Skip to main content

Vitamin K’s Role in Age-Related Bone Loss: A Critical Review

  • Chapter
  • First Online:
Nutrition and Bone Health

Part of the book series: Nutrition and Health ((NH))

Abstract

Vitamin K is a group of structurally similar vitamers that all function as an enzymatic cofactor in the conversion of specific glutamic acid (Glu) residues to gamma (γ)-carboxyglutamic acid (Gla) residues in certain proteins. The common feature of these proteins is that the Gla residues are essential for binding calcium. While the most commonly known vitamin K-dependent (VKD) proteins function in coagulation, several VKD proteins are present in extra-hepatic tissue, including bone. There are two naturally occurring form of vitamin K that share a common chemical structure—a 2-methyl-1,4-napthoquinone (Fig. 29.1) and are capable of carboxylating VKD proteins. The primary dietary form, phylloquinone (vitamin K1), which has a phytyl group at the 3-position, is found in green leafy vegetables and vegetable oils. Phylloquinone contributes up to 60 % of total dietary vitamin K intakes. Menaquinones, collectively known as vitamin K2, differ structurally from phylloquinone by their 3′-substituted unsaturated multiprenyl group side chain. Menaquinone-4 (MK-4) is primarily found in poultry and pork products because a synthetic precursor to MK-4, menadione (vitamin K3) is abundant in animal feed. Physiologically, phylloquinone can also be converted to MK-4. While phylloquinone is the predominate form of vitamin K in circulation and in bone, MK-4 concentrations are higher than phylloquinone in other extrahepatic tissues. Unlike other menaquinones, MK-4 is not formed from bacterial synthesis. Therefore the common usage of the term, vitamin K2, to include all menaquinones is misleading as there are different origins and potential functions within this large group of vitamers. Longer-chain menaquinones [menaquinone-7 (MK-7)–menaquinone-10] originate from bacterial synthesis, and are primarily found in fermented dairy products and fermented plant-based foods. Natto, for example, is a fermented soy food traditionally eaten in Japan and is rich in MK-7. However, menaquinones generally contribute less to total vitamin K intakes of Western diets than phylloquinone. The role of long-chain menaquinones to human health is complicated by the fact that they are also synthesized by bacteria in the lower intestine. Not all intestinal bacteria synthesize menaquinones and the intestinally synthesized menaquinones are not well-absorbed, so their contribution to vitamin K nutritional status is uncertain. For the purpose of this review, we will focus on vitamin K intakes from food and/or supplements, and will assume that circulating vitamin K concentrations are derived primarily from intakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Booth SL, Suttie JW. Dietary intake and adequacy of vitamin K. J Nutr. 1998;128:785–8.

    CAS  PubMed  Google Scholar 

  2. Walther B, Karl JP, Booth SL, Boyaval P. Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Adv Nutr. 2013;4:463–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Thijssen HH, Drittij-Reijnders MJ. Vitamin K status in human tissues: tissue-specific accumulation of phylloquinone and menaquinone-4. Br J Nutr. 1996;75:121–7.

    Article  CAS  PubMed  Google Scholar 

  4. Thijssen HH, Drittij-Reijnders MJ, Fischer MA. Phylloquinone and menaquinone-4 distribution in rats: synthesis rather than uptake determines menaquinone-4 organ concentrations. J Nutr. 1996;126:537–43.

    CAS  PubMed  Google Scholar 

  5. Ronden JE, Thijssen HH, Vermeer C. Tissue distribution of K-vitamers under different nutritional regimens in the rat. Biochim Biophys Acta. 1998;1379:16–22.

    Article  CAS  PubMed  Google Scholar 

  6. Groenen-van Dooren MM, Ronden JE, Soute BA, Vermeer C. Bioavailability of phylloquinone and menaquinones after oral and colorectal administration in vitamin K-deficient rats. Biochem Pharmacol. 1995;50:797–801.

    Article  CAS  PubMed  Google Scholar 

  7. Beulens JW, Booth SL, van den Heuvel EG, Stoecklin E, Baka A, Vermeer C. The role of menaquinones (vitamin K2) in human health. Br J Nutr. 2013;110(8):1357–68.

    Article  CAS  PubMed  Google Scholar 

  8. Food and Nutrition Board, Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academy Press; 2001.

    Google Scholar 

  9. Shearer MJ, Fu X, Booth SL. Vitamin K nutrition, metabolism, and requirements: current concepts and future research. Adv Nutr. 2012;3:182–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Booth SL, Pennington JA, Sadowski JA. Food sources and dietary intakes of vitamin K-1 (phylloquinone) in the American diet: data from the FDA Total Diet Study. J Am Diet Assoc. 1996;96:149–54.

    Article  CAS  PubMed  Google Scholar 

  11. Thane CW, Bolton-Smith C, Coward WA. Comparative dietary intake and sources of phylloquinone (vitamin K1) among British adults in 1986–7 and 2000–1. Br J Nutr. 2006;96:1105–15.

    Article  CAS  PubMed  Google Scholar 

  12. Collins A, Cashman KD, Kiely M. Phylloquinone (vitamin K1) intakes and serum undercarboxylated osteocalcin levels in Irish postmenopausal women. Br J Nutr. 2006;95:982–8.

    Article  CAS  PubMed  Google Scholar 

  13. Yan L, Zhou B, Greenberg D, et al. Vitamin K status of older individuals in northern China is superior to that of older individuals in the UK. Br J Nutr. 2004;92:939–45.

    Article  CAS  PubMed  Google Scholar 

  14. Maillard C, Berruyer M, Serre CM, Dechavanne M, Delmas PD. Protein-S, a vitamin K-dependent protein, is a bone matrix component synthesized and secreted by osteoblasts. Endocrinology. 1992;130:1599–604.

    CAS  PubMed  Google Scholar 

  15. Price PA, Caputo JM, Williamson MK. Bone origin of the serum complex of calcium, phosphate, fetuin, and matrix Gla protein: biochemical evidence for the cancellous bone-remodeling compartment. J Bone Miner Res. 2002;17:1171–9.

    Article  CAS  PubMed  Google Scholar 

  16. Gundberg CM, Lian JB, Booth SL. Vitamin K-dependent carboxylation of osteocalcin: friend or foe? Adv Nutr. 2012;3:149–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gundberg CM, Nieman SD, Abrams S, Rosen H. Vitamin K status and bone health: an analysis of methods for determination of undercarboxylated osteocalcin. J Clin Endocrinol Metab. 1998;83:3258–66.

    CAS  PubMed  Google Scholar 

  18. Riggs BL, Tsai KS, Mann KG. Effect of acute increases in bone matrix degradation on circulating levels of bone-Gla protein. J Bone Miner Res. 1986;1:539–42.

    Article  CAS  PubMed  Google Scholar 

  19. Brown JP, Delmas PD, Malaval L, Edouard C, Chapuy MC, Meunier PJ. Serum bone Gla-protein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet. 1984;1:1091–3.

    Article  CAS  PubMed  Google Scholar 

  20. Booth SL, O’Brien-Morse ME, Dallal GE, Davidson KW, Gundberg CM. Response of vitamin K status to different intakes and sources of phylloquinone-rich foods: comparison of younger and older adults. Am J Clin Nutr. 1999;70:368–77.

    CAS  PubMed  Google Scholar 

  21. Undercarboxylated Osteocalcin (Glu-OC) EIA Kit. 2013. Japan, Takara Bio. http://www.clontech.com/takara/US/Products/Cell_Biology/Bone_Research/EIA_Kits/Undercarboxylated_Glu-OC_EIA_Kit?sitex=10031:22372:US

  22. Osteocalcin ELISA: Gla-Osteocalcin High Sensitive EIA Kit (Human). 2013. Japan, Takara Bio. http://www.clontech.com/takara/US/Products/Cell_Biology/Bone_Research/EIA_Kits/Gla-Osteocalcin_High_Sensitive_EIA_Kit-Human?sitex=10031:22372:US

  23. Booth SL, Dallal G, Shea MK, Gundberg C, Peterson JW, Dawson-Hughes B. Effect of vitamin K supplementation on bone loss in elderly men and women. J Clin Endocrinol Metab. 2008;93:1217–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Booth SL, Martini L, Peterson JW, Saltzman E, Dallal GE, Wood RJ. Dietary phylloquinone depletion and repletion in older women. J Nutr. 2003;133:2565–9.

    CAS  PubMed  Google Scholar 

  25. Binkley NC, Krueger DC, Kawahara TN, Engelke JA, Chappell RJ, Suttie JW. A high phylloquinone intake is required to achieve maximal osteocalcin gamma-carboxylation. Am J Clin Nutr. 2002;76:1055–60.

    CAS  PubMed  Google Scholar 

  26. Tabb MM, Sun A, Zhou C, et al. Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J Biol Chem. 2003;278:43919–27.

    Article  CAS  PubMed  Google Scholar 

  27. Ichikawa T, Horie-Inoue K, Ikeda K, Blumberg B, Inoue S. Steroid and xenobiotic receptor SXR mediates vitamin K2-activated transcription of extracellular matrix-related genes and collagen accumulation in osteoblastic cells. J Biol Chem. 2006;281:16927–34.

    Article  CAS  PubMed  Google Scholar 

  28. Ohsaki Y, Shirakawa H, Miura A, et al. Vitamin K suppresses the lipopolysaccharide-induced expression of inflammatory cytokines in cultured macrophage-like cells via the inhibition of the activation of nuclear factor kappaB through the repression of IKKalpha/beta phosphorylation. J Nutr Biochem. 2010;21(11):1120–6.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou C, Tabb MM, Nelson EL, et al. Mutual repression between steroid and xenobiotic receptor and NF-kappaB signaling pathways links xenobiotic metabolism and inflammation. J Clin Invest. 2006;116:2280–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Clowes JA, Riggs BL, Khosla S. The role of the immune system in the pathophysiology of osteoporosis. Immunol Rev. 2005;208:207–27.

    Article  CAS  PubMed  Google Scholar 

  31. Yamaguchi M, Weitzmann MN. Vitamin K2 stimulates osteoblastogenesis and suppresses osteoclastogenesis by suppressing NF-kappaB activation. Int J Mol Med. 2011;27:3–14.

    CAS  PubMed  Google Scholar 

  32. Booth SL, Charrette AM. Vitamin K, oral anticoagulants, and bone health. In: Holick MF, Dawson-Hughes B, editors. Nutrition and bone health. Totowa, NJ: Humana; 2004. p. 457–76.

    Chapter  Google Scholar 

  33. Feskanich D, Weber P, Willett WC, Rockett H, Booth SL, Colditz GA. Vitamin K intake and hip fractures in women: a prospective study. Am J Clin Nutr. 1999;69:74–9.

    CAS  PubMed  Google Scholar 

  34. Booth SL, Tucker KL, Chen H, et al. Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. Am J Clin Nutr. 2000;71:1201–8.

    CAS  PubMed  Google Scholar 

  35. Booth SL, Broe KE, Gagnon DR, et al. Vitamin K intake and bone mineral density in women and men. Am J Clin Nutr. 2003;77:512–6.

    CAS  PubMed  Google Scholar 

  36. Apalset EM, Gjesdal CG, Eide GE, Tell GS. Intake of vitamin K1 and K2 and risk of hip fractures: the Hordaland Health Study. Bone. 2011;49:990–5.

    Article  CAS  PubMed  Google Scholar 

  37. Bullo M, Estruch R, Salas-Salvado J. Dietary vitamin K intake is associated with bone quantitative ultrasound measurements but not with bone peripheral biochemical markers in elderly men and women. Bone. 2011;48:1313–8.

    Article  CAS  PubMed  Google Scholar 

  38. Chan R, Leung J, Woo J. No association between dietary vitamin K intake and fracture risk in Chinese community-dwelling older men and women: a prospective study. Calcif Tissue Int. 2012;90:396–403.

    Article  CAS  PubMed  Google Scholar 

  39. McLean RR, Booth SL, Kiel DP, et al. Association of dietary and biochemical measures of vitamin K with quantitative ultrasound of the heel in men and women. Osteoporos Int. 2006;17:600–7.

    Article  CAS  PubMed  Google Scholar 

  40. Rejnmark L, Vestergaard P, Charles P, et al. No effect of vitamin K1 intake on bone mineral density and fracture risk in perimenopausal women. Osteoporos Int. 2006;17:1122–32.

    Article  CAS  PubMed  Google Scholar 

  41. Khaw KT, Reeve J, Luben R, et al. Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet. 2004;363:197–202.

    Article  PubMed  Google Scholar 

  42. Pluijm SM, Graafmans WC, Bouter LM, Lips P. Ultrasound measurements for the prediction of osteoporotic fractures in elderly people. Osteoporos Int. 1999;9:550–6.

    Article  CAS  PubMed  Google Scholar 

  43. Nayak S, Olkin I, Liu H, et al. Meta-analysis: accuracy of quantitative ultrasound for identifying patients with osteoporosis. Ann Intern Med. 2006;144:832–41.

    Article  PubMed  Google Scholar 

  44. Presse N, Shatenstein B, Kergoat MJ, Ferland G. Validation of a semi-quantitative food frequency questionnaire measuring dietary vitamin K intake in elderly people. J Am Diet Assoc. 2009;109:1251–5.

    Article  CAS  PubMed  Google Scholar 

  45. Braam L, McKeown N, Jacques P, et al. Dietary phylloquinone intake as a potential marker for a heart-healthy dietary pattern in the Framingham Offspring cohort. J Am Diet Assoc. 2004;104:1410–4.

    Article  CAS  PubMed  Google Scholar 

  46. Booth SL, Lichtenstein AH, Dallal GE. Phylloquinone absorption from phylloquinone-fortified oil is greater than from a vegetable in younger and older men and women. J Nutr. 2002;132:2609–12.

    CAS  PubMed  Google Scholar 

  47. Jones KS, Bluck LJ, Wang LY, Stephen AM, Prynne CJ, Coward WA. The effect of different meals on the absorption of stable isotope-labelled phylloquinone. Br J Nutr. 2009;102:1195–202.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Hedrick VE, Dietrich AM, Estabrooks PA, Savla J, Serrano E, Davy BM. Dietary biomarkers: advances, limitations and future directions. Nutr J. 2012;11:109.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Potischman N. Biologic and methodologic issues for nutritional biomarkers. J Nutr. 2003;133 Suppl 3:875S–80.

    CAS  PubMed  Google Scholar 

  50. Cheung AM, Tile L, Lee Y, et al. Vitamin K supplementation in postmenopausal women with osteopenia (ECKO trial): a randomized controlled trial. PLoS Med. 2008;5:e196.

    Article  PubMed  Google Scholar 

  51. Tsugawa N, Shiraki M, Suhara Y, Kamao M, Tanaka K, Okano T. Vitamin K status of healthy Japanese women: age-related vitamin K requirement for gamma-carboxylation of osteocalcin. Am J Clin Nutr. 2006;83:380–6.

    CAS  PubMed  Google Scholar 

  52. Hodges SJ, Akesson K, Vergnaud P, Obrant K, Delmas PD. Circulating levels of vitamins K1 and K2 decreased in elderly women with hip fracture. J Bone Miner Res. 1993;8:1241–5.

    Article  CAS  PubMed  Google Scholar 

  53. Kawana K, Takahashi M, Hoshino H, Kushida K. Circulating levels of vitamin K1, menaquinone-4, and menaquinone-7 in healthy elderly Japanese women and patients with vertebral fractures and patients with hip fractures. Endocr Res. 2001;27:337–43.

    Article  CAS  PubMed  Google Scholar 

  54. Kaneki M, Hodges SJ, Hosoi T, et al. Japanese fermented soybean food as the major determinant of the large geographic difference in circulating levels of vitamin K2: possible implications for hip-fracture risk. Nutrition. 2001;17:315–21.

    Article  CAS  PubMed  Google Scholar 

  55. Fusaro M, Noale M, Viola V, et al. Vitamin K, vertebral fractures, vascular calcifications, and mortality: vitamin K Italian (VIKI) dialysis study. J Bone Miner Res. 2012;27:2271–8.

    Article  CAS  PubMed  Google Scholar 

  56. Tsugawa N, Shiraki M, Suhara Y, et al. Low plasma phylloquinone concentration is associated with high incidence of vertebral fracture in Japanese women. J Bone Miner Metab. 2008;26:79–85.

    Article  CAS  PubMed  Google Scholar 

  57. Booth SL, Broe KE, Peterson JW, et al. Associations between vitamin K biochemical measures and bone mineral density in men and women. J Clin Endocrinol Metab. 2004;89:4904–9.

    Article  CAS  PubMed  Google Scholar 

  58. Shea MK, Booth SL, Nettleton JA, Burke GL, Chen H, Kritchevsky SB. Circulating phylloquinone concentrations of adults in the United States differ according to race and ethnicity. J Nutr. 2012;142:1060–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Luukinen H, Kakonen SM, Pettersson K, et al. Strong prediction of fractures among older adults by the ratio of carboxylated to total serum osteocalcin. J Bone Miner Res. 2000;15:2473–8.

    Article  CAS  PubMed  Google Scholar 

  60. Szulc P, Chapuy MC, Meunier PJ, Delmas PD. Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J Clin Invest. 1993;91:1769–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Szulc P, Arlot M, Chapuy MC, Duboeuf F, Meunier PJ, Delmas PD. Serum undercarboxylated osteocalcin correlates with hip bone mineral density in elderly women. J Bone Miner Res. 1994;9:1591–5.

    Article  CAS  PubMed  Google Scholar 

  62. Vergnaud P, Garnero P, Meunier PJ, Breart G, Kamihagi K, Delmas PD. Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: the EPIDOS Study. J Clin Endocrinol Metab. 1997;82:719–24.

    CAS  PubMed  Google Scholar 

  63. Emaus N, Nguyen ND, Almaas B, et al. Serum level of under-carboxylated osteocalcin and bone mineral density in early menopausal Norwegian women. Eur J Nutr. 2013;52:49–55.

    Article  CAS  PubMed  Google Scholar 

  64. Kim SM, Kim KM, Kim BT, Joo NS, Kim KN, Lee DJ. Correlation of undercarboxylated osteocalcin (ucOC) concentration and bone density with age in healthy Korean women. J Korean Med Sci. 2010;25:1171–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Binkley N, Harke J, Krueger D, et al. Vitamin K treatment reduces undercarboxylated osteocalcin but does not alter bone turnover, density, or geometry in healthy postmenopausal North American women. J Bone Miner Res. 2009;24:983–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Knapen MH, Schurgers LJ, Vermeer C. Vitamin K2 supplementation improves hip bone geometry and bone strength indices in postmenopausal women. Osteoporos Int. 2007;18:963–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Cockayne S, Adamson J, Lanham-New S, Shearer MJ, Gilbody S, Torgerson DJ. Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med. 2006;166:1256–61.

    Article  CAS  PubMed  Google Scholar 

  68. Tamura T, Morgan SL, Takimoto H. Vitamin K and the prevention of fractures. Arch Intern Med. 2007;167:94–5.

    PubMed  Google Scholar 

  69. Inoue T, Fujita T, Kishimoto H, et al. Randomized controlled study on the prevention of osteoporotic fractures (OF study): a phase IV clinical study of 15-mg menatetrenone capsules. J Bone Miner Metab. 2009;27:66–75.

    Article  CAS  PubMed  Google Scholar 

  70. Kasukawa Y, Miyakoshi N, Ebina T, et al. Effects of risedronate alone or combined with vitamin K on serum undercarboxylated osteocalcin and osteocalcin levels in postmenopausal osteoporosis. J Bone Miner Metab. 2014;32(3):290–7.

    Article  CAS  PubMed  Google Scholar 

  71. Koitaya N, Sekiguchi M, Tousen Y, et al. Low-dose vitamin K (MK-4) supplementation for 12 months improves bone metabolism and prevents forearm bone loss in postmenopausal Japanese women. J Bone Miner Metab. 2014;32(2):142–50.

    Article  CAS  PubMed  Google Scholar 

  72. Braam LA, Knapen MH, Geusens P, et al. Vitamin K1 supplementation retards bone loss in postmenopausal women between 50 and 60 years of age. Calcif Tissue Int. 2003;73:21–6.

    Article  CAS  PubMed  Google Scholar 

  73. Bolton-Smith C, McMurdo ME, Paterson CR, et al. Two-year randomized controlled trial of vitamin K1 (phylloquinone) and vitamin D3 plus calcium on the bone health of older women. J Bone Miner Res. 2007;22:509–19.

    Article  CAS  PubMed  Google Scholar 

  74. Kanellakis S, Moschonis G, Tenta R, et al. Changes in parameters of bone metabolism in postmenopausal women following a 12-month intervention period using dairy products enriched with calcium, vitamin D, and phylloquinone (vitamin K(1)) or menaquinone-7 (vitamin K (2)): the Postmenopausal Health Study II. Calcif Tissue Int. 2012;90:251–62.

    Article  CAS  PubMed  Google Scholar 

  75. Abrahamsen B, Vestergaard P, Rud B, et al. Ten-year absolute risk of osteoporotic fractures according to BMD T score at menopause: the Danish Osteoporosis Prevention Study. J Bone Miner Res. 2006;21:796–800.

    Article  PubMed  Google Scholar 

  76. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19:385–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Kopperdahl DL, Aspelund T, Hoffmann PF, et al. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res. 2014;29(3):570–80.

    Article  PubMed  Google Scholar 

  78. Schurgers LJ, Teunissen KJ, Hamulyak K, Knapen MH, Vik H, Vermeer C. Vitamin K-containing dietary supplements: comparison of synthetic vitamin K1 and natto-derived menaquinone-7. Blood. 2007;109:3279–83.

    Article  CAS  PubMed  Google Scholar 

  79. Sato T, Schurgers LJ, Uenishi K. Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutr J. 2012;11:93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Schurgers LJ, Shearer MJ, Hamulyak K, Stocklin E, Vermeer C. Effect of vitamin K intake on the stability of oral anticoagulant treatment: dose-response relationships in healthy subjects. Blood. 2004;104:2682–9.

    Article  CAS  PubMed  Google Scholar 

  81. Theuwissen E, Cranenburg EC, Knapen MH, et al. Low-dose menaquinone-7 supplementation improved extra-hepatic vitamin K status, but had no effect on thrombin generation in healthy subjects. Br J Nutr. 2012;108:1652–7.

    Article  CAS  PubMed  Google Scholar 

  82. Emaus N, Gjesdal CG, Almas B, et al. Vitamin K2 supplementation does not influence bone loss in early menopausal women: a randomised double-blind placebo-controlled trial. Osteoporos Int. 2010;21:1731–40.

    Article  CAS  PubMed  Google Scholar 

  83. Forli L, Bollerslev J, Simonsen S, et al. Dietary vitamin K2 supplement improves bone status after lung and heart transplantation. Transplantation. 2010;89:458–64.

    Article  CAS  PubMed  Google Scholar 

  84. Knapen MH, Drummen NE, Smit E, Vermeer C, Theuwissen E. Three-year low-dose menaquinone-7 supplementation helps decrease bone loss in healthy postmenopausal women. Osteoporos Int. 2013;24(9):2499–507.

    Article  CAS  PubMed  Google Scholar 

  85. Kamao M, Suhara Y, Tsugawa N, et al. Vitamin K content of foods and dietary vitamin K intake in Japanese young women. J Nutr Sci Vitaminol (Tokyo). 2007;53:464–70.

    Article  CAS  Google Scholar 

Download references

Support

National Institute of Arthritis and Musculoskeletal Disease (K01AR063167), the Arthritis Foundation (New Investigator Grant) and the U.S. Department of Agriculture, Agricultural Research Service under Cooperative Agreement No. 58-1950-7-707.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah L. Booth Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shea, M.K., Booth, S.L. (2015). Vitamin K’s Role in Age-Related Bone Loss: A Critical Review. In: Holick, M., Nieves, J. (eds) Nutrition and Bone Health. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2001-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2001-3_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2000-6

  • Online ISBN: 978-1-4939-2001-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics