Skip to main content

The Importance of DHA in Optimal Cognitive Function in Rodents

  • Chapter
Fatty Acids

Part of the book series: Nutrition and Health ((NH))

  • 326 Accesses

Abstract

The mammalian brain is a lipid-rich organ. Approximately 60% of the dry weight of the brain is lipid (Crawford, 1993). Most of the lipid in the brain is present in the form of phospholipids comprising the complex array of neural fibers that make up the central nervous system. A unique aspect of the lipid composition of all mammalian neurological tissues is the extraordinarily high concentration of docosahexaenoic acid (DHA) and arachidonic acid (AA). Indeed, DHA is the most abundant fatty acid building block of brain lipids and represents over 30% of the fatty acids of the phosphatidylinositol (PI), phosphatidylethanolamine (PE), and phosphatidylserine (PS) in the neuron (Salem, et al., 1986). DHA is primarily concentrated in the neuronal endings and synaptosomes and is also associated with the neurite growth cones, where it has been shown to promote neurite outgrowth (Ikemoto, et al., 1997). Its unique conformational characteristics (twenty-two carbons and 6 double bonds; C22:6) allow this fatty acid to have a structural as well as a functional role in biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JW, Johnstone BM, Remley DT. Breast-feeding and cognitive development: a meta-analysis [see comments]. Am J Clin Nutr 1999; 70 (4): 525–535.

    PubMed  CAS  Google Scholar 

  • Bourre JM, Dumont O, Pascal G, Durand G. Dietary alpha-linolenic acid at 1.3 g/kg maintains maximal docosahexaenoic acid concentration in brain, heart and liver of adult rats. J Nutr 1993; 123 (7): 1313–1319.

    PubMed  CAS  Google Scholar 

  • Bourre JM, Francois M, Youyou A, Dumont O, Piciotti M, Pascal G, et al. The effects of dietary alphalinolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J Nutr 1989; 119 (12): 1880–1892.

    PubMed  CAS  Google Scholar 

  • Broadhurst CL, Cunnane SC, Crawford MA. Rift Valley lake fish and shellfish provided brain-specific nutrition for early Homo [see comments]. Br J Nutr 1998; 79 (1): 3–21.

    Article  PubMed  CAS  Google Scholar 

  • Carrie I, Clement M, De Javel D, Frances H, Bourre JM. Learning deficits in first generation OF1 mice deficient in (n-3) polyunsaturated fatty acids do not result from visual alteration. Neurosci Lett 1999; 266 (1): 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Carrie I, Guesnet P, Bourre JM, Frances H. Diets containing long-chain n-3 polyunsaturated fatty acids affect behaviour differently during development than ageing in mice [see comments]. Br J Nutr 2000; 83 (4): 439–447.

    PubMed  CAS  Google Scholar 

  • Coscina DV. Polyunsaturated fats and learning, old data, new questions. In: Yshuda S, Mostofsky M, eds. Handbook of Essential Fatty Acid biology, Humana, Totowa, NJ, 1997, pp. 215–244.

    Chapter  Google Scholar 

  • Coscina DV, Yehuda S, Dixon LM, Kish SJ, Leprohon-Greenwood CE. Learning is improved by a soybean oil diet in rats. Life Sci 1986; 38 (19): 1789–1794.

    Article  PubMed  CAS  Google Scholar 

  • Crawford MA. The early development and evolution of the human brain. Upsala J Med Sci 1990; 48 (Suppl): 43–78.

    CAS  Google Scholar 

  • Crawford MA. The role of essential fatty acids in neural development: implications for perinatal nutrition. Am J Clin Nutr 1993; 57 (5 Suppl): 703S - 709S.

    PubMed  CAS  Google Scholar 

  • de la Presa Owens S, Innis SM. Docosahexaenoic and arachidonic acid prevent a decrease in dopaminergic and serotoninergic neurotransmitters in frontal cortex caused by a linoleic and alpha-linolenic acid deficient diet in formula-fed piglets. J Nutr 1999; 129 (11): 2088–2093.

    Google Scholar 

  • Enslen M, Milon H, Malnoe A. Effect of low intake of n-3 fatty acids during development on brain phospholipid fatty acid composition and exploratory behavior in rats. Lipids 1991; 26 (3): 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Farquharson J, Cockburn F, Patrick WA, Jamieson EC, Logan RW. Infant cerebral cortex phospholipid fattyacid composition and diet [see comments]. Lancet 1992; 340 (8823): 810–813.

    Article  PubMed  CAS  Google Scholar 

  • Frances H, Coudereau JP, Sandouk P, Clement M, Monier C, Bourre JM. Influence of a dietary alphalinolenic acid deficiency on learning in the Morris water maze and on the effects of morphine. Eur J Pharmacol 1996; 298 (3): 217–225.

    Article  PubMed  CAS  Google Scholar 

  • Frances H, Monier C, Clement M, Lecorsier A, Debray M, Bourre JM. Effect of dietary alpha-linolenic acid deficiency on habituation. Life Sci 1996; 58 (21): 1805–1816.

    Article  PubMed  CAS  Google Scholar 

  • Garcia MC, Ward G, Ma YC, Salem N Jr, Kim HY. Effect of docosahexaenoic acid on the synthesis of phosphatidylserine in rat brain in microsomes and C6 glioma cells. J Neurochem 1998; 70 (1): 24–30.

    Article  PubMed  CAS  Google Scholar 

  • Gawrisch K, Holte LL, Koenig BW, Polozov IV, Safley AMK, Teague WE. NMR Investigations of docosahexaenoic acid structure and flexibility. PUFA in Maternal and Child Health Conference, 2000.

    Google Scholar 

  • Gerster H. Can adults adequately convert alpha-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int J Vitam Nutr Res 1998; 68 (3): 159–173.

    PubMed  CAS  Google Scholar 

  • Greiner RS, Moriguchi T, Hutton A, Slotnick, BM, Salem N Jr. Rats with low levels of brain docosahexaenoic acid show impaired performance in olfactory-based and spatial learning tasks. Lipids 1999; 34 (Suppl): S239 - S243.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton L, Greiner R, Salem N Jr, Kim HY. n-3 Fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues [In Process Citation]. Lipids 2000; 35 (8): 863–869.

    Article  PubMed  CAS  Google Scholar 

  • Hibbeln JR. Fish consumption and major depression [letter] [see comments]. Lancet 1998; 351 (9110): 1213.

    Article  PubMed  CAS  Google Scholar 

  • Hibbeln JR, Linnoila M, Umhau JC, Rawlings R, George DT, Salem N Jr. Essential fatty acids predict metabolites of serotonin and dopamine in cerebrospinal fluid among healthy control subjects, and early and late-onset alcoholics. Biol Psychiatry 1998; 44 (4): 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto A, Kobayashi T, Watanabe S, Okuyama H. Membrane fatty acid modifications of PC12 cells by arachidonate or docosahexaenoate affect neurite outgrowth but not norepinephrine release. Neurochem Res 1997; 22 (6): 671–678.

    Article  PubMed  CAS  Google Scholar 

  • Kyle DJ, Schaefer E, Patton G, Beiser A. Low serum docosahexaenoic acid is a significant risk factor for Alzheimer’s dementia. Lipids 1999; 34: 52–45.

    Article  Google Scholar 

  • Lamptey MS, Walker BL. A possible essential role for dietary linolenic acid in the development of the young rat. J Nutr 1976; 106 (1): 86–93.

    PubMed  CAS  Google Scholar 

  • Moore SA, Yoder E, Murphy S, Dutton GR, Spector AA. Astrocytes, not neurons, produce docosahexaenoic acid (22:6 omega-3) and arachidonic acid (20:4 omega-6). J Neurochem 1991; 56 (2): 518–524.

    Article  PubMed  CAS  Google Scholar 

  • Moriguchi T, Loewke J, Salem N Jr. Spatial task performance depends upon the level of the brain docosahexaenoic acid. PUFA in Maternal and Child Health Conference, 2000.

    Google Scholar 

  • Nui S, Mitchell DC, Litman BJ, Effect of DHA and cholesterol on receptor—G protein coupling. PUFA in Maternal and Child Health Conference, 2000.

    Google Scholar 

  • Pawlosky R, Barnes A, Salem N Jr. Essential fatty acid metabolism in the feline: relationship between liver and brain production of long-chain polyunsaturated fatty acids. J Lipid Res 1994; 35 (11): 2032–2040.

    PubMed  CAS  Google Scholar 

  • Pawlosky RJ, Salem N Jr. Ethanol exposure causes a decrease in docosahexaenoic acid and an increase in docosapentaenoic acid in feline brains and retinas. Am J Clin Nutr 1995; 61 (6): 1284–1289.

    PubMed  CAS  Google Scholar 

  • Pawlosky RJ, Ward G, Salem N Jr. Essential fatty acid uptake and metabolism in the developing rodent brain. Lipids 1996; 31 (7): S103–5107.

    Article  PubMed  CAS  Google Scholar 

  • Prasad MR, Lovell MA, Yatin M, Dhillon H, Markesbery WR. Regional membrane phospholipid alterations in Alzheimer’s disease. Neurochem Res 1998; 23 (1): 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Salem N Jr, Pawlosky RJ. Arachidonate and docosahexaenoate biosynthesis in various species and compartments in vivo. World Rev Nutr Dietics 1994; 75: 114–119.

    CAS  Google Scholar 

  • Salem N Jr, Wegher B, Mena P, Uauy R. Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc Natl Acad Sci USA 1996; 93 (1): 49–54.

    Article  PubMed  CAS  Google Scholar 

  • Salem NJ, Kim H-Y, Yergey JA. Docosahexaenoic acid: membrane function and metabolism. In Health Effects of Polyunsaturated Fatty Acids in Seafoods. Simopoulos AP, Kiter RR, Martin RE, eds. Academic, New york, 1986, pp. 263–317.

    Google Scholar 

  • Suzuki H, Park SJ, Tamura M, Ando S. Effect of the long-term feeding of dietary lipids on the learning ability, fatty acid composition of brain stem phospholipids and synaptic membrane fluidity in adult mice: a comparison of sardine oil diet with palm oil diet. Mech Ageing Dev 1998; 101 (1–2): 119–128.

    Article  PubMed  CAS  Google Scholar 

  • Tam PS, Umeda-Sawada R, Yaguchi T, Akimoto K, Kiso Y, Igarashi O. The metabolism and distribution of docosapentaenoic acid (n-6) in rats and rat hepatocytes. Lipids 2000; 35 (1): 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Voss A, Reinhart M, Sankarappa S, Sprecher H. The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J Biol Chem 1991; 266(30): 19,995–20,000.

    Google Scholar 

  • Wainwright PE, Huang YS, Bulman-Fleming B, Levesque S, McCutcheon D. The effects of dietary fatty acid composition combined with environmental enrichment on brain and behavior in mice. Behav Brain Res 1994; 60 (2): 125–136.

    Article  PubMed  CAS  Google Scholar 

  • Wainwright PE, Xing HC, Ward GR, Huang YS, Bobik E, et al. Water maze performance is unaffected in artificially reared rats fed diets supplemented with arachidonic acid and docosahexaenoic acid. J Nutr 1999; 129 (5): 1079–1089.

    PubMed  CAS  Google Scholar 

  • Ward G, Woods J, Reyzer M, Salem N Jr. Artificial rearing of infant rats on milk formula deficient in n-3 essential fatty acids: a rapid method for the production of experimental n-3 deficiency. Lipids 1996; 31 (1): 71–77.

    Article  PubMed  CAS  Google Scholar 

  • Weisinger HS, Vingrys AJ, Bui BV, Sinclair AJ. Effects of dietary n-3 fatty acid deficiency and repletion in the guinea pig retina. Invest Ophthalmol Vis Sci 1999; 40 (2): 327–338.

    PubMed  CAS  Google Scholar 

  • Xu LZ, Sanchez R, Sali A, Heintz N. Ligand specificity of brain lipid-binding protein. J Biol Chem 1996; 271(40):24,711–24,719.

    Google Scholar 

  • Yamamoto N, Hashimoto A, Takemoto Y, Okuyama H, Nomura M, Kitajima R, et al. Effect of the dietary alpha-linolenate/linoleate balance on lipid compositions and learning ability of rats. II. Discrimination process, extinction process, and glycolipid compositions. J Lipid Res 1988; 29 (8): 1013–1021.

    PubMed  CAS  Google Scholar 

  • Yamamoto N, Saitoh M, Moriuchi A, Nomura M, Okuyama H. Effect of dietary alpha-linolenate/linoleate balance on brain lipid compositions and learning ability of rats. J Lipid Res 1987; 28 (2): 144–151.

    PubMed  CAS  Google Scholar 

  • Yehuda S, Carasso RL. Modulation of learning, pain thresholds, and thermoregulation in the rat by preparations of free purified alpha-linolenic and linoleic acids: determination of the optimal omega 3-toomega 6 ratio. Proc Natl Acad Sci USA 1993; 90(21):10,345–10,349.

    Google Scholar 

  • Yonekubo A, Honda S, Okano M, Takahashi K, Yamamoto Y. Effects of dietary fish oil during the fetal and postnatal periods on the learning ability of postnatal rats. Biosci Biotechnol Biochem 1993; 58(5):799–801.

    Article  Google Scholar 

  • Yoshida S, Yasuda A, Kawazato H, Sakai K, Shimada T, Takeshita M, et al. Synaptic vesicle ultrastructural changes in the rat hippocampus induced by a combination of alpha-linolenate deficiency and a learning task. J Neurochem 1997; 68 (3): 1261–1268.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Becker, C.C., Kyle, D.J. (2001). The Importance of DHA in Optimal Cognitive Function in Rodents. In: Mostofsky, D.I., Yehuda, S., Salem, N. (eds) Fatty Acids. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-119-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-119-0_21

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-265-0

  • Online ISBN: 978-1-59259-119-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics