Skip to main content
Log in

The SLC20 family of proteins: dual functions as sodium-phosphate cotransporters and viral receptors

  • The ABC of Solute Carriers
  • Guest Editor: Matthias A. Hediger
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The SLC20 family transport proteins were originally identified as retroviral receptors (called Glvr-1 and Ram-1). Since then, they have been shown to function as sodium-phosphate (Na/Pi) cotransporters, and have subsequently been classified as type III Na/Pi cotransporters (now called Pit-1 and Pit-2). The Pit cotransporters share ≈60% sequence homology, they have a high affinity for Pi, they are electrogenic with a coupling stoichiometry of >1 Na+ per Pi ion cotransported, and are inhibited by alkaline pH and phosphonoformic acid (PFA). Pit-1 and Pit-2 expression and/or activity has also been shown to be regulated by Pi deprivation in some, but not all cells and tissues examined. The Pit-1 and Pit-2 cotransporters are widely expressed, but cell-type specific expression has only been investigated in bone, kidney and intestine. Both proteins are likely expressed on the basolateral membranes of polarized epithelial cells, where they are likely involved in cellular Pi homeostasis. The Pit-1 and Pit-2 gene promoters have been cloned and characterized. While the exact roles of the Pit cotransporters in different cell types has not been definitively determined, they may be involved in important physiological pathways in bone, aortic smooth muscle cells, parathyroid glands, kidney and intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. Amstutz M, Mohrmann M, Gmaj P, Murer H (1985) Effect of pH on phosphate transport in rat renal brush-border membrane vesicles. Am J Physiol 248:F705–F710

    CAS  PubMed  Google Scholar 

  2. Bai L, Collins JF, Ghishan FK (2000) Cloning and characterization of a type III Na-dependent phosphate cotransporter from mouse intestine. Am J Physiol 279:C1135–C1143

    CAS  Google Scholar 

  3. Bai L, Collins JF, Xu H, Xu L, Ghishan FK (2001) Molecular cloning of a murine type III sodium-dependent phosphate cotransporter (Pit-2) gene promoter. Biochim Biophy Acta 1522:42–45

    Article  CAS  Google Scholar 

  4. Beck L, Karapalis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS (1998) Targeted inactivation of Npt 2 in mice leads to severe renal phosphate wasting, hypercalciuria and skeletal abnormalities. Proc Natl Acad Sci USA 95:5372–5377

    CAS  PubMed  Google Scholar 

  5. Bottger P, Pedersen L (2002) Two highly conserved glutamate residues critical for type III sodium-dependent phosphate transport revealed by uncoupling transport function from retroviral receptor function. J Biol Chem 277:42741–42747

    Article  PubMed  Google Scholar 

  6. Chein ML, Foster JL, Douglas JL, Garcia JV (1997) The amphotropic murine leukemia virus receptor gene encodes a 71-kilodalton protein that is induced by phosphate depletion. J Virol 17:4564–4570

    Google Scholar 

  7. Chein ML, O'Neill E, Garcia JV (1998) Phosphate depletion enhances the stability of the amphotropic murine leukemia virus receptor mRNA. Virology 240:109–117

    Article  PubMed  Google Scholar 

  8. Collins JF, Gishan FK (1994) Molecular cloning, functional expression, tissue distribution and in situ hybridization of the renal sodium phosphate (Na/Pi) transporter in the control and hypophosphatemic mouse. FASEB J 8:862–868

    CAS  PubMed  Google Scholar 

  9. Custer M, Loetscher M, Biber J, Murer H, Kaissling B (1994) Expression of Na/Pi cotransport in rat kidney: localization by RT-PCR and immunohistochemistry. Am J Physiol 266:F767–F774

    CAS  PubMed  Google Scholar 

  10. Farrell KB, Russ JL, Murthy RK, Eiden MV (2002) Reassessing the role of region A in Pit1-mediated viral entry. J Virol 76: 7683–7693

    Article  CAS  PubMed  Google Scholar 

  11. Giachelli CM, Shuichi J, Atshushi S, Nishizawa Y, Mori K, Morii H (2001) Vascular calcification and inorganic phosphate. Am J Kidney Dis 38:S34–S37

    CAS  Google Scholar 

  12. Guicheux J, Palmer G, Shukunami C, Hiraki Y, Bonjour JP, Caverzasio J (2000) A novel in vitro culture system for analysis of functional role of phosphate transport in endochondral ossification. Bone 27:69–74

    Article  CAS  PubMed  Google Scholar 

  13. Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J (1998) Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci USA 95:14564–14569

    CAS  PubMed  Google Scholar 

  14. Hoag HM, Martel J, Gauthier C, Tenenhouse HS (1999) Effects of Npt2 gene ablation and low-phosphate diet on renal Na+/phosphate cotransport and cotransporter gene expression. J Clin Invest 104:679–686

    CAS  PubMed  Google Scholar 

  15. Jobbagy Z, Olah Z, Petrovics G, Eiden MV, Leverett BD, Dean NM, Anderson WB (1999) Up-regulation of the Pit-2 phosphate transporter/retrovirus receptor by protein kinase C epsilon. J Biol Chem 274:7067–7071

    Article  CAS  PubMed  Google Scholar 

  16. Johann SV, Gibbons JJ, O'Hara B (1992) GLVR1, a receptor for gibbon ape leukemia virus, is homologous to phosphate permease of Neuropora crassa and is expressed at high levels in the brain and thymus. J Virol 66:1635–1640

    CAS  PubMed  Google Scholar 

  17. Jono S, McKee MD, Murry CE, Shioi A, Nishizawa Y, Mori K, Morii H, Giachelli CM (2000) Phosphate regulation of vascular smooth muscle cell calcification. Circ Res 87:E10–E17

    CAS  PubMed  Google Scholar 

  18. Katai K, Miyamoto KI, Kishida S, Segawa H, Nii T, Tanaka H, Tani Y, Arai H, Tatsumi S, Morita K, Taketani Y, Takeda E (1999) Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3. Biochem J 343:705–712

    CAS  PubMed  Google Scholar 

  19. Kavanaugh MP, Kabat D (1996) Identification and characterization of a widely expressed phosphate transporter/retrovirus receptor family. Kidney Int 49:959–963

    CAS  PubMed  Google Scholar 

  20. Kavanaugh MP, Miller DG, Zhang W, Law W, Kozak SL, Kabat D, Miller AD (1994) Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc Natl Acad Sci USA 91:7071–7075

    CAS  PubMed  Google Scholar 

  21. Magagnin S, Werner A, Markovich D, Sorribas V, Stange G, Biber J, Murer H (1993) Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc Natl Acad Sci USA 90:5979–83

    CAS  PubMed  Google Scholar 

  22. Miller DG, Edwards RH, Miller AD (1994) Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus. Proc Natl Acad Sci USA 91:78–82

    CAS  PubMed  Google Scholar 

  23. Miyamoto K, Segawa H, Morita K, Nii T, Tatsumi S, Taketani Y, Takeda E (1997) Relative contributions of Na+-dependent phosphate cotransporters to phosphate transport in mouse kidney: RNAse H-mediated hybrid depletion analysis. Biochem J 327:735–739

    CAS  PubMed  Google Scholar 

  24. Miyamoto K, Ito M, Segawa H, Kuwahata M (2000) Secondary hyperparathyroidism and phosphate sensing in parathyroid glands. J Med Invest 47:118–122

    CAS  PubMed  Google Scholar 

  25. Murer H, Hernando N, Forster I, Biber J (2000) Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 80:1373–1409

    CAS  PubMed  Google Scholar 

  26. O'Hara B, Johann SV, Klinger HP, Blair DG, Rubinson H, Dunn KJ, Sass P, Vitek SM, Robins T (1990) Characterization of a human gene conferring sensitivity to infection by gibbon ape leukemia virus. Cell Growth Differ 1:119–127

    CAS  PubMed  Google Scholar 

  27. Olah Z, Lehel C, Anderson WB, Eiden MV, Wilson CA (1994) The cellular receptor for gibbon ape leukemia virus is a novel high affinity sodium-dependent phosphate transporter. J Biol Chem 269:25426–25431

    CAS  PubMed  Google Scholar 

  28. Palmer G, Bonjour JP, Caverzasio J (1997) Expression of a newly identified phosphate transporter/retrovirus receptor in human SaOS-2 osteoblast-like cells and its regulation by insulin-like growth factor I. Endocrinology 138:5202–5209

    CAS  PubMed  Google Scholar 

  29. Palmer G, Zhao J, Bonjour J, Hofstetter W, Caverzasio J (1999) In vivo expression of transcripts encoding the Glvr-1 phosphate transporter/retrovirus receptor during bone development. Bone 24:1–7

    Article  CAS  PubMed  Google Scholar 

  30. Palmer G, Guicheux J, Bonjour JP, Caverzasio J (2000) Transforming growth factor-beta stimulates inorganic phosphate transport and expression of the type III phosphate transporter Glvr-1 in chondrogenic ATDC5 cells. Endocrinology 141:2236–22243

    CAS  PubMed  Google Scholar 

  31. Palmer G, Manen D, Bonjour J, Caverzasio J (2000) Structure of the murine Pit1 phosphate transporter/retrovirus receptor gene and functional characterization of its promoter region. Gene 244:35–45

    Article  CAS  PubMed  Google Scholar 

  32. Rodrigues P, Heard JM (1999) Modulation of phosphate uptake and amphotropic murine leukemia virus entry by posttranslational modifications PIT-2. J Virol 73:3789–3799

    CAS  PubMed  Google Scholar 

  33. Rudra-Ganguly N, Ghosh AK, Roy-Burman P (1998) Retrovirus receptor Pit-1 of Felis catus. Biochim Biophys Acta 1443:407–413

    Article  CAS  PubMed  Google Scholar 

  34. Salaun C, Rodrigues P, Heard JM (2001) Transmembrane topology of Pit-2, a phosphate transporter-retrovirus receptor. J Virol 75:5584–5592

    Article  PubMed  Google Scholar 

  35. Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/Pi cotransporter. J Biol Chem 277:19665–19672

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki A, Palmer G, Bonjour JP, Caverzasio J (2001) Stimulation of sodium-dependent inorganic phosphate transport by activation of Gi/o-protein-coupled receptors by epinephrine in MC3T3-E1 osteoblast-like cells. Bone 28:589–594

    Article  CAS  PubMed  Google Scholar 

  37. Tatsumi S, Segawa H, Morita K, Hata H, Kouda T, Yamamoto H, Inoue Y, Nii T, Katai K, Taketani Y, Miyamoto KI, Takeda E (1998) Molecular cloning and hormonal regulation of Pit-1, a sodium-dependent phosphate cotransporter from rat parathyroid glands. Endocrinology 139:1692–1699

    CAS  PubMed  Google Scholar 

  38. Tenehouse HS, Roy S, Martel J, Gauthier C (1998) Differential expression, abundance, and regulation of Na+-phosphate cotransporter genes in murine kidney. Am J Physiol 275:F527–F534

    PubMed  Google Scholar 

  39. Tenehouse HS, Gauthier C, Martel J, Gesek FA, Courtermarsh BA, Friedman PA (1998) Na+-Phosphate cotransport in mouse distal convoluted tubule cells: evidence for Glvr-1 and Ram-1 gene expression. J Bone Miner Res 13:590–597

    PubMed  Google Scholar 

  40. Traebert M, Hattenhauer O, Murer H, Kaissling B, Biber J (1999) Expression and localization of a type II sodium-phosphate cotransporter in murine type II alveolar epithelial cells. Am J Physiol 277:L868–L873

    CAS  PubMed  Google Scholar 

  41. Werner A, Moore ML, Mantei N, Biber J, Semenza G, Murer H (1991) Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc Natl Acad Sci USA 88:9608–9612

    CAS  PubMed  Google Scholar 

  42. Zeijl M van, Johann SV, Closs E, Cunningham J, Eddy R, Shows T, O'Hara B (1994) A human amphotropic retrovirus receptor is a second member of the gibbon ape leukemia virus receptor family. Proc Natl Acad Sci USA 91:1168–1172

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayez K. Ghishan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, J.F., Bai, L. & Ghishan, F.K. The SLC20 family of proteins: dual functions as sodium-phosphate cotransporters and viral receptors. Pflugers Arch - Eur J Physiol 447, 647–652 (2004). https://doi.org/10.1007/s00424-003-1088-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1088-x

Keywords

Navigation