Skip to main content

Advertisement

Log in

Klotho, an anti-senescence related gene, is frequently inactivated through promoter hypermethylation in colorectal cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

The potential anti-senescence gene Klotho (KL) has been recently found to participate in the progression of several different human cancers including breast, lung, and cervical cancer. In this current study, we identified KL as a candidate tumor suppressor gene silenced through promoter hypermethylation in colorectal cancer (CRC). KL gene expression is found to be absent or reduced in colon cancer cell lines (5/6, 83.3%), which can be reversed by treatment with demethylation agent 5-aza-2′-deoxycytidine (Aza), but not HDAC inhibitor trichostatin A. In addition, KL expression is markedly downregulated in colorectal carcinoma tissues when compared to the adjacent nontumor tissues (n = 25, p < 0.001). The methylation of the KL gene promoter was frequently detected in primary tumor tissues (34/40, 85%) when compared with adjacent nontumor colon tissues. Furthermore, ectopic expression of KL led to the cell proliferation inhibition of colon cancer cell lines via the induction of cell apoptosis and S-phase cell cycle arrest. Taken together, our results suggest that KL is inactivated through promoter hypermethylation and potentially functions as a tumor suppressor gene in CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.

    Article  PubMed  Google Scholar 

  2. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24:2137–50.

    Article  PubMed  Google Scholar 

  3. Ahnen DJ. The american college of gastroenterology emily couric lecture—the adenoma–carcinoma sequence revisited: has the era of genetic tailoring finally arrived? Am J Gastroenterol. 2011;106:190–8.

    Article  PubMed  Google Scholar 

  4. Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008;135:1079–99.

    Article  PubMed  CAS  Google Scholar 

  5. Wong JJ, Hawkins NJ, Ward RL. Colorectal cancer: a model for epigenetic tumorigenesis. Gut. 2007;56:140–8.

    Article  PubMed  CAS  Google Scholar 

  6. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148–59.

    Article  PubMed  CAS  Google Scholar 

  7. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92.

    Article  PubMed  CAS  Google Scholar 

  8. Ang PW, Loh M, Liem N, Lim PL, Grieu F, et al. Comprehensive profiling of DNA methylation in colorectal cancer reveals subgroups with distinct clinicopathological and molecular features. BMC Cancer. 2010;10:227–34.

    Article  PubMed  Google Scholar 

  9. Petko Z, Ghiassi M, Shuber A, Gorham J, Smalley W, et al. Aberrantly methylated CDKN2A, MGMT, and MLH1 in colon polyps and in fecal DNA from patients with colorectal polyps. Clin Cancer Res. 2005;11:1203–9.

    PubMed  CAS  Google Scholar 

  10. Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55:4525–30.

    PubMed  CAS  Google Scholar 

  11. Lee BB, Lee EJ, Jung EH, Chun HK, Chang DK, Song SY, et al. Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin Cancer Res. 2009;15:6185–91.

    Article  PubMed  CAS  Google Scholar 

  12. Wang LJ, Jin HC, Wang X, Lam EK, Zhang JB, Liu X, et al. ZIC1 is downregulated through promoter hypermethylation in gastric cancer. Biochem Biophys Res Commun. 2009;379:959–63.

    Article  PubMed  CAS  Google Scholar 

  13. Liu X, Wang X, Zhang J, Lam EK, Shin VY, Cheng AS, et al. Warburg effect revisited: an epigenetic link between glycolysis and gastric carcinogenesis. Oncogene. 2010;29:442–50.

    Article  PubMed  CAS  Google Scholar 

  14. Liu X, Lam EK, Wang X, Zhang J, Cheng YY, Lam YW, et al. Promoter hypermethylation mediates downregulation of thiamine receptor SLC19A3 in gastric cancer. Tumour Biol. 2009;30:242–8.

    Article  PubMed  Google Scholar 

  15. Wang X, Lau KK, So LK, Lam YW. CHD5 is down-regulated through promoter hypermethylation in gastric cancer. J Biomed Sci. 2009;16:95.

    Article  PubMed  CAS  Google Scholar 

  16. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390:45–51.

    Article  PubMed  CAS  Google Scholar 

  17. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, et al. Suppression of aging in mice by the hormone Klotho. Science. 2005;309:1829–33.

    Article  PubMed  CAS  Google Scholar 

  18. Wang YA. Klotho, the long sought-after elixir and a novel tumor suppressor? Cancer Biol Ther. 2006;5:20–1.

    PubMed  CAS  Google Scholar 

  19. Wolf I, Levanon-Cohen S, Bose S, Ligumsky H, Sredni B, Kanety H, et al. Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene. 2008;27:7094–105.

    Article  PubMed  CAS  Google Scholar 

  20. Chen B, Wang X, Zhao W, Wu J. Klotho inhibits growth and promotes apoptosis in human lung cancer cell line A549. J Exp Clin Cancer Res. 2010;29:99–106.

    Article  PubMed  Google Scholar 

  21. Lee J, Jeong DJ, Kim J, Lee S, Park JH, Chang B, et al. The anti-aging gene KLOTHO is a novel target for epigenetic silencing in human cervical carcinoma. Mol Cancer. 2010;9:109–18.

    Article  PubMed  Google Scholar 

  22. Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med. 2009;361:1475–85.

    Article  PubMed  CAS  Google Scholar 

  23. Collado M, Serrano M. Senescence in tumours: evidence from mice and humans. Nat Rev Cancer. 2010;10:51–7.

    Article  PubMed  CAS  Google Scholar 

  24. Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8:915–28.

    Article  PubMed  CAS  Google Scholar 

  25. Palmqvist R, Hallmans G, Rinaldi S, Biessy C, Stenling R, Riboli E, et al. Plasma insulin-like growth factor 1, insulin-like growth factor binding protein 3, and risk of colorectal cancer: a prospective study in northern Sweden. Gut. 2002;50:642–6.

    Article  PubMed  CAS  Google Scholar 

  26. Yavari K, Taghikhani M, Ghannadi Maragheh M, Mesbah-Namin SA, Babaei MH. Downregulation of IGF-IR expression by RNAi inhibits proliferation and enhances chemosensitization of human colon cancer cells. Int J Colorectal Dis. 2010;25:9–16.

    Article  PubMed  Google Scholar 

  27. de Oliveira RM. Klotho RNAi induces premature senescence of human cells via a p53/p21 dependent pathway. FEBS Lett. 2006;580:5753–8.

    Article  PubMed  Google Scholar 

  28. Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J, et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science. 2007;317:803–6.

    Article  PubMed  CAS  Google Scholar 

  29. Wang LJ, Wang X, Wang XJ, Pan J, Zhang SJ, et al. Klotho is silenced through promoter hypermethylation in gastric cancer. Am J Cancer Res. 2011;1:111–9.

    CAS  Google Scholar 

  30. Groden J. Touch and go: mediating cell-to-cell interactions and Wnt signaling in gastrointestinal tumor formation. Gastroenterology. 2004;119:1161–4.

    Article  Google Scholar 

  31. Schneikert J, Behrens J. The canonical Wnt signalling pathway and its APC partner in colon cancer development. Gut. 2007;56:417–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the National Natural Scientific Foundation of China (30900676,81071963). We thank Dr. Manish Gala and Prof/Dr. Georg Enders for critical review and editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian Wang or Liang Jing Wang.

Additional information

Jie Pan and Jing Zhong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, J., Zhong, J., Gan, L.H. et al. Klotho, an anti-senescence related gene, is frequently inactivated through promoter hypermethylation in colorectal cancer. Tumor Biol. 32, 729–735 (2011). https://doi.org/10.1007/s13277-011-0174-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-011-0174-5

Keywords

Navigation