit of PI-3K with a high-molecular weight protein phosphorylated on tyrosine, following short-term exposure to HCMV. In contrast to a previous report, we were unable to confirm the identity of this high-molecular weight protein as being the epidermal growth factor receptor (EGFR). Stimulation of glioma and fibroblast cell lines over-expressing EGFR with HCMV (whole virus) or soluble glycoprotein B did not induce tyrosine phosphorylation of the receptor, as did the genuine ligand, EGF. Furthermore, we found that expression levels of the human ErbB1-4 receptors were not rate-limiting for HCMV infection. Dispensability of EGFR function during early HCMV infection was substantiated by demonstration of viral immediate early gene expression in cells lacking the EGFR gene, indicating that HCMV may promote oncogenic signaling pathways independently of EGFR activation. Among non-receptor cellular kinases, HCMV infection induced phosphorylation of focal adhesion kinase (FAK) Tyr397, which is indispensable for integrin-mediated cell migration and invasion. HCMV-induced FAK activation was paralleled by increased extracellular matrix-dependent migration of human malignant glioma but not normal astro-glial cells, suggesting that HCMV can selectively augment glioma cell invasiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harkins L, Volk AL, Samanta M et al (2002) Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet 360:1557–1563

    Article  PubMed  CAS  Google Scholar 

  2. Cobbs CS, Harkins L, Samanta M et al (2002) Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res 62:3347–3350

    PubMed  CAS  Google Scholar 

  3. Mitchell D, Xie W, Schmittling R et al (2007) Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro-Oncology (In press)

  4. Yu Y, Alwine JC (2002) Human cytomegalovirus major immediate-early proteins and simian virus 40 large T antigen can inhibit apoptosis through activation of the phosphatidylinositide 3′-OH kinase pathway and the cellular kinase Akt. J Virol 76:3731–3738

    Article  PubMed  CAS  Google Scholar 

  5. Zhu H, Shen Y, Shenk T (1995) Human cytomegalovirus IE1 and IE2 proteins block apoptosis. J Virol 69:7960–7970

    PubMed  CAS  Google Scholar 

  6. Streblow DN, Soderberg-Naucler C, Vieira et al (1999) The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99:511–520

  7. Cinatl J, Scholz M, Kotchetkov R et al (2004) Molecular mechanisms of the modulatory effects of HCMV infection in tumor cell biology. Trends Mol Med 10:19–23

    Article  PubMed  CAS  Google Scholar 

  8. Boldogh I, AbuBakar S, Albrecht T (1990) Activation of proto-oncogenes: an immediate early event in human cytomegalovirus infection. Science 247:561–564

    Article  PubMed  CAS  Google Scholar 

  9. Aaronson SA (1991) Growth factors and cancer. Science 254:1146–1153

    Article  PubMed  CAS  Google Scholar 

  10. Cooray S (2004) The pivotal role of phosphatidylinositol 3-kinase-Akt signal transduction in virus survival. J Gen Virol 85:1065–1076

    Article  PubMed  CAS  Google Scholar 

  11. O’Shea CC (2005) DNA tumor viruses-the spies who lyse us. Curr Opin Genet Dev 15:18–26

    Article  PubMed  CAS  Google Scholar 

  12. Dawson CW, Tramountanis G, Eliopoulos et al (2003) Epstein-Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/Akt pathway to promote cell survival and induce actin filament remodeling. J Biol Chem 278:3694–3704

  13. Feire AL, Koss H, Compton T (2004) Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin-like domain. Proc Natl Acad Sci USA 101:15470–15475

    Article  PubMed  CAS  Google Scholar 

  14. Wang X, Huang DY, Huong SM et al (2005) Integrin alphavbeta3 is a coreceptor for human cytomegalovirus. Nat Med 11:515–521

    Article  PubMed  CAS  Google Scholar 

  15. Wang X, Huong SM, Chiu et al (2003) Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 424:456–461

  16. Streblow DN, Vomaske J, Smith P et al (2003) Human cytomegalovirus chemokine receptor US28-induced smooth muscle cell migration is mediated by focal adhesion kinase and Src. J Biol Chem 278:50456–50465

    Article  PubMed  CAS  Google Scholar 

  17. Threadgill DW, Dlugosz AA, Hansen LA et al (1995) Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269:230–234

    Article  PubMed  CAS  Google Scholar 

  18. Di Fiore PP, Pierce JH, Fleming TP et al (1987) Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell 51:1063–1070

    Article  PubMed  CAS  Google Scholar 

  19. Pruss RM, Herschman HR (1977) Variants of 3T3 cells lacking mitogenic response to epidermal growth factor. Proc Natl Acad Sci USA 74:3918–3921

    Article  PubMed  CAS  Google Scholar 

  20. Sonoda Y, Ozawa T, Hirose Y et al (2001) Formation of intracranial tumors by genetically modified human astrocytes defines four pathways critical in the development of human anaplastic astrocytoma. Cancer Res 61:4956–4960

    PubMed  CAS  Google Scholar 

  21. Ruppert JM, Vogelstein B, Kinzler KW (1991) The zinc finger protein GLI transforms primary cells in cooperation with adenovirus E1A. Mol Cell Biol 11:1724–1728

    PubMed  CAS  Google Scholar 

  22. Kraus MH, Popescu NC, Amsbaugh SC et al (1987) Overexpression of the EGF receptor-related proto-oncogene erbB-2 in human mammary tumor cell lines by different molecular mechanisms. Embo J 6:605–610

    PubMed  CAS  Google Scholar 

  23. Jainchill JL, Aaronson SA, Todaro GJ (1969) Murine sarcoma and leukemia viruses: assay using clonal lines of contact-inhibited mouse cells. J Virol 4:549–553

    PubMed  CAS  Google Scholar 

  24. Alimandi M, Romano A, Curia MC et al (1995) Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas. Oncogene 10:1813–1821

    PubMed  CAS  Google Scholar 

  25. Baulida J, Kraus MH, Alimandi et al (1996) All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. J Biol Chem 271:5251–5257

  26. Fedi P, Pierce JH, di Fiore PP et al (1994) Efficient coupling with phosphatidylinositol 3-kinase, but not phospholipase C gamma or GTPase-activating protein, distinguishes ErbB-3 signaling from that of other ErbB/EGFR family members. Mol Cell Biol 14:492–500

    PubMed  CAS  Google Scholar 

  27. Kraus MH, Fedi P, Starks V et al (1993) Demonstration of ligand-dependent signaling by the erbB-3 tyrosine kinase and its constitutive activation in human breast tumor cells. Proc Natl Acad Sci USA 90:2900–2904

    Article  PubMed  CAS  Google Scholar 

  28. Morgenstern JP, Land H (1990) Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res 18:3587–3596

    Article  PubMed  CAS  Google Scholar 

  29. Kraus MH, Yuasa Y, Aaronson SA (1984) A position 12-activated H-ras oncogene in all HS578T mammary carcinosarcoma cells but not normal mammary cells of the same patient. Proc Natl Acad Sci USA 81:5384–5388

    Article  PubMed  CAS  Google Scholar 

  30. Wang Z, La Rosa C, Maas R et al (2004) Recombinant modified vaccinia virus Ankara expressing a soluble form of glycoprotein B causes durable immunity and neutralizing antibodies against multiple strains of human cytomegalovirus. J Virol 78:3965–3976

    Article  PubMed  CAS  Google Scholar 

  31. Almeida-Porada G, Porada CD, Shanley JD et al (1997) Altered production of GM-CSF and IL-8 in cytomegalovirus-infected, IL-1-primed umbilical cord endothelial cells. Exp Hematol 25:1278–1285

    PubMed  CAS  Google Scholar 

  32. Arbustini E, Grasso M, Diegoli M et al (1992) Histopathologic and molecular profile of human cytomegalovirus infections in patients with heart transplants. Am J Clin Pathol 98:205–213

    PubMed  CAS  Google Scholar 

  33. Yarden Y, Schlessinger J (1987) Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation. Biochemistry 26:1434–1442

    Article  PubMed  CAS  Google Scholar 

  34. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    Article  PubMed  CAS  Google Scholar 

  35. Schlaepfer DD, Hunter T (1998) Integrin signalling and tyrosine phosphorylation: just the FAKs? Trends Cell Biol 8:151–157

    Article  PubMed  CAS  Google Scholar 

  36. Sabatier J, Uro-Coste E, Pommepuy I, Labrousse F et al (2005) Detection of human cytomegalovirus genome and gene products in central nervous system tumours. Br J Cancer 92:747–750

    Article  PubMed  CAS  Google Scholar 

  37. Valius M, Kazlauskas A (1993) Phospholipase C-gamma 1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor’s mitogenic signal. Cell 73:321–334

    Article  PubMed  CAS  Google Scholar 

  38. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365

    Article  PubMed  CAS  Google Scholar 

  39. Isaacson MK, Feire AL, Compton T (2007) The epidermal growth factor receptor is not required for human cytomegalovirus entry or signaling. J Virol. doi: 10.1128/JVI.00169-07

  40. Demuth T, Berens ME (2004) Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 70:217–228

    Article  PubMed  Google Scholar 

  41. Ritchie CK, Giordano A, Khalili K (2000) Integrin involvement in glioblastoma multiforme: possible regulation by NF-kappaB. J Cell Physiol 184:214–221

    Article  PubMed  CAS  Google Scholar 

  42. Sansal I, Sellers WR (2004) The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 22:2954–2963

    Article  PubMed  CAS  Google Scholar 

  43. Maher EA, Furnari FB, Bachoo RM (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15:1311–1333

    Article  PubMed  CAS  Google Scholar 

  44. Hsia DA, Mitra SK, Hauck et al (2003) Differential regulation of cell motility and invasion by FAK. J Cell Biol 160:753–767

  45. Tsutsui Y, Kawasaki H, Kosugi I (2002) Reactivation of latent cytomegalovirus infection in mouse brain cells detected after transfer to brain slice cultures. J Virol 76:7247–7254

    Article  PubMed  CAS  Google Scholar 

  46. Singh SK, Hawkins C, Clarke et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

Download references

Acknowledgments

We thank Robert Whitehead for EGFR-/- fibroblasts, Harvey Herschman for NR6 cells, Don J. Diamond and Zhongde Wang for purified gB protein, G. Yancey Gillespie for U251 glioma and J. Michael Ruppert for providing RK3E epithelial cell line. This study was supported by the UAB SPORE program in brain cancer (P50CA097247). Additional support by the Avon Breast Cancer Research Foundation is acknowledged (M.H.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles S. Cobbs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cobbs, C.S., Soroceanu, L., Denham, S. et al. Human cytomegalovirus induces cellular tyrosine kinase signaling and promotes glioma cell invasiveness. J Neurooncol 85, 271–280 (2007). https://doi.org/10.1007/s11060-007-9423-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-007-9423-2

Keywords

Navigation