Skip to main content

Part of the book series: Nutrition and Health ((NH))

  • 713 Accesses

Abstract

Cancer, in its origins, is a disease of the cell born of acquired or inherited genetic mutations. Progression to malignancy is a complex and partially understood multistage process involving genetic and/or somatic mutations and influenced by environmental factors and the functions of neighboring and distant cells and tissues. Lifestyle factors, such as diet, can have a strong influence over initiation and progression of cancer in part through changes in functional genomic output. Phosphorus, usually in the form of inorganic phosphate (Pi), is abundant in the Western diet and represents an element that might alter cell behavior through direct effects on cellular and molecular functions as well as changes in the micro- and macroenvironment. Pi therefore represents a dietary element that has the potential to influence multiple facets of cancer etiology and progression. Given the significance of Pi for cell function and energy metabolism, it is somewhat surprising that relatively little is known about the potential effects of changes in cellular and serum Pi on cell growth and transformation related to cancer. This chapter will review the consequences of changes in serum Pi levels and dietary Pi consumption on direct cellular and molecular functions as well as the potential effects of Pi-responsive endocrine/paracrine/autocrine factors on noncancerous cell growth and cancerous transformation to malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doll R, Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst. 1981;66(6):1191–308. PubMed PMID: 7017215.

    Article  CAS  PubMed  Google Scholar 

  2. Camalier CE, Young MR, Bobe G, Perella CM, Colburn NH, Beck Jr GR. Elevated phosphate activates N-ras and promotes cell transformation and skin tumorigenesis. Cancer Prev Res (Phila). 2010;3(3):359–70. PubMed PMID: 20145188. Pubmed Central PMCID: 2833230. Epub 2010/02/11. eng.

    Article  CAS  Google Scholar 

  3. Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA, et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature. 2001;410(6832):1111–6. PubMed PMID: 11323676.

    Article  CAS  PubMed  Google Scholar 

  4. Jin H, Xu CX, Lim HT, Park SJ, Shin JY, Chung YS, et al. High dietary inorganic phosphate increases lung tumorigenesis and alters Akt signaling. Am J Respir Crit Care Med. 2009;179(1):59–68. PubMed PMID: 18849498.

    Article  CAS  PubMed  Google Scholar 

  5. Xu CX, Jin H, Lim HT, Ha YC, Chae CH, An GH, et al. Low dietary inorganic phosphate stimulates lung tumorigenesis through altering protein translation and cell cycle in K-ras(LA1) mice. Nutr Cancer. 2010;62(4):525–32. PubMed PMID: 20432174.

    Article  CAS  PubMed  Google Scholar 

  6. Tavani A, Bertuccio P, Bosetti C, Talamini R, Negri E, Franceschi S, et al. Dietary intake of calcium, vitamin D, phosphorus and the risk of prostate cancer. Eur Urol. 2005;48(1):27–33. PubMed PMID: 15967248.

    Article  CAS  PubMed  Google Scholar 

  7. Uribarri J, Calvo MS. Hidden sources of phosphorus in the typical American diet: does it matter in nephrology? Semin Dial. 2003;16(3):186–8. PubMed PMID: 12753675.

    Article  PubMed  Google Scholar 

  8. Sullivan CM, Leon JB, Sehgal AR. Phosphorus-containing food additives and the accuracy of nutrient databases: implications for renal patients. J Ren Nutr. 2007;17(5):350–4. PubMed PMID: 17720105. Pubmed Central PMCID: 2020846. Epub 2007/08/28. eng.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wulaningsih W, Michaelsson K, Garmo H, Hammar N, Jungner I, Walldius G, et al. Inorganic phosphate and the risk of cancer in the Swedish AMORIS study. BMC Cancer. 2013;13:257. PubMed PMID: 23706176. Pubmed Central PMCID: 3664604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dick IM, Prince RL. The effect of estrogen on renal phosphorus handling in the rat. Am J Nephrol. 2001;21(4):323–30. PubMed PMID: 11509806.

    Article  CAS  PubMed  Google Scholar 

  11. Packer E, Holloway L, Newhall K, Kanwar G, Butterfield G, Marcus R. Effects of estrogen on daylong circulating calcium, phosphorus, 1,25-dihydroxyvitamin D, and parathyroid hormone in postmenopausal women. J Bone Miner Res Off J Am Soc Bone Miner Res. 1990;5(8):877–84. PubMed PMID: 2173358.

    Article  CAS  Google Scholar 

  12. Uemura H, Irahara M, Yoneda N, Yasui T, Genjida K, Miyamoto KI, et al. Close correlation between estrogen treatment and renal phosphate reabsorption capacity. J Clin Endocrinol Metab. 2000;85(3):1215–9. PubMed PMID: 10720065.

    Article  CAS  PubMed  Google Scholar 

  13. Aitken JM, Gallagher MJ, Hart DM, Newton DA, Craig A. Plasma growth hormone and serum phosphorus concentrations in relation to the menopause and to oestrogen therapy. J Endocrinol. 1973;59(3):593–8. PubMed PMID: 4761688.

    Article  CAS  PubMed  Google Scholar 

  14. Cirillo M, Ciacci C, De Santo NG. Age, renal tubular phosphate reabsorption, and serum phosphate levels in adults. N Engl J Med. 2008;359(8):864–6. PubMed PMID: 18716307.

    Article  CAS  PubMed  Google Scholar 

  15. Baylink D, Wergedal J, Stauffer M. Formation, mineralization, and resorption of bone in hypophosphatemic rats. J Clin Invest. 1971;50(12):2519–30. PubMed PMID: 5129305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Day HG, McCollum EV. Mineral metabolism, growth, and symptomatology of rats on a diet extremely deficient in phosphorus. J Biol Chem. 1939;130(1):269–83. PubMed PMID: WOS:000187899000030. English.

    CAS  Google Scholar 

  17. Calvo MS. Dietary phosphorus, calcium metabolism and bone. J Nutr. 1993;123(9):1627–33. PubMed PMID: 8360792.

    CAS  PubMed  Google Scholar 

  18. Bergwitz C. Dietary phosphate modifies lifespan in Drosophila. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 2012;27(9):3399–406. PubMed PMID: 22942172.

    CAS  Google Scholar 

  19. Elser JJ, Kyle MM, Smith MS, Nagy JD. Biological stoichiometry in human cancer. PLoS One. 2007;2(10):e1028. PubMed PMID: 17925876. Pubmed Central PMCID: 2000353.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Beck Jr GR. Inorganic phosphate as a signaling molecule in osteoblast differentiation. J Cell Biochem. 2003;90(2):234–43. PubMed PMID: 14505340.

    Article  CAS  PubMed  Google Scholar 

  21. Beck Jr GR, Zerler B, Moran E. Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci U S A. 2000;97(15):8352–7. PubMed PMID: 10890885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mansfield K, Teixeira CC, Adams CS, Shapiro IM. Phosphate ions mediate chondrocyte apoptosis through a plasma membrane transporter mechanism. Bone. 2001;28(1):1–8. PubMed PMID: 11165936.

    Article  CAS  PubMed  Google Scholar 

  23. Fujita T, Meguro T, Izumo N, Yasutomi C, Fukuyama R, Nakamuta H, et al. Phosphate stimulates differentiation and mineralization of the chondroprogenitor clone ATDC5. Jpn J Pharmacol. 2001;85(3):278–81. PubMed PMID: 11325020.

    Article  CAS  PubMed  Google Scholar 

  24. Julien M, Magne D, Masson M, Rolli-Derkinderen M, Chassande O, Cario-Toumaniantz C, et al. Phosphate stimulates matrix Gla protein expression in chondrocytes through the extracellular signal regulated kinase signaling pathway. Endocrinology. 2007;148(2):530–7. PubMed PMID: 17068135.

    Article  CAS  PubMed  Google Scholar 

  25. Foster BL, Nociti Jr FH, Swanson EC, Matsa-Dunn D, Berry JE, Cupp CJ, et al. Regulation of cementoblast gene expression by inorganic phosphate in vitro. Calcif Tissue Int. 2006;78(2):103–12. PubMed PMID: 16467974.

    Article  CAS  PubMed  Google Scholar 

  26. Lundquist P, Ritchie HH, Moore K, Lundgren T, Linde A. Phosphate and calcium uptake by rat odontoblast-like MRPC-1 cells concomitant with mineralization. J Bone Miner Res Off J Am Soc Bone Miner Res. 2002;17(10):1801–13. PubMed PMID: 12369784.

    Article  CAS  Google Scholar 

  27. Kanatani M, Sugimoto T, Kano J, Kanzawa M, Chihara K. Effect of high phosphate concentration on osteoclast differentiation as well as bone-resorbing activity. J Cell Physiol. 2003;196(1):180–9. PubMed PMID: 12767054.

    Article  CAS  PubMed  Google Scholar 

  28. Takeyama S, Yoshimura Y, Deyama Y, Sugawara Y, Fukuda H, Matsumoto A. Phosphate decreases osteoclastogenesis in coculture of osteoblast and bone marrow. Biochem Biophys Res Commun. 2001;282(3):798–802. PubMed PMID: 11401534.

    Article  CAS  PubMed  Google Scholar 

  29. Roussanne MC, Lieberherr M, Souberbielle JC, Sarfati E, Drueke T, Bourdeau A. Human parathyroid cell proliferation in response to calcium, NPS R-467, calcitriol and phosphate. Eur J Clin Invest. 2001;31(7):610–6. PubMed PMID: 11454016.

    Article  CAS  PubMed  Google Scholar 

  30. Cecil DL, Rose DM, Terkeltaub R, Liu-Bryan R. Role of interleukin-8 in PiT-1 expression and CXCR1-mediated inorganic phosphate uptake in chondrocytes. Arthritis Rheum. 2005;52(1):144–54. PubMed PMID: 15641067.

    Article  CAS  PubMed  Google Scholar 

  31. Jono S, McKee MD, Murry CE, Shioi A, Nishizawa Y, Mori K, et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ Res. 2000;87(7):E10–7. PubMed PMID: 11009570.

    Article  CAS  PubMed  Google Scholar 

  32. Giachelli CM. Vascular calcification: in vitro evidence for the role of inorganic phosphate. J Am Soc Nephrol JASN. 2003;14(9 Suppl 4):S300–4. PubMed PMID: 12939385.

    Article  CAS  PubMed  Google Scholar 

  33. Kido S, Miyamoto K, Mizobuchi H, Taketani Y, Ohkido I, Ogawa N, et al. Identification of regulatory sequences and binding proteins in the type II sodium/phosphate cotransporter NPT2 gene responsive to dietary phosphate. J Biol Chem. 1999;274(40):28256–63. PubMed PMID: 10497181.

    Article  CAS  PubMed  Google Scholar 

  34. Cunningham DD, Pardee AB. Transport changes rapidly initiated by serum addition to “contact inhibited” 3T3 cells. Proc Natl Acad Sci U S A. 1969;64(3):1049–56. PubMed PMID: 4313331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barsh GS, Greenberg DB, Cunningham DD. Phosphate uptake and control of fibroblasts growth. J Cell Physiol. 1977;92(1):115–28. PubMed PMID: 561075.

    Article  CAS  PubMed  Google Scholar 

  36. de Asua LJ, Rozengurt E, Dulbecco R. Kinetics of early changes in phosphate and uridine transport and cyclic AMP levels stimulated by serum in density-inhibited 3T3 cells. Proc Natl Acad Sci U S A. 1974;71(1):96–8. PubMed PMID: 4359335. Pubmed Central PMCID: 387940.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Holley RW, Kiernan JA. Control of the initiation of DNA synthesis in 3T3 cells: low-molecular weight nutrients. Proc Natl Acad Sci U S A. 1974;71(8):2942–5. PubMed PMID: 4528490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weber MJ, Edlin G. Phosphate transport, nucleotide pools, and ribonucleic acid synthesis in growing and in density-inhibited 3T3 cells. J Biol Chem. 1971;246(6):1828–33. PubMed PMID: 5102151.

    CAS  PubMed  Google Scholar 

  39. Hilborn DA. Serum stimulation of phosphate uptake into 3T3 cells. J Cell Physiol. 1976;87(1):111–21. PubMed PMID: 1399.

    Article  CAS  PubMed  Google Scholar 

  40. Engstrom W, Zetterberg A. Phosphate and the regulation of DNA replication in normal and virus-transformed 3T3 cells. Biochem J. 1983;214(3):695–702. PubMed PMID: 6312961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Giots F, Donaton MC, Thevelein JM. Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol. 2003;47(4):1163–81. PubMed PMID: 12581367.

    Article  CAS  PubMed  Google Scholar 

  42. Kanatani M, Sugimoto T, Kano J, Chihara K. IGF-I mediates the stimulatory effect of high phosphate concentration on osteoblastic cell proliferation. J Cell Physiol. 2002;190(3):306–12. PubMed PMID: 11857446.

    Article  CAS  PubMed  Google Scholar 

  43. Chang SH, Yu KN, Lee YS, An GH, Beck Jr GR, Colburn NH, et al. Elevated inorganic phosphate stimulates Akt-ERK1/2-Mnk1 signaling in human lung cells. Am J Respir Cell Mol Biol. 2006;35(5):528–39. PubMed PMID: 16763222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Conrads KA, Yi M, Simpson KA, Lucas DA, Camalier CE, Yu LR, et al. A combined proteome and microarray investigation of inorganic phosphate-induced pre-osteoblast cells. Mol Cell Proteomics. 2005;4(9):1284–96. PubMed PMID: 15958391.

    Article  CAS  PubMed  Google Scholar 

  45. Spina A, Sapio L, Esposito A, Di Maiolo F, Sorvillo L, Naviglio S. Inorganic phosphate as a novel signaling molecule with antiproliferative action in MDA-MB-231 breast cancer cells. Biores Open Access. 2013;2(1):47–54. PubMed PMID: 23515235. Pubmed Central PMCID: 3569927.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Spina A, Sorvillo L, Di Maiolo F, Esposito A, D’Auria R, Di Gesto D, et al. Inorganic phosphate enhances sensitivity of human osteosarcoma U2OS cells to doxorubicin via a p53-dependent pathway. J Cell Physiol. 2013;228(1):198–206. PubMed PMID: 22674530.

    Article  CAS  PubMed  Google Scholar 

  47. Rubin H, Sanui H. Complexes of inorganic pyrophosphate, orthophosphate, and calcium as stimulants of 3T3 cell multiplication. Proc Natl Acad Sci U S A. 1977;74(11):5026–30. PubMed PMID: 200943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rubin H, Chu BM. Solute concentration effects on the expression of cellular heterogeneity of anchorage-independent growth among spontaneously transformed BALB/c3T3 cells. In Vitro. 1984;20(7):585–96. PubMed PMID: 6469276.

    Article  CAS  PubMed  Google Scholar 

  49. Tenenhouse HS. Regulation of phosphorus homeostasis by the type iia na/phosphate cotransporter. Annu Rev Nutr. 2005;25:197–214. PubMed PMID: 16011465.

    Article  CAS  PubMed  Google Scholar 

  50. Takeda E, Taketani Y, Morita K, Tatsumi S, Katai K, Nii T, et al. Molecular mechanisms of mammalian inorganic phosphate homeostasis. Adv Enzyme Regul. 2000;40:285–302. PubMed PMID: 10828356.

    Article  CAS  PubMed  Google Scholar 

  51. Tenenhouse HS. Phosphate transport: molecular basis, regulation and pathophysiology. J Steroid Biochem Mol Biol. 2007;103(3–5):572–7. PubMed PMID: 17270430.

    Article  CAS  PubMed  Google Scholar 

  52. Lundquist P, Murer H, Biber J. Type II Na+-Pi cotransporters in osteoblast mineral formation: regulation by inorganic phosphate. Cell Physiol Biochem. 2007;19(1–4):43–56. PubMed PMID: 17310099.

    Article  CAS  PubMed  Google Scholar 

  53. Collins JF, Bai L, Ghishan FK. The SLC20 family of proteins: dual functions as sodium-phosphate cotransporters and viral receptors. Pflugers Arch Eur J Physiol. 2004;447(5):647–52. PubMed PMID: 12759754.

    Article  CAS  Google Scholar 

  54. Caverzasio J, Bonjour JP. Characteristics and regulation of Pi transport in osteogenic cells for bone metabolism. Kidney Int. 1996;49(4):975–80. PubMed PMID: 8691747.

    Article  CAS  PubMed  Google Scholar 

  55. Schmid C, Keller C, Schlapfer I, Veldman C, Zapf J. Calcium and insulin-like growth factor I stimulation of sodium-dependent phosphate transport and proliferation of cultured rat osteoblasts. Biochem Biophys Res Commun. 1998;245(1):220–5. PubMed PMID: 9535812.

    Article  CAS  PubMed  Google Scholar 

  56. Polgreen KE, Kemp GJ, Leighton B, Radda GK. Modulation of Pi transport in skeletal muscle by insulin and IGF-1. Biochim Biophys Acta. 1994;1223(2):279–84. PubMed PMID: 8086500.

    Article  CAS  PubMed  Google Scholar 

  57. Mohrmann I, Mohrmann M, Biber J, Murer H. Stimulation of Na+/phosphate cotransport in LLC-PK1 cells by 12-O-tetradecanoylphorbol 13-acetate (TPA). Biochim Biophys Acta. 1986;860(1):35–43. PubMed PMID: 3730384.

    Article  CAS  PubMed  Google Scholar 

  58. Moroney J, Smith A, Tomei LD, Wenner CE. Stimulation of 86Rb+ and 32Pi movements in 3T3 cells by prostaglandins and phorbol esters. J Cell Physiol. 1978;95(3):287–94. PubMed PMID: 649665.

    Article  CAS  PubMed  Google Scholar 

  59. Camalier CE, Yi M, Yu LR, Hood BL, Conrads KA, Lee YJ, et al. An integrated understanding of the physiological response to elevated extracellular phosphate. J Cell Physiol. 2013;228(7):1536–50. PubMed PMID: 23280476. Pubmed Central PMCID: 3702686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yamazaki M, Ozono K, Okada T, Tachikawa K, Kondou H, Ohata Y, et al. Both FGF23 and extracellular phosphate activate Raf/MEK/ERK pathway via FGF receptors in HEK293 cells. J Cell Biochem. 2010;111(5):1210–21. PubMed PMID: 20717920. Epub 2010/08/19. eng.

    Article  CAS  PubMed  Google Scholar 

  61. Li X, Yang HY, Giachelli CM. Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ Res. 2006;98(7):905–12. PubMed PMID: 16527991.

    Article  CAS  PubMed  Google Scholar 

  62. Suzuki A, Ghayor C, Guicheux J, Magne D, Quillard S, Kakita A, et al. Enhanced expression of the inorganic phosphate transporter Pit-1 is involved in BMP-2-induced matrix mineralization in osteoblast-like cells. J Bone Miner Res Off J Am Soc Bone Miner Res. 2006;21(5):674–83. PubMed PMID: 16734382.

    Article  CAS  Google Scholar 

  63. Kimata M, Michigami T, Tachikawa K, Okada T, Koshimizu T, Yamazaki M, et al. Signaling of extracellular inorganic phosphate up-regulates cyclin D1 expression in proliferating chondrocytes via the Na+/Pi cotransporter Pit-1 and Raf/MEK/ERK pathway. Bone. 2010;47(5):938–47. PubMed PMID: 20709201. Epub 2010/08/17. eng.

    Article  CAS  PubMed  Google Scholar 

  64. Yoshiko Y, Candeliere GA, Maeda N, Aubin JE. Osteoblast autonomous Pi regulation via Pit1 plays a role in bone mineralization. Mol Cell Biol. 2007;27(12):4465–74. PubMed PMID: 17438129. Pubmed Central PMCID: 1900051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Beck L, Leroy C, Salaun C, Margall-Ducos G, Desdouets C, Friedlander G. Identification of a novel function of PiT1 critical for cell proliferation and independent of its phosphate transport activity. J Biol Chem. 2009;284(45):31363–74. PubMed PMID: 19726692. Pubmed Central PMCID: 2781533. Epub 2009/09/04. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Byskov K, Jensen N, Kongsfelt IB, Wielsoe M, Pedersen LE, Haldrup C, et al. Regulation of cell proliferation and cell density by the inorganic phosphate transporter PiT1. Cell Div. 2012;7(1):7. PubMed PMID: 22394506. Pubmed Central PMCID: 3325893. Epub 2012/03/08. eng.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Harima Y, Togashi A, Horikoshi K, Imamura M, Sougawa M, Sawada S, et al. Prediction of outcome of advanced cervical cancer to thermoradiotherapy according to expression profiles of 35 genes selected by cDNA microarray analysis. Int J Radiat Oncol Biol Phys. 2004;60(1):237–48. PubMed PMID: 15337562.

    Article  CAS  PubMed  Google Scholar 

  68. Cao D, Hustinx SR, Sui G, Bala P, Sato N, Martin S, et al. Identification of novel highly expressed genes in pancreatic ductal adenocarcinomas through a bioinformatics analysis of expressed sequence tags. Cancer Biol Ther. 2004;3(11):1081–9; discussion 90–1. PubMed PMID: 15467436.

    Article  CAS  PubMed  Google Scholar 

  69. Walker LC, Waddell N, Ten Haaf A; kConFab Investigators, Grimmond S, Spurdle AB. Use of expression data and the CGEMS genome-wide breast cancer association study to identify genes that may modify risk in BRCA1/2 mutation carriers. Breast Cancer Res Treat. 2008;112(2):229–36. PubMed PMID: 18095154.

    Google Scholar 

  70. Mattes MJ, Look K, Furukawa K, Pierce VK, Old LJ, Lewis Jr JL, et al. Mouse monoclonal antibodies to human epithelial differentiation antigens expressed on the surface of ovarian carcinoma ascites cells. Cancer Res. 1987;47(24 Pt 1):6741–50. PubMed PMID: 3677104.

    CAS  PubMed  Google Scholar 

  71. Yin BW, Kiyamova R, Chua R, Caballero OL, Gout I, Gryshkova V, et al. Monoclonal antibody MX35 detects the membrane transporter NaPi2b (SLC34A2) in human carcinomas. Cancer Immun. 2008;8:3. PubMed PMID: 18251464. Pubmed Central PMCID: 2935786.

    PubMed  PubMed Central  Google Scholar 

  72. Rangel LB, Sherman-Baust CA, Wernyj RP, Schwartz DR, Cho KR, Morin PJ. Characterization of novel human ovarian cancer-specific transcripts (HOSTs) identified by serial analysis of gene expression. Oncogene. 2003;22(46):7225–32. PubMed PMID: 14562052.

    Article  CAS  PubMed  Google Scholar 

  73. Shyian M, Gryshkova V, Kostianets O, Gorshkov V, Gogolev Y, Goncharuk I, et al. Quantitative analysis of SLC34A2 expression in different types of ovarian tumors. Exp Oncol. 2011;33(2):94–8. PubMed PMID: 21716206.

    CAS  PubMed  Google Scholar 

  74. Kim HS, Kim DH, Kim JY, Jeoung NH, Lee IK, Bong JG, et al. Microarray analysis of papillary thyroid cancers in Korean. Korean J Intern Med. 2010;25(4):399–407. PubMed PMID: 21179278. Pubmed Central PMCID: 2997969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen DR, Chien SY, Kuo SJ, Teng YH, Tsai HT, Kuo JH, et al. SLC34A2 as a novel marker for diagnosis and targeted therapy of breast cancer. Anticancer Res. 2010;30(10):4135–40. PubMed PMID: 21036732.

    PubMed  Google Scholar 

  76. Beck Jr GR, Knecht N. Osteopontin regulation by inorganic phosphate is ERK1/2-, protein kinase C-, and proteasome-dependent. J Biol Chem. 2003;278(43):41921–9. PubMed PMID: 12920127.

    Article  CAS  PubMed  Google Scholar 

  77. Beck Jr GR, Moran E, Knecht N. Inorganic phosphate regulates multiple genes during osteoblast differentiation, including Nrf2. Exp Cell Res. 2003;288(2):288–300. PubMed PMID: 12915120.

    Article  CAS  PubMed  Google Scholar 

  78. Steitz SA, Speer MY, Curinga G, Yang HY, Haynes P, Aebersold R, et al. Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res. 2001;89(12):1147–54. PubMed PMID: 11739279.

    Article  CAS  PubMed  Google Scholar 

  79. Matthews CP, Colburn NH, Young MR. AP-1 a target for cancer prevention. Curr Cancer Drug Targets. 2007;7(4):317–24. PubMed PMID: 17979626.

    Article  CAS  PubMed  Google Scholar 

  80. Suyama T, Okada S, Ishijima T, Iida K, Abe K, Nakai Y. High phosphorus diet-induced changes in NaPi-IIb phosphate transporter expression in the rat kidney: DNA microarray analysis. PLoS One. 2012;7(1):e29483. PubMed PMID: 22235299. Pubmed Central PMCID: 3250443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rutherford RB, Foster BL, Bammler T, Beyer RP, Sato S, Somerman MJ. Extracellular phosphate alters cementoblast gene expression. J Dent Res. 2006;85(6):505–9. PubMed PMID: 16723645. Pubmed Central PMCID: 2266827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bergwitz C, Rasmussen MD, DeRobertis C, Wee MJ, Sinha S, Chen HH, et al. Roles of major facilitator superfamily transporters in phosphate response in Drosophila. PLoS One. 2012;7(2):e31730. PubMed PMID: 22359624. Pubmed Central PMCID: 3280997.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Teixeira CC, Mansfield K, Hertkorn C, Ischiropoulos H, Shapiro IM. Phosphate-induced chondrocyte apoptosis is linked to nitric oxide generation. Am J Physiol Cell Physiol. 2001;281(3):C833–9. PubMed PMID: 11502560.

    CAS  PubMed  Google Scholar 

  84. Jin H, Chang SH, Xu CX, Shin JY, Chung YS, Park SJ, et al. High dietary inorganic phosphate affects lung through altering protein translation, cell cycle, and angiogenesis in developing mice. Toxicol Sci Off J Soc Toxicol. 2007;100(1):215–23. PubMed PMID: 17698515.

    Article  CAS  Google Scholar 

  85. Guyton KZ, Kensler TW, Posner GH. Vitamin D and vitamin D analogs as cancer chemopreventive agents. Nutr Rev. 2003;61(7):227–38. PubMed PMID: 12918875.

    Article  PubMed  Google Scholar 

  86. Giovannucci E. Dietary influences of 1,25(OH)2 vitamin D in relation to prostate cancer: a hypothesis. Cancer Causes Control CCC. 1998;9(6):567–82. PubMed PMID: 10189042.

    Article  CAS  PubMed  Google Scholar 

  87. Tuohimaa P. Vitamin D, aging, and cancer. Nutr Rev. 2008;66(10 Suppl 2):S147–52. PubMed PMID: 18844842.

    Article  PubMed  Google Scholar 

  88. Freedman DM, Looker AC, Abnet CC, Linet MS, Graubard BI. Serum 25-hydroxyvitamin D and cancer mortality in the NHANES III study (1988-2006). Cancer Res. 2010;70(21):8587–97. PubMed PMID: 20847342. Pubmed Central PMCID: 2974315.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Ritchie CK, Thomas KG, Andrews LR, Tindall DJ, Fitzpatrick LA. Effects of the calciotrophic peptides calcitonin and parathyroid hormone on prostate cancer growth and chemotaxis. Prostate. 1997;30(3):183–7. PubMed PMID: 9122043.

    Article  CAS  PubMed  Google Scholar 

  90. Iddon J, Bundred NJ, Hoyland J, Downey SE, Baird P, Salter D, et al. Expression of parathyroid hormone-related protein and its receptor in bone metastases from prostate cancer. J Pathol. 2000;191(2):170–4. PubMed PMID: 10861577.

    Article  CAS  PubMed  Google Scholar 

  91. Schwartz GG. Prostate cancer, serum parathyroid hormone, and the progression of skeletal metastases. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2008;17(3):478–83. PubMed PMID: 18349265.

    Article  CAS  Google Scholar 

  92. Vahle JL, Long GG, Sandusky G, Westmore M, Ma YL, Sato M. Bone neoplasms in F344 rats given teriparatide [rhPTH(1-34)] are dependent on duration of treatment and dose. Toxicol Pathol. 2004;32(4):426–38. PubMed PMID: 15204966.

    Article  CAS  PubMed  Google Scholar 

  93. Sukumar D, Partridge NC, Wang X, Shapses SA. The high serum monocyte chemoattractant protein-1 in obesity is influenced by high parathyroid hormone and not adiposity. J Clin Endocrinol Metab. 2011;96(6):1852–8. PubMed PMID: 21508136. Pubmed Central PMCID: 3206398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Linkhart TA, Mohan S. Parathyroid hormone stimulates release of insulin-like growth factor-I (IGF-I) and IGF-II from neonatal mouse calvaria in organ culture. Endocrinology. 1989;125(3):1484–91. PubMed PMID: 2759029.

    Article  CAS  PubMed  Google Scholar 

  95. Lowik CW, van der Pluijm G, Bloys H, Hoekman K, Bijvoet OL, Aarden LA, et al. Parathyroid hormone (PTH) and PTH-like protein (PLP) stimulate interleukin-6 production by osteogenic cells: a possible role of interleukin-6 in osteoclastogenesis. Biochem Biophys Res Commun. 1989;162(3):1546–52. PubMed PMID: 2548501.

    Article  CAS  PubMed  Google Scholar 

  96. Wysolmerski JJ. Parathyroid hormone-related protein: an update. J Clin Endocrinol Metab. 2012;97(9):2947–56. PubMed PMID: 22745236. Pubmed Central PMCID: 3431578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116–29. PubMed PMID: 20094046.

    Article  CAS  PubMed  Google Scholar 

  98. Tebben PJ, Kalli KR, Cliby WA, Hartmann LC, Grande JP, Singh RJ, et al. Elevated fibroblast growth factor 23 in women with malignant ovarian tumors. Mayo Clin Proc Mayo Clin. 2005;80(6):745–51. PubMed PMID: 15948297.

    Article  CAS  PubMed  Google Scholar 

  99. Jacobs E, Martinez ME, Buckmeier J, Lance P, May M, Jurutka P. Circulating fibroblast growth factor-23 is associated with increased risk for metachronous colorectal adenoma. J Carcinog. 2011;10:3. PubMed PMID: 21383962. Pubmed Central PMCID: 3049272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444(7120):770–4. PubMed PMID: 17086194.

    Article  CAS  PubMed  Google Scholar 

  101. Wolf I, Levanon-Cohen S, Bose S, Ligumsky H, Sredni B, Kanety H, et al. Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene. 2008;27(56):7094–105. PubMed PMID: 18762812.

    Article  CAS  PubMed  Google Scholar 

  102. Abramovitz L, Rubinek T, Ligumsky H, Bose S, Barshack I, Avivi C, et al. KL1 internal repeat mediates klotho tumor suppressor activities and inhibits bFGF and IGF-I signaling in pancreatic cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17(13):4254–66. PubMed PMID: 21571866.

    Article  CAS  Google Scholar 

  103. Camilli TC, Xu M, O’Connell MP, Chien B, Frank BP, Subaran S, et al. Loss of Klotho during melanoma progression leads to increased filamin cleavage, increased Wnt5A expression, and enhanced melanoma cell motility. Pigment Cell Melanoma Res. 2011;24(1):175–86. PubMed PMID: 20955350. Pubmed Central PMCID: 3021583.

    Article  CAS  PubMed  Google Scholar 

  104. Lee J, Jeong DJ, Kim J, Lee S, Park JH, Chang B, et al. The anti-aging gene KLOTHO is a novel target for epigenetic silencing in human cervical carcinoma. Mol Cancer. 2010;9:109. PubMed PMID: 20482749. Pubmed Central PMCID: 2885346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Wang L, Wang X, Wang X, Jie P, Lu H, Zhang S, et al. Klotho is silenced through promoter hypermethylation in gastric cancer. Am J Cancer Res. 2011;1(1):111–9. PubMed PMID: 21969138. Pubmed Central PMCID: 3180103.

    CAS  PubMed  Google Scholar 

  106. Pan J, Zhong J, Gan LH, Chen SJ, Jin HC, Wang X, et al. Klotho, an anti-senescence related gene, is frequently inactivated through promoter hypermethylation in colorectal cancer. Tumour Biol J Int Soc Oncodev Biol Med. 2011;32(4):729–35. PubMed PMID: 21523445.

    Article  CAS  Google Scholar 

  107. Zhu Y, Xu L, Zhang J, Xu W, Liu Y, Yin H, et al. Klotho suppresses tumor progression via inhibiting PI3K/Akt/GSK3beta/Snail signaling in renal cell carcinoma. Cancer Sci. 2013;104(6):663–71. PubMed PMID: 23433103.

    Article  CAS  PubMed  Google Scholar 

  108. Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J, et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science. 2007;317(5839):803–6. PubMed PMID: 17690294.

    Article  CAS  PubMed  Google Scholar 

  109. Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L, et al. Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem. 2011;286(10):8655–65. PubMed PMID: 21209102. Pubmed Central PMCID: 3048747.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Lau WL, Leaf EM, Hu MC, Takeno MM, Kuro-o M, Moe OW, et al. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 2012;82(12):1261–70. PubMed PMID: 22932118. Pubmed Central PMCID: 3511664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Matsuzaki H, Katsumata S, Uehara M, Suzuki K, Miwa M. High-phosphorus diet induces osteopontin expression of renal tubules in rats. J Clin Biochem Nutr. 2007;41(3):179–83. PubMed PMID: 18299713. Pubmed Central PMCID: 2243242.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Senger DR, Perruzzi CA, Papadopoulos A. Elevated expression of secreted phosphoprotein I (osteopontin, 2ar) as a consequence of neoplastic transformation. Anticancer Res. 1989;9(5):1291–9. PubMed PMID: 2686530.

    CAS  PubMed  Google Scholar 

  113. Denhardt DT, Mistretta D, Chambers AF, Krishna S, Porter JF, Raghuram S, et al. Transcriptional regulation of osteopontin and the metastatic phenotype: evidence for a Ras-activated enhancer in the human OPN promoter. Clin Exp Metastasis. 2003;20(1):77–84. PubMed PMID: 12650610.

    Article  CAS  PubMed  Google Scholar 

  114. Rittling SR, Chambers AF. Role of osteopontin in tumour progression. Br J Cancer. 2004;90(10):1877–81. PubMed PMID: 15138464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. El-Tanani MK. Role of osteopontin in cellular signaling and metastatic phenotype. Front Biosci J Virtual Libr. 2008;13:4276–84. PubMed PMID: 18508510.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

G.R. Beck is funded by a grant from the National Cancer Institute CA136716 and by Award Number I01BX002363 from the Biomedical Laboratory Research & Development Service of the VA Office of Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George R. Beck Jr. PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beck, G.R. (2017). Phosphorus and Malignancies. In: Gutiérrez, O., Kalantar-Zadeh, K., Mehrotra, R. (eds) Clinical Aspects of Natural and Added Phosphorus in Foods. Nutrition and Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6566-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6566-3_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6564-9

  • Online ISBN: 978-1-4939-6566-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics