Skip to main content

On the Relative Efficacy of α-Linolenic Acid and Preformed Docosahexaenoic Acid as Substrates for Tissue Docosahexaenoate During Perinatal Development

  • Chapter
Fatty Acids

Part of the book series: Nutrition and Health ((NH))

  • 329 Accesses

Abstract

The polyunsaturated fatty acids (PUFA), α-linolenic acid (LNA, 18:3n−3) and linoleic acid (LA, 18:2n−6) are indispensable dietary components in mammals. It is thought that the primary metabolic role of LA and LNA are as essential precursors for conversion to their respective long-chain metabolites. Of these long-chain PUFA (LCP, C>20) docosahexaenoic acid (DHA, 22:6n−3) and arachidonic acid (AA, 20:4n−6), have received the most attention, because of their distinct functional roles in fetal and infant health. They are present in human breast milk at small but significant amounts, ranging from 0.1% to 0.6% and 0.5% to 1%, respectively (Jensen, 1996). DHA and AA are the most abundant n−3 and n−6 LCP found in the lipids of humans and are concentrated in the brain and central nervous system (CNS), which is second only to adipose tissue in containing the greatest percentage of lipid. The brain is comprised of 50–60% lipids (dry wt) serving mostly structural roles, as opposed to storage of energy of triacylglycero1 in adipose tissues. A related organ, the retina, is also rich in DHA, which comprises approximately 50% of phospholipid acyl groups in retinal photoreceptor membranes (Fliesler & Anderson, 1983; Sastry, 1985). The functional importance of DHA is related to its functional significance in supporting perinatal neurological and visual development. Depletion of DHA in the brains of monkeys during fetal and early postnatal development results in permanent deficits of visual function despite later biochemical repletion of brain and retinal DHA (Neuringer, Connor, Lin, Barsted, & Luck, 1986; Neuringer, Connor, Petten, & Barstad, 1984). AA is a structural component of membrane phospholipids and is known to exert its biological actions by serving as the precursor of eicosanoids, which exercise ubiquitous physiological influences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abedin L, Lien EL, Vingrys AJ, Sinclair AJ. The effects of dietary alpha-linolenic acid compared with docosahexaenoic acid on brain, retina, liver, and heart in the guinea pig. Lipids 1999; 34 (5): 475–482.

    Article  PubMed  CAS  Google Scholar 

  • Al MD, Hornstra G, van der Schouw YT, Bulstra-Ramakers MT, Huisjes HJ. Biochemical EFA status of mothers and their neonates after normal pregnancy. Early Hum Dev 1990; 24 (3): 239–248.

    Article  PubMed  CAS  Google Scholar 

  • Anderson G, Connor WE. Uptake of fatty acids by developing rat brain. Lipids 1988; 23: 286–290.

    Article  PubMed  CAS  Google Scholar 

  • Anderson GJ, Connor WE, Corliss JD. Docosahexaenoic acid is the preferred dietary n-3 fatty-acid for the development of the brain and retina. Pediatr Res 1990; 27 (1): 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Arbuckle LD, Innis SM. Docosahexaenoic acid in developing brain and retina of piglets fed high or low alpha-linolenate formula with and without fish oil. Lipids 1992; 27 (2): 89–93.

    Article  PubMed  CAS  Google Scholar 

  • Benolken RM, Anderson RE, Wheeler TG. Membrane fatty acids associated with the electrical response in visual excitation. Science 1973; 182: 1253–1254.

    Article  PubMed  CAS  Google Scholar 

  • Bourre JM, Durand G, Pascal G, Youyou A. Brain-cell and tissue recovery in rats made deficient in N-3 fatty-acids by alteration of dietary-fat. J Nutr 1989; 119 (1): 15–22.

    PubMed  CAS  Google Scholar 

  • Bourre JM, Piciotti M, Dumont O. Delta-6 desaturase in brain and liver during development and aging. Lipids 1990; 25: 354–356.

    Article  PubMed  CAS  Google Scholar 

  • Bourre JM, Youyou A, Durand G, Pascal G. Slow recovery of the fatty acid composition of sciatic nerve in rats fed a diet initially low in n-3 fatty acids. Lipids 1987; 22 (7): 535–538.

    Article  PubMed  CAS  Google Scholar 

  • Brenna JT. High-precision gas isotope ratio mass spectrometry: recent advances in instrumentation and biomedical applications. Acc Chem Res 1994; 27: 340–346.

    Article  CAS  Google Scholar 

  • Brody, S. Bioenergetics and Growth, with Special Reference to the Efficiency Complex in Domestic Animals. Reinhold, New York, 1945.

    Google Scholar 

  • Campbell FM, Gordon MJ, Dutta-Roy AK. Preferential uptake of long chain polyunsaturated fatty acids by isolated human placental membranes. Mol Cell Biochem 1996; 155 (1): 77–83.

    Article  PubMed  CAS  Google Scholar 

  • Carlson SE, Rhoides PG, Rao VS, Goldgar DE. Effect of fish oil supplementation on the n-3 fatty acid content of red blood cell membranes in preterm infants. Pediatr Res 1987; 21: 507–510.

    Article  PubMed  CAS  Google Scholar 

  • Carnielli VP, Wattimena DJ. L., Luijendijk IH. T., Boerlage A, Degenhart HJ, Sauer PJJ. The very low birth weight premature infant is capable of synthesizing aracidonic and docosahexaenoic acids from linoleic and linolenic acids. Pediatr Res 1996; 40 (1): 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Chambaz J, Ravel D, Manier M-C, Pepin D, Mulliez N, Bereziat G. Essential fatty acids interconversion in the human fetal liver. Biol Neonate 1985; 47: 136–140.

    Article  PubMed  CAS  Google Scholar 

  • Connor WE, Neuringer M, Reisbick S. Essential fatty acids: the importance of n-3 fatty acids in the retina and brain. Nutr Rev 1992; 50 (4): 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Crawford MA, Costeloe K, Ghebremeskel K, Phylactos A. The inadequacy of the essential fatty acid content of present preterm feeds [Erratum: Eur J Pediatr 1998; 157(2):160]. Eur J Pediatr 1998; 157 (Suppl 1): S23 - S27.

    CAS  Google Scholar 

  • Cunnane SC, Francescutti V, Brenna JT, Crawford MA. Breast-fed infants achieve a higher rate of brain and whole body docosahexaenoate accumulation than formula-fed infants not consuming dietary docosahexaenoate. Lipids 2000; 35 (1): 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Dhopeshwarkar GA, Subramanian C, Mead JF. Fatty acid uptake by the brain. V. Incorporation of (I-14C)linolenic acid into adult rat brain. Biochim Biophy Acta 1971; 239 (2): 162–167.

    Article  CAS  Google Scholar 

  • Dobbing J, Sands J. Comparative aspects of the brain growth. Early Hum Dev 1979; 3 (1): 79–83.

    Article  PubMed  CAS  Google Scholar 

  • Dutta-Roy AK. Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta. Am J Clin Nutr 2000; 71 (Suppl 1): 315S - 322S.

    PubMed  CAS  Google Scholar 

  • Edmond J, Higa TA, Korsak RA, Bergner EA, Lee WN. Fatty acid transport and utilization for the developing brain. J Neurochem 1998; 70 (3): 1227–1234.

    Article  PubMed  CAS  Google Scholar 

  • Farquharson J, Cockburn F, Patrick WA, Jamieson EC, Logan RW. Infant cerebral cortex phospholipid fatty-acid coposition and diet. Lancet 1992; 340: 810–813.

    Article  PubMed  CAS  Google Scholar 

  • Farquharson J, Jamieson EC, Abbasi KA, Patrick WJA, Logan RW, Cockburn F. Effect of diet on the fatty acid compostition of the major phospholipids of infant cerebral cortex. Arch Dis Child 1995; 72: 198–203.

    Article  PubMed  CAS  Google Scholar 

  • Fliesler SJ, Anderson RE. Chemisty and metabolism of lipids in the vertebrate retina. Prog Lipid Res 1983; 22: 79–131.

    Article  PubMed  CAS  Google Scholar 

  • Fu Z, Sinclair AJ. Increased alpha-linolenic acid intake increases tissue alpha-linolenic acid content and apparent oxidation with little effect on tissue docosahexaenoic acid in the guinea pig. Lipids 2000; 35 (4): 395–400.

    Article  PubMed  CAS  Google Scholar 

  • Fu Z, Sinclair AJ. Novel pathway of metabolism of alpha-linolenic acid in the guinea pig. Pediatr Res 2000; 47 (3): 414–417.

    Article  PubMed  CAS  Google Scholar 

  • Giussani DA, Farber DM, Jenkins SL, Yen A, Winter JA, Tame JD, Net al. Opposing effects of androgen and estrogen on pituitary—adrenal function in nonpregnant primates. Biol Reprod 2000; 62 (5): 1445–1451.

    Article  PubMed  CAS  Google Scholar 

  • Goodman KJ, Brenna JT. High sensitivity tracer detection using high precision gas chromatography combustion isotope ratio mass spectrometry and highly enriched [U-13C]-labeled precursors. Anal Chem 1992; 64 (10), 1088–1095.

    Article  PubMed  CAS  Google Scholar 

  • Greiner RC, Winter J, Nathanielsz PW, Brenna JT. Brain docosahexaenoate accretion in fetal baboons: bioequivalence of dietary alpha-linolenic and docosahexaenoic acids. Pediatr Res 1997; 42 (6): 826–834.

    Article  PubMed  CAS  Google Scholar 

  • Haggarty P, Page K, Abramovich DR, Ashton J, Brown D. Long-chain polyunsaturated fatty acid transport across the perfused human placenta. Placenta 1997; 18 (8): 635–642.

    Article  PubMed  CAS  Google Scholar 

  • Hassma AG, Crawford MA. The differential incorporation of labelled linoleic, gamma-linolenic, dihomogamma-linolenic and arachidonic acids into the developing rat brain. J Neurochem 1976; 27 (4): 967–968.

    Article  PubMed  CAS  Google Scholar 

  • Heird WC, Prager TC, Anderson RE. Docosahexaenoic acid and the development and function of the infant retina. Curr Opin Lipidol 1997; 8 (1): 12–16.

    Article  PubMed  CAS  Google Scholar 

  • Hrboticky N, Mackinnon MJ, Innis SM. Effect of a vegetable oil formula rich in linoleic-acid on tissue fatty-acid accretion in the brain, liver, plasma, and erythrocytes of infant piglets. Am J Clin Nutr 1990; 51 (2): 173–182.

    PubMed  CAS  Google Scholar 

  • Innis SM. Essential fatty acids in growth and development. Prog Lipid Res 1991; 30 (1): 39–103.

    Article  PubMed  CAS  Google Scholar 

  • Jensen CL, Prager TC, Fraley JK, Chen H, Anderson RE, Heird WC. Effect of dietary linoleic/alpha-linolenic acid ratio on growth and visual function of term infants. J Pediatr 1997; 131 (2): 200–209.

    Article  PubMed  CAS  Google Scholar 

  • Jensen RG. The lipids in human milk. Prog Lipid Res 1996; 35 (1): 53–92.

    Article  PubMed  CAS  Google Scholar 

  • Jensen RG, Hagerty MM, McMahon ICE. Lipids of human milk and infant formulas: a review. Am J Clin Nutr 1978; 31 (6): 990–1016.

    PubMed  CAS  Google Scholar 

  • Knipp GT, Audus KL, Soares MJ. Nutrient transport across the placenta. Adv Drug Deliv Rev 1999; 38 (1): 41–58.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn DC, Crawford MC. Placental essential fatty acid transport and prostaglandin synthesis. Prog Lipid Res 1986; 25: 345–353.

    Article  PubMed  CAS  Google Scholar 

  • Lands WE. Long-term fat intake and biomarkers. Am J Clin Nutr 1995; 61 (3 Suppl), 7215–725S.

    Google Scholar 

  • Leyton J, Drury PJ, Crawford MA. In vivo incorporation of labeled fatty acids in rat liver lipids after oral administration. Lipids 1987; 22 (8): 553–558.

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Lockwood CJ, Bunim AL, Giussani DA, Nathanielsz PW, Guller S. Cell type-specific regulation of fetal fibronectin expression in amnion: conservation of glucocorticoid responsiveness in human and nonhuman primates. Biol Reprod 2000; 62 (6): 1812–1817.

    Article  PubMed  CAS  Google Scholar 

  • Makrides M, Neumann MA, Byard RW, Simmer K, Gibson RA. Fatty acid composition of brain, retina, and erythrocytes in breast-and formula-fed infants. Am J Clin Nutr 1994; 60 (2): 189–194.

    PubMed  CAS  Google Scholar 

  • Marbois BN, Ajie HO, Korsak RA, Sensharma DK, Edmond J. The origin of palmitic acid in brain of the developing rat. Lipids 1992; 27 (8): 587–592.

    Article  PubMed  CAS  Google Scholar 

  • Martinez M, Ballabriga A, Gil-Gibernau JJ. Lipids of the developing human retina: I. Total fatty acids, plasmologens, and fatty acid compostition of ethanolamine and choline phosphoglycerides. J Neurosci Res 1988; 20: 484–490.

    Article  PubMed  CAS  Google Scholar 

  • Menard CR, Goodman KJ, Corso TN, Brenna JT, Cunnane SC. Recycling of carbon into lipids synthesized de novo is a quantitatively important pathway of alpha-[U-13C]linolenate utilization in the developing rat brain. J Neurochem 1998; 71 (5): 2151–2158.

    Article  PubMed  CAS  Google Scholar 

  • Mohrhauser H, Holman RT. The effect of dose level of essential fatty acids upon fatty acid composition of the rat liver. J Lipid Res 1963; 6: 494–497.

    Google Scholar 

  • Naval J, Calvo M, Laborda J, Dubouch P, Frain M, Sala-Trepat JM, et al. Expression of mRNAs for alphafetoprotein (AFP) and albumin and incorporation of AFP and docosahexaenoic acid in baboon fetuses. J Biochem (Tokyo) 1992; 111 (5): 649–654.

    CAS  Google Scholar 

  • Neuringer M, Connor W, Lin D, Barsted L, Luck S. Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc Natl Acad of Sci USA 1986; 83: 4021–4025.

    Article  CAS  Google Scholar 

  • Neuringer M, Connor WE, Petten CV, Barstad L. Dietary omega-3-fatty acid deficiency and visual loss in infant rhesus monkeys. J Clin Invest 1984; 73: 272–276.

    Article  PubMed  CAS  Google Scholar 

  • Pawlosky RJ, Ward G, Salem N Jr. Essential fatty acid uptake and metabolism in the developing rodent brain. Lipids 1996; 31(Suppl): S 103–S 107.

    Google Scholar 

  • Poisson JP, Dupuy RP, Sarda P, Descomps B, Narce M, Rieu D, et al. Evidence that liver-microsomes of human neonates desaturate essential fatty-acids. Biochim Biophy Acta 1993; 1167 (2): 109–113.

    Article  CAS  Google Scholar 

  • Rioux FM, Innis SM, Dyer R, MacKinnon M. Diet-induced changes in liver and bile but not brain fatty acids can be predicted from differences in plasma phospholipid fatty acids in formula-and milk-fed piglets. J Nutr 1997; 127 (2): 370–377.

    PubMed  CAS  Google Scholar 

  • Rodriguez A, Sarda P, Nessmann C, Boulot P, Leger CL, Descomps, B. Delta6- and delta5-desaturase activities in the human fetal liver: kinetic aspects. J Lipid Res 1998; 39 (9): 1825–1832.

    PubMed  CAS  Google Scholar 

  • Ruyle M, Connor WE, Anderson GJ, Lowensohn RI. Placental-transfer of essential fatty-acids in humans—venous arterial difference for docosahexaenoic acid in fetal umbilical erythrocytes. Proc Natl Acad Sci USA 1990; 87 (20): 7902–7906.

    Article  PubMed  CAS  Google Scholar 

  • Salem JN, Wegher B, Mena P, Uauy R. Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc Natl Acad Of Sci USA 1996; 93: 49–54.

    Article  CAS  Google Scholar 

  • Sastry PS. Lipids of nervous tissue: composition and metabolism. Prog Lipid Res 1985; 24: 69–176.

    Article  PubMed  CAS  Google Scholar 

  • Sauerwald TU, Hachey DL, Jensen CL, Chen H, Anderson RE, Heird WC. Intermediates in endogenous synthesis of C22:6 omega 3 and C20:4 omega 6 by term and preterm infants. Pediatr Res 1997; 41 (2): 183–187.

    Article  PubMed  CAS  Google Scholar 

  • Sheaff Greiner RC, Zhang Q, Goodman KJ, Giussani DA, Nathanielsz PW, Brenna JT. Linoleate, alphalinolenate, and docosahexaenoate recycling into saturated and monounsaturated fatty acids is a major pathway in pregnant or lactating adults and fetal or infant rhesus monkeys. J Lipid Res 1996; 37 (12): 2675–2686.

    PubMed  CAS  Google Scholar 

  • Sinclair AJ. Incorporation of radioactive polyunsaturated fatty acids into liver and brian of developing rat. Lipids 1975; 10 (3): 175–184.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair AJ, Crawford MA. The incorporation of linolenic acid and docosahexaenoic acid into liver and brain lipids of developing rats. Fed Exp Biol Soc Lett 1972; 26: 127–129.

    Article  CAS  Google Scholar 

  • Stammers J, Stephenson T, Colley J, Hull D. Effect on placental transfer of exogenous lipid administered to the pregnant rabbit. Pediatr Res 1995; 38 (6): 1026–1031.

    Article  PubMed  CAS  Google Scholar 

  • Su HM, Bernardo L, Mirmiran M, Ma XH, Corso TN, Nathanielsz PW, et al. Bioequivalence of dietary alphalinolenic and docosahexaenoic acids as sources of docosahexaenoate accretion in brain and associated organs of neonatal baboons. Pediatr Res 1999; 45 (1): 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Su HM, Bernardo L, Mirmiran M, Ma XH, Nathanielsz PW, Brenna JT. Dietary 18:3n-3 and 22:6n-3 as sources of 22:6n-3 accretion in neonatal baboon brain and associated organs. Lipids 1999; 34 (Suppl): S347–S350.

    Article  PubMed  CAS  Google Scholar 

  • Su H-M, Corso TN, Nathanielsz PW, Brenna JT. n-3 Fatty acid accretion after a 13C-18:3n-3 dose to fetal baboons. Third Congress of the International Society for the Study of Fatty Acids and Lipids, Lyon, 1998.

    Google Scholar 

  • Tame JD, Winter JA, Li C, Jenkins S, Giussani DA, Nathanielsz PW. Fetal growth in the baboon during the second half of pregnancy. J Med Primatol 1998; 27 (5): 234–239.

    Article  PubMed  CAS  Google Scholar 

  • Uauy R, Mena P, Wegher B, Nieto S, Salem N Jr. Long chain polyunsaturated fatty acid formation in neonates: effect of gestational age and intrauterine growth. Pediatr Res 2000; 47 (1): 127–135.

    Article  PubMed  CAS  Google Scholar 

  • Uauy RD, Birch DG, Birch EE, Tyson JE, Hoffman DR. Effect of dietary omega-3–fatty-acids on retinal function of very-low-birth-weight neonates. Pediatr Res 1990; 28 (5): 485–492.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler TG, Benolken RM. Visual membranes: specificity of fatty acid precursors of the electrical response to illumination. Science 1975; 188 (4195): 1312–1314.

    Article  PubMed  CAS  Google Scholar 

  • Woods J, Ward G, Salem NJ. Is docosahexaenoic acid necessary in infant formula? Evaluation of high linolenate diets in the neonatal rat. Pediatr Res 1996; 40: 687–694.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto N, Saitoh M, Moriuchi A, Nomura M, Okuyama H. Effect of dietary alpha-linolenate/linoleate balance on brain lipid compostions and learning ability of rats. J Lipid Res 1987; 28: 144–151.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huang, MC., Brenna, J.T. (2001). On the Relative Efficacy of α-Linolenic Acid and Preformed Docosahexaenoic Acid as Substrates for Tissue Docosahexaenoate During Perinatal Development. In: Mostofsky, D.I., Yehuda, S., Salem, N. (eds) Fatty Acids. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-119-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-119-0_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-265-0

  • Online ISBN: 978-1-59259-119-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics