Skip to main content

Hyaluronan Oligosaccharides Promote Wound Repair

Its Size-Dependent Regulation of Angiogenesis

  • Chapter
The New Angiotherapy

Abstract

Hyaluronan (HA, previously called hyaluronic acid or hyaluronate) is a high-molecular weight linear polysaccharide, a member of the glycosaminoglycan family, composed of repeating 1,4- linked disaccharide units of 1,3- linked glucuronic acid and N-acetylglucosamine (Fig.1). It is present in the extracellular matrix of most animal tissues, occurring at greatest concentration in adult connective tissues. Several factors, including its ubiquitous distribution, the high concentration in cartilage and synovial fluid, the capacity to bind large amounts of water, and its simple structure, led to the general belief that its function was essentially that of an inert viscoelastic lubricant, or space-filling molecule (1,2). Furthermore, its viscoelastic properties, chemical simplicity, and lack of immunogenicity have made it the basis for biomaterials used in viscosurgery, tissue engineering, and drug delivery systems (3). However, in recent years, a growing number of reports have appeared indicating that HA has profound effects on the behavior of various cell-types, apparently mediated by several surface receptors (4,5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scott, J. E. (1995) Extracellular matrix, supramolecular organization and shape. J. Anat. 187, 259–269.

    PubMed  CAS  Google Scholar 

  2. Jackson, R. L., Busch, S. J., and Cardin, A. D. (1991) Glycosaminoglycans: Molecular properties, protein interactions, and role in physiological processes. Physiol. Rev. 71, 481–538.

    Google Scholar 

  3. Prestwich, G. D., Marecak, D. M., Marecek, J. F., Vercruysse, K. P., and Ziebell, M. R. (1997) Chemical modification of hyaluronic acid for drug delivery, biomaterials, and biochemical probes, in The Chemistry, Biology, and Medical Applications of Hyaluronan and its Derivatives ( Laurent, T. C. and Balazs, E. A., eds.), Portland Press, London, pp. 43–62.

    Google Scholar 

  4. Entwistle, J., Hall, C. L., and Turley, E. A. (1996) HA Receptors: regulators of signalling to the cytoskeleton. J. Cell. Biochem. 61, 569–577.

    Article  PubMed  CAS  Google Scholar 

  5. Knudson, C. B. and Knudson, W. (1993) Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J. 7, 1233–1241.

    Google Scholar 

  6. Toole, B. P. (1982) Glycosaminoglycans in morphogenesis, in Cell Biology of the Extracellular Matrix ( Hay, E. D., ed.), Plenum, New York, pp. 259–294.

    Google Scholar 

  7. Laurent, T. C. and Fraser, J. R. E. (1992) Hyaluronan. FASEB J. 6, 2397–2404.

    Google Scholar 

  8. Knudson, W., Biswas, C., Li, X.-Q., Nemec, R. E., and Toole, B. P. (1989) The role and regulation of tumor-associated hyaluronan, in The Biology of Hyaluronan (Evered, D. and Whelan, J. eds.), Ciba Foundation Symposium 143, John Wiley and Sons, Chichester, UK, pp. 150–169.

    Google Scholar 

  9. West, D. C. and Kumar, S. (1989) Hyaluronan and angiogenesis, in The Biology of Hyaluronan (Evered, D. and Whelan, J. eds.), Ciba Foundation Symposium 143, John Wiley and Sons, Chichester, UK, pp. 187–207.

    Google Scholar 

  10. Barsky, S. H., Nelson, L. L., and Levy, V. A. (1987) Tumor demoplasia inhibits angiogenesis. Lancet 2, 1336–1337.

    Google Scholar 

  11. Balazs, E. A. and Darzynkiewcz, Z. (1973) The effect of hyaluronic acid on fibroblasts, mononuclear phagocytes and lymphocytes, in Biology of the fibroblast (Kulonen, E. and Pikkarainen J., eds.), Academic, New York, pp. 237–252.

    Google Scholar 

  12. Rydell, N. (1970) Decreased granulation tissue reaction after installment of hyaluronic acid. Acta Orthop. Scand. 41, 307–311.

    Article  PubMed  CAS  Google Scholar 

  13. Trabucchi, A., Preis- Baurffaldi, F., Baratti, C., and Montorsi, W. (1986) Topical treatment of experimental skin lesion in rats: macroscopic, microscopic and scanning electron microscopic evaluation of the healing process. J. Tissue React. 8, 533–544.

    Google Scholar 

  14. Dvorak, H. F., Harvey, S., Estralla, P., Brown, L. F., McDonagh, J., and Dvorak, A. M., (1987) Fibrin containing gels induce angiogenesis. Lab. Invest. 57, 673–686.

    Google Scholar 

  15. Lebel, L. and Gerdin, B. (1991) Sodium hyaluronate increases vascular ingrowth in rabbit ear chamber. Int. J. Exp. Pathol. 72, 111–118.

    PubMed  CAS  Google Scholar 

  16. Arnold, F., Jia, C. Y., He, C. F., Cherry, G. W., Carbow, B., Meyer-Ingold, W., Bader, D., and West, D. C. (1995) Hyaluronan, heterogeneity and healing: the effects of ultra-pure hyaluronan of defined molecular size on the repair of full thickness pig skin wounds. Wound Rep. Reg. 3, 10–21.

    Article  Google Scholar 

  17. King, S. R., Hickerson, W. L., and Proctor, K. G. (1991) Beneficial actions of exogenous hyaluronic acid on wound healing. Surgery 109, 76–84.

    PubMed  CAS  Google Scholar 

  18. Borognoni, L., Reali, U. M., and Santucci, M. (1996) Low-molecular-weight hyaluronic acid induces angiogenesis and modulation of the cellular infiltrate in primary and secondary healing wounds. Eur. J. Dermatol. 6, 127–131.

    Article  Google Scholar 

  19. Feinberg, R. N. and Beebe, D. C. (1983) Hyaluronate in vasculogenesis. Science 220, 1177–1179.

    Article  PubMed  CAS  Google Scholar 

  20. Dunphy, J. E. and Upuda, K. N. (1955) Chemical and histochemical sequences in the normal healing wounds. N. Engl J. Med. 253, 847–851.

    Article  PubMed  CAS  Google Scholar 

  21. Bently, J. P. (1967) Rate of chondroitin sulphate formation in wound healing. Ann. Surg. 165, 186–191.

    Article  Google Scholar 

  22. Bertolami, C. N., Berg, S., and Freymiller, E. G. (1992) Glycosaminoglycan processing during tissue repair: Degradation of hyaluronic acid, in: Fetal Wound Healing ( Adzick, N. S. and Longaker, M. T., eds.), Elsevier, New York, pp. 215–226.

    Google Scholar 

  23. Weigel, P. H., Fuller, G. M., and Le Boeuf, R. D. (1986) A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing. J. Theor. Biol. 119, 219–234.

    Article  PubMed  CAS  Google Scholar 

  24. Weigel, P. H., Frost, S. J., McGary, C. T., and LeBoeuf, R. D. (1988) The role of hyaluronic acid in inflammation and wound healing. Int. J. Tissue React. 10, 355–365.

    PubMed  CAS  Google Scholar 

  25. Weigel, P. H., Frost, S. J., LeBoeuf, R. D., and McGary, C. T. (1989) The specific interaction between fibrin(ogen) and hyaluronan: possible consequences in haemostasis, inflammation and wound healing, in The Biology of Hyaluronan (Evered, D. and Whelan, J., eds.), Ciba Foundation Symposium 143, John Wiley and Sons, Chichester, UK, pp. 248–261.

    Google Scholar 

  26. Andrade, S. P., Fan, T-P. D., and Lewis, G. P. (1987) Quantitative in vivo studies on angiogenesis in a rat sponge model. Br. J. Exp. Path. 68, 755–766.

    CAS  Google Scholar 

  27. West, D. C., Smither, R. L., Shaw, D. M., Joyce, M., Kumar, S., and Fan, T-P. D. (2000) Stimulation of wound repair by angiogenic oligosaccharides of hyaluronan: correlation between hyaluronan degradation and angiogenesis in a rat wound healing model. Lab. Invest., submitted.

    Google Scholar 

  28. Mast, B. A., Haynes, J. H. Krummel, T. M., Diegelman, R. F., and Cohen, I. K. (1992) In vivo degradation of fetal wound hyaluronic acid results in increased fibroplasia, collagen deposition, and neovascularization. Plastic Reconstr. Surgery 89 503–509.

    Google Scholar 

  29. West, D. C., Shaw, D. M., Lorenz, P., Adzick, N. S., and Longaker, M. (1997) Fibrotic healing of adult and late gestation fetal wounds correlates with increased hyaluronidase activity and removal of hyaluronan. Int. J. Biochem. Cell Biol. 29, 201–210.

    Article  PubMed  CAS  Google Scholar 

  30. Locci, P., Marinucci, L., Lilli, C., Martinese, D., and Becchetti, E. (1995) Transforming growth factor beta 1- hyaluronic acid interaction. Cell Tissue Res. 281, 317–324.

    Article  PubMed  CAS  Google Scholar 

  31. Yasui, T., Akatsuka, M., Tobetto., K, Umemoto, J., Ando, T., Yamashita, K., and Hayakawa, T. (1992) Effects of hyaluronan on the production of stromelysin and tissue inhibitor of metalloproteinase-1 (TIMP-1) in bovine articular chondrocytes. Biomed. Res. 13, 343–348.

    Google Scholar 

  32. West, D. C. and Kumar, S. (1988) Endothelial proliferation and diabetic retinopathy. Lancet 1, 715–716.

    Article  PubMed  CAS  Google Scholar 

  33. West, D. C. and Kumar, S. (1989) The effect of hyaluronate and its oligosaccharides on endothelial proliferation and monolayer integrity. Exp. Cell Res. 183, 179–196.

    Article  PubMed  CAS  Google Scholar 

  34. West, D. C. and Kumar, S. (1991) Tumor-associated hyaluronan: a potential regulator of tumor angiogenesis. Int. J. Radiol. 61/62, 55–60.

    Google Scholar 

  35. Watanabe, M., Nakayasu, K., and Okisaka, S. (1993) The effect of hyaluronic acid on proliferation and differentiation of capillary endothelial cells. Nippon Ganka Gakkai Zasshi. 97, 1034–1039.

    PubMed  CAS  Google Scholar 

  36. Fournier, N. and Doillon, C. J. (1992) In vitro angiogenesis in fibrin matrices containing fibronectin or hyaluronic acid. Cell. Biol. Int. Reports 16, 1251–1263.

    Article  CAS  Google Scholar 

  37. Kumar, S., West, D. C., Ponting, J., and Gattamaneni, H. R. (1989) Sera of children with renal tumor contain low molecular mass hyaluronic acid. Int. J. Cancer 44, 445–448.

    Article  PubMed  CAS  Google Scholar 

  38. Shaw, D. M. (1996) Ph.D. Hyaluronan metabolism in wound healing and in tumor growth. Thesis, University of Liverpool.

    Google Scholar 

  39. Shaw, D. M., West, D. C., and Hamilton, E. (1994) Hyaluronidase and hyaluronan in tumors and normal tissues, quantity and size distribution. Int. J. Exp. Pathol. 75, A67.

    Google Scholar 

  40. West, D. C. and Shaw, D. M. (1998) Tumor hyaluronan in relationship to angiogenesis and metastasis, in The Chemistry, Biology and Medical Applications of Hyaluronan and its Derivatives ( Laurent, T. C.and Balazs, E. A., eds.), Portland Press, London. pp. 227–233.

    Google Scholar 

  41. Fraser, J. R. E. and Laurent, T. C. (1989) Turnover and metabolism of hyaluronan, in The Biology of Hyaluronan (Evered, D. and Whelan, J. eds.), Ciba Foundation Symposium 143, John Wiley and Sons, Chichester, UK, pp. 41–59.

    Google Scholar 

  42. Fraser, J. R. E., Brown, T. J., and Laurent, T. C. (1998) Catabolism of hyaluronan, in The Chemistry, Biology and Medical Applications of Hyaluronan and its Derivatives ( Laurent, T. C. and Balazs, E. A., eds.), Portland Press, London, pp. 85–92.

    Google Scholar 

  43. Liu, D., Pearlman, E., Diaconu, E., Guo, K., Mori, H., Haqqi, T., Markowitz, S., Willson, J., and Sy, M.-S., (1996) Expression of hyaluronidase by tumor cells induces angiogenesis in vivo. Proc. Natl. Acad. Sci. USA 93, 7832–7837.

    Article  PubMed  CAS  Google Scholar 

  44. Podyma, K. A., Yamagata, S., Sakata, K., and Yamagata, Y. (1997) Differences of hyaluronidase produced by human tumor cell lines with hyaluronidase present in human serum as revealed by zymography. Biochem. Biophys. Res. Comm. 241, 446–452.

    Article  PubMed  CAS  Google Scholar 

  45. Frost, G. I., Csoka, T., and Stern, R. (1997) Purification, cloning and expression of human plasma hyaluronidase. Biochem. Biophys. Res. Comm. 236, 10–15.

    Google Scholar 

  46. Frost, G. I., Csoka, T., and Stern, R. (1996) The hyaluronidases: a chemical, biological and clinical overview. Trends Glycosci. Glycotechnol. 8, 419–434.

    Article  CAS  Google Scholar 

  47. Schwartz, D. M., Jumper, M. D., Lui, G-M., Dang, S., Schuster, S., and Stern, R. (1997) Corneal endothelial hyaluronidase: A role in anterior chamber hyaluronic acid catabolism. Cornea 16, 188–191.

    Article  PubMed  CAS  Google Scholar 

  48. Fiszer-Szafarz, B. Rommain, M., Brossard, C., and Smets, P. (1988) Hyaluronic acid-degrading enzymes in rat alveolar macrophages and in alveolar fluid: Stimulation of enzyme activity after oral treatment with the immunomodulator RU41740. Biol. Cell. 63 355–360.

    Google Scholar 

  49. Sattar, A., Kumar, S., and West D. C. (1992) Does hyaluronan have a role in endothelial cell proliferation of the synovium. Semin. Arthritis Rheum. 21, 43–49.

    Article  Google Scholar 

  50. Hirata, S., Akamarsu, T., Matsubara, T., Mizuno, K., and Ishikawa, H. (1993) In vitro angiogenesis induced by oligosaccharides hyaluronic acid. Arthritis Rheum. 36, S247.

    Article  Google Scholar 

  51. Montesano, R., Kumar, S., Orci, L., and Pepper, M. S. (1996) Synergistic effect of hyaluronan oligosaccharides and vascular endothelial growth factor on angiogenesis in vitro. Lab. Invest. 75, 249–262.

    PubMed  CAS  Google Scholar 

  52. Trouchon, V., Mabilat, C., Bertrand, P., Legrand, Y., Smadia-Joffe, F., Soria, C., et al. (1996) Evidence of involvement of CD44 in endothelial cell proliferation, migration and angiogenesis in vitro. Int. J. Cancer 66, 664–668.

    Article  Google Scholar 

  53. Rahmanian, P., Pertoft, H., Kanda, S., Christofferson, R., Claesson-Welsh, L., and Heldin, P. (1997) hyaluronan oligosaccharides induce tube formation of brain endothelial cell line in vitro. Exp. Cell Res. 237 223–230.

    Google Scholar 

  54. Rooney, P., Wang, M., Kumar, P., and Kumar, S. (1993) Angiogenic oligosaccharides of hyaluronan enhance the production of collagen by endothelial cells. J. Cell Sci. 105, 213–218.

    PubMed  CAS  Google Scholar 

  55. West, D. C., Hampson, I. N., Arnold, F., and Kumar, S. (1985) Angiogenesis induced by degradation products of hyaluronic acid, Science 228, 1324–1328.

    Article  PubMed  CAS  Google Scholar 

  56. Sattar, A., Rooney, P., Kumar, S., Pye, D., West, D.C., Scott, I., and Ledger, P. (1994) Application of angiogenic oligosaccharides of hyaluronan increase blood vessel numbers in rat skin. J. Invest. Dermatol. 103, 576–579.

    Google Scholar 

  57. Lees, V. C., Fan, T.-P. D., and West, D. C. (1995) Angiogenesis in a delayed revascularization model is accelerated by angiogenic oligosaccharides of hyaluronan, Lab. Invest. 73, 259–266.

    PubMed  CAS  Google Scholar 

  58. Kumar, S., Kumar, P., Ponting, J. M., Sattar, A., Rooney, P., Pye, D., and Hunter, R. D. (1992) Hyaluronic acid promotes and inhibits angiogenesis, in Angiogenesis in Health and Disease ( Maragoudakis, M. E., Leikes, P., and Gullino, P. M., eds.), Plenum Press, New York, pp. 253–253.

    Chapter  Google Scholar 

  59. West, D. C. (1993) Hyaluronan receptors on human endothelial cells: the effect of cytokines, in Vascular Endothelium: Physiological Basis of Clinical Problems II ( Catravas, J. D., ed.), Plenum Press, New York, pp. 209–210.

    Chapter  Google Scholar 

  60. Smedrod, B. Pertoft, H., Eriksson, S., Fraser, J. R. E., and Laurent, T. (1984) Studies in vitro on the uptake and degradation of sodium hyaluronate by rat liver endothelial cells. Biochem J. 223 617–626.

    Google Scholar 

  61. Madsen, K., Schenholm, M., Jahnke, G., and Tengblad, A. (1989) Hyaluronate binding to intact corneas and cultured endothelial cells. Invest. Opth. Vis. Sci. 30, 2132–2137.

    Google Scholar 

  62. McCourt, P. A. G., Ek, B. Fosberg, N., and Gustafson, S. (1994) Intracellular adhesion molecule-1 is a cell surface receptor for hyaluronan. J. Biol Chem. 269 30,081–30,084.

    Google Scholar 

  63. McCourt, P. A. G. and Gustafson, S. (1997) On the adsorption of hyaluronan and ICAM-1 to modified hydrophobic resins. Int. J. Biochem. Cell Biol. 29, 1179–1189.

    Article  PubMed  CAS  Google Scholar 

  64. Yannariello-Brown, J., Frost, S. J., and Wiegel, P. H. (1992) Identification of the Cat+-independent endocytic hyaluronan receptor in rat liver sinusoidal endothelial cells using a photoaffinity cross-linking reagent. J. Biol. Chem. 267, 20,451–20, 456.

    Google Scholar 

  65. Banerjee, S. D. and Toole, B. P. (1992) Hyaluronan-binding protein in endothelial morphogenesis. J. Cell Biol. 119, 643–652.

    Article  PubMed  CAS  Google Scholar 

  66. Melder, R. J., Koenig, G. C., Witwer, B. P., Safabakhsh, N., Munn, L. L., and Jain, R. K. (1996) During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nature Med. 2, 992–997.

    Google Scholar 

  67. Bennett, C. F., Condon, T. P., Grimm, S., Chan, H., and Chiang M.-Y. (1994) Inhibition of endothelial cell adhesion molecule expression with antisense oligonucleotides. J. Immunol. 152, 3530–3540.

    PubMed  CAS  Google Scholar 

  68. Noble, P. W., McKee, C. M., Cowman, M., and Shin, H. S. (1996) Hyaluronan fragments activate an NFiB/IkBa autoregulatory loop in murine macrophages. J. Exp Med. 186, 2373–2378.

    Google Scholar 

  69. Noble, P. W., Lake, F. R., Henson, P. M., and Riches, D. W. H. (1993) Hyaluronate activation of CD44 induces insulin-like growth factor-1 expression by tumor necrosis factor-a-dependent mechanism in murine macrophages. J. Clin. Invest. 91, 2368–2377.

    Article  PubMed  CAS  Google Scholar 

  70. Noble, P. W., McKee, C. M., and Horton, M. R. Induction of inflammatory gene expression by lowmolecular-weight hyaluronan fragments in macrophages, in The Chemistry, Biology, and Medical Applications of Hyaluronan and its Derivatives (Laurent, T. C. and Balazs, E. A., eds.), Portland Press, London, pp. 219–225.

    Google Scholar 

  71. Lesley, J. (1998) Hyaluronan binding function of CD44, in The Chemistry, Biology, and Medical Applications of Hyaluronan and its Derivatives ( Laurent, T. C. and Balazs, E. A., eds.), Portland Press, London, pp. 123–134.

    Google Scholar 

  72. Nicosia, R. F. and Ottinetti, A, (1990) Growth of microvessels in serum-free matrix culture of rat aorta. Lab. Invest. 63, 115–122.

    PubMed  CAS  Google Scholar 

  73. Deed, R., Rooney P., Kumar, P., Norton, J. D., Smith, J., Freemont, A. J., and Kumar, S. (1997) Early-response gene signalling is induced by angiogenic oligosaccharides of hyaluronan in endothelial cells. Inhibition by non-angiogenic, high-molecular-weight hyaluronan. Int. J. Cancer 71, 251–256.

    Article  PubMed  CAS  Google Scholar 

  74. Laniado-Schwartzman, M., Lavrovsky, Y., Stoltz, R. A., Conners, M. S., Falck, J. R., Chauhan, K., and Abraham, N G (1994) Activation of nuclear factor icB and oncogene expression by 12 (R)-hydroxyeicosatrienoic acid, an angiogenic factor in microvessel endothelial cells. J. Biol. Chem. 269, 24,321–24, 327.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

West, D.C., Fan, TP.D. (2002). Hyaluronan Oligosaccharides Promote Wound Repair. In: Fan, TP.D., Kohn, E.C. (eds) The New Angiotherapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-126-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-126-8_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9657-4

  • Online ISBN: 978-1-59259-126-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics