Skip to main content

Vitamin K, Oral Anticoagulants, and Bone Health

  • Chapter
Nutrition and Bone Health

Part of the book series: Nutrition and Health ((NH))

Abstract

Vitamin K is a fat-soluble vitamin that may have a protective role against agerelated bone loss. Vitamin K refers to a family of compounds with a common chemical structure, 2-methyl-1,4-napthoquinone (Fig. 1). Phylloquinone, or vitamin K1, is present in foods of plant origin. Green, leafy vegetables contain the highest content of phylloquinone, and contribute up to 60% of total phylloquinone intake (1,2). Certain plant oils, margarine, spreads, and salad dressings, derived from plant oils, are also important dietary sources of phylloquinone, whereas animal fat sources, such as butter, are not (3,4). Recently, phylloquinone has been added in varying amounts to some dietary supplements. During the process of hydrogenation of certain phylloquinone-rich vegetable oils, phylloquinone is converted to 2′,3′-dihydrophylloquinone, which differs from the parent form by saturation of the 2′,3′ double bond of the phytyl side chain (5) (Fig. 1). Dihydrophylloquinone is found exclusively in hydrogenated phylloquinone-rich vegetable oils, which are widely used by industry in food preparation because of their physical characteristics and oxidative stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thane C, Paul A, Bates C, Bolton-Smith C, Prentice A, Shearer M. Intake and sources of phylloquinone (vitamin K-1): variation with socio-demographic and lifestyle factors in a national sample of British elderly people. Br J Nutr 2002; 87:605–613.

    Article  PubMed  CAS  Google Scholar 

  2. McKeown NM, Jacques PF, Gundberg CM, et al. Dietary and non-dietary determinants of vitamin K biochemical measures in men and women. J Nutr 2002; 132:1329–1334.

    PubMed  CAS  Google Scholar 

  3. Piironen V, Koivu T, Tammisalo O, Mattila P. Determination of phylloquinone in oils, margarines and butter by high-performance liquid chromatography with electrochemical detection. Food Chem 1997; 59:473–480.

    Article  CAS  Google Scholar 

  4. Peterson JW, Muzzey KL, Haytowitz D, Exler J, Lemar L, Booth SL. Phylloquinone (vitamin K-1) and dihdyrophylloquinone content of fats and oils. J Assoc Offic Anal Chem 2002; 79:641–646.

    CAS  Google Scholar 

  5. Davidson K, Booth S, Dolnikowski G, Sadowski J. Conversion of vitamin K-1 to 2′,3′-dihydrovitamin K1 during the hydrogenation of vegetable oils. J Agric Food Chem 1996; 44:980–983.

    Article  CAS  Google Scholar 

  6. Shearer MJ, Bach A, Kohlmeier M. Chemistry, nutritional sources, tissue distribution and metabolism of vitamin K with special reference to bone health. J Nutr 1996; 126:1181S–1186S.

    PubMed  CAS  Google Scholar 

  7. Schurgers L, Geleijnse J, Grobbee D, et al. Nutritional intake of vitamins K1 (phylloquinone) and K2 (menaquinone) in the Netherlands. J Nutr Environ Med 1999; 9:115–122.

    Article  CAS  Google Scholar 

  8. Sakano T, Notsumoto S, Nagaoka T, et al. Measurement of K vitamins in food by high-performance liquid chromatography with fluorometric detection. Vitamins (Japan) 1988; 62:393–398.

    CAS  Google Scholar 

  9. Suttie JW. The importance of menaquinones in human nutrition. Annu Rev Nutr 1995; 15:399–417.

    Article  PubMed  CAS  Google Scholar 

  10. Davidson RT, Foley AL, Engelke JA, Suttie JW. Conversion of dietary phylloquinone to tissue menaquinone-4 in rats is not dependent on gut bacteria. J Nutr 1998; 128:220–223.

    PubMed  CAS  Google Scholar 

  11. Newman P, Shearer MJ. Vitamin K metabolism. Subcell Biochem 1998; 30:455–88.

    PubMed  CAS  Google Scholar 

  12. Shearer MJ. The roles of vitamins D and K in bone health and osteoporosis prevention. Proc Nutr Soc 1997; 56:915–937.

    Article  PubMed  CAS  Google Scholar 

  13. Newman P, Bonello F, Wierzbicki AS, Lumb P, Savidge GF, Shearer MJ. The uptake of lipoprotein-borne phylloquinone (vitamin K1) by osteoblasts and osteoblast-like cells: role of heparan sulfate proteoglycans and apolipoprotein E. J Bone Miner Res 2002; 17:426–433.

    Article  CAS  Google Scholar 

  14. Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academy Press, Washington, DC, 2001.

    Google Scholar 

  15. Booth SL, Suttie JW. Dietary intake and adequacy of vitamin K. J Nutr 1998; 128:785–788.

    PubMed  CAS  Google Scholar 

  16. Furie B, Bouchard BA, Furie BC. Vitamin K-dependent biosynthesis of gamma-carboxyglutamic acid. Blood 1999; 93:1798–1808.

    PubMed  CAS  Google Scholar 

  17. Furie BC, Furie B. Structure and mechanism of action of the vitamin K-dependent gammaglutamyl carboxylase: recent advances from mutagenesis studies. Thromb Haemost 1997; 78:595–598.

    PubMed  CAS  Google Scholar 

  18. Cain D, Hutson SM, Wallin R. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane. J Biol Chem 1997; 272:29068–29075.

    Article  PubMed  CAS  Google Scholar 

  19. Ferland G. The vitamin K-dependent proteins: an update. Nutr Rev 1998; 56:223–230.

    Article  PubMed  CAS  Google Scholar 

  20. Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 1989; 69:990–1047.

    PubMed  CAS  Google Scholar 

  21. Ducy P, Desbois C, Boyce B, et al. Increased bone formation in osteocalcin-deficient mice. Nature 1996; 382:448–452.

    Article  PubMed  CAS  Google Scholar 

  22. Cairns JR, Price PA. Direct demonstration that the vitamin K-dependent bone Gla protein is incompletely gamma-carboxylated in humans. J Bone Miner Res 1994; 9:1989–1997.

    Article  PubMed  CAS  Google Scholar 

  23. Nakao M, Nishiuchi Y, Nakata M, Kimura T, Sakakibara S. Synthesis of human osteocalcins: gamma-carboxyglutamic acid at position 17 is essential for a calcium-dependent conformational transition. Peptide Res 1994; 7:171–174.

    CAS  Google Scholar 

  24. Price PA. Gla-containing proteins of bone. Connect Tissue Res 1989; 21:51–57.

    Article  PubMed  CAS  Google Scholar 

  25. Luo G, Ducy P, McKee MD, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 1997; 386:78–81.

    Article  PubMed  CAS  Google Scholar 

  26. Pan EY, Gomperts ED, Millen R, Gilsanz V. Bone mineral density and its association with inherited protein S deficiency. Thromb Res 1990; 58:221–231.

    Article  PubMed  CAS  Google Scholar 

  27. Nakamura YS, Hakeda Y, Takakura N, et al. Tyro 3 receptor tyrosine kinase and its ligand, Gas6, stimulate the function of osteoclasts. Stem Cells 1998; 16:229–238.

    Article  PubMed  CAS  Google Scholar 

  28. Kameda T, Miyazawa K, Mori Y, et al. Vitamin K2 inhibits osteoclastic bone resorption by inducing osteoclast apoptosis. Biochem Biophys Res Commun 1996; 220:515–519.

    Article  PubMed  CAS  Google Scholar 

  29. Hara K, Akiyama Y, Nakamura T, Murota S, Morita I. The inhibitory effect of vitamin K2 (menatetrenone) on bone resorption may be related to its side chain. Bone 1995; 16:179–184.

    Article  PubMed  CAS  Google Scholar 

  30. Koshihara Y, Hoshi K, Ishibashi H, Shiraki M. Vitamin K2 promotes 1 alpha,25(OH)2 vitamin D3-induced mineralization in human periosteal osteoblasts. Calcif Tissue Int 1996; 59:466–473.

    PubMed  CAS  Google Scholar 

  31. Takeuchi Y, Suzawa M, Fukumoto S, Fujita T. Vitamin K(2) inhibits adipogenesis, osteoclastogenesis, and ODF/RANK ligand expression in murine bone marrow cell cultures. Bone 2000; 27:769–776.

    Article  PubMed  CAS  Google Scholar 

  32. Vermeer C, Jie KS, Knapen MH. Role of vitamin K in bone metabolism. Annu Rev Nutr 1995; 15:1–22.

    Article  PubMed  CAS  Google Scholar 

  33. Price PA, Williamson MK. Effects of warfarin on bone. Studies on the vitamin K-dependent protein of rat bone. J Biol Chem 1981; 256:12754–12759.

    PubMed  CAS  Google Scholar 

  34. Wallin R, Rossi F, Loeser R, Key LL Jr. The vitamin K-dependent carboxylation system in human osteosarcoma U2-OS cells. Antidotal effect of vitamin K1 and a novel mechanism for the action of warfarin. Biochem J 1990; 269:459–464.

    PubMed  CAS  Google Scholar 

  35. Price PA, Kaneda Y. Vitamin K counteracts the effect of warfarin in liver but not in bone. Thromb Res 1987; 46:121–131.

    Article  PubMed  CAS  Google Scholar 

  36. Price P, Faus S, Williamson M. Warfarin causes rapid calcification of the elasetic lamellae in rat arteries and heart valves. Arterioscler Thromb Vasc Biol 1998; 18:1400–1407.

    Article  PubMed  CAS  Google Scholar 

  37. Binkley NC, Suttie JW. Vitamin K nutrition and osteoporosis. J Nutr 1995; 125:1812–1821.

    PubMed  CAS  Google Scholar 

  38. Einhorn TA, Gundberg CM, Devlin VJ, Warman J. Fracture healing and osteocalcin metabolism in vitamin K deficiency. Clin Orthoped 1988:219–225.

    Google Scholar 

  39. Haffa A, Krueger D, Bruner J, et al. Diet- or warfarin-induced vitamin K insufficiency elevates circulating undercarboxylated osteocalcin without altering skeletal status in growing female rats. J Bone Miner Res 2000; 15:872–878.

    Article  PubMed  CAS  Google Scholar 

  40. Simon RR, Beaudin SM, Johnston M, Walton KJ, Shaughnessy SG. Long-term treatment with sodium warfarin results in decreased femoral bone strength and cancellous bone volume in rats. Thromb Res 2002; 105:353–358.

    Article  PubMed  CAS  Google Scholar 

  41. Pastoureau P, Vergnaud P, Meunier PJ, Delmas PD. Osteopenia and bone-remodeling abnormalities in warfarin-treated lambs. J Bone Miner Res 1993; 8:1417–1426.

    Article  PubMed  CAS  Google Scholar 

  42. Sato T, Ohtani Y, Yamada Y, Saitoh S, Harada H. Difference in the metabolism of vitamin K between liver and bone in vitamin K-deficient rats. Br J Nutr 2002; 87:307–314.

    Article  PubMed  CAS  Google Scholar 

  43. Hirano J, Ishii Y. Effects of vitamin K2, vitamin D, and calcium on the bone metabolism of rats in the growth phase. J Orthoped Sci 2002; 7:364–369.

    Article  CAS  Google Scholar 

  44. Akiyama Y, Hara K, Kobayashi M, Tomiuga T, Nakamura T. Inhibitory effect of vitamin K2 (menatetrenone) on bone resorption in ovariectomized rats: a histomorphometric and dual energy X-ray absorptiometric study. Jpn J Pharmacol 1999; 80:67–74.

    Article  PubMed  CAS  Google Scholar 

  45. Matsunaga S, Ito H, Sakou T. The effect of vitamin K and D supplementation on ovariectomy-induced bone loss. Calcif Tissue Int 1999; 65:285–289.

    Article  PubMed  CAS  Google Scholar 

  46. Szulc P, Arlot M, Chapuy MC, Duboeuf F, Meunier PJ, Delmas PD. Serum undercarboxylated osteocalcin correlates with hip bone mineral density in elderly women. J Bone Miner Res 1994; 9:1591–1595.

    Article  PubMed  CAS  Google Scholar 

  47. Vergnaud P, Garnero P, Meunier PJ, Breart G, Kamihagi K, Delmas PD. Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: the EPIDOS Study. J Clin Endocrinol Metab 1997; 82:719–724.

    Article  PubMed  CAS  Google Scholar 

  48. Knapen MH, Nieuwenhuijzen-Kruseman AC, Wouters RSME, Vermeer C. Correlation of serum osteocalcin fractions with bone mineral density in women during the first 10 years after menopause. Calcif Tissue Int 1998; 63:375–379.

    Article  PubMed  CAS  Google Scholar 

  49. Szulc P, Chapuy MC, Meunier PJ, Delmas PD. Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J Clin Invest 1993; 91:1769–1774.

    Article  PubMed  CAS  Google Scholar 

  50. Szulc P, Chapuy MC, Meunier PJ, Delmas PD. Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture: a three year follow-up study. Bone 1996; 18:487–488.

    Article  PubMed  CAS  Google Scholar 

  51. Luukinen H, Kakonen SM, Pettersson K, et al. Strong prediction of fractures among older adults by the ratio of carboxylated to total serum osteocalcin. J Bone Miner Res 2000; 15:2473–2478.

    Article  PubMed  CAS  Google Scholar 

  52. Feskanich D, Weber P, Willett WC, Rockett H, Booth SL, Colditz GA. Vitamin K intake and hip fractures in women: a prospective study. Am J Clin Nutr 1999; 69:74–79.

    PubMed  CAS  Google Scholar 

  53. Stone K, Duong T, Sellmeyer D, Cauley J, Wolfe R, Cummings S. Broccoli may be good for bones: dietary vitamin K-1, rates of bone loss and risk of hip fracture in a prospective study of elderly women. J Bone Miner Res 1999; 14:S263.

    Google Scholar 

  54. Booth SL, Tucker KL, Chen H, et al. Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. Am J Clin Nutr 2000; 71:1201–1208.

    PubMed  CAS  Google Scholar 

  55. Kaneki M, Hedges S, Hosoi T, et al. Japanese fermented soybean food as the major determinant of the large geographic difference in circulating levels of vitamin K2-possible implications for hip-fracture risk. Nutrition 2001; 17:315–321.

    Article  PubMed  CAS  Google Scholar 

  56. Booth S, Broe K, Gagnon D, et al. Vitamin K intakes and bone mineral density in women and men. Am J Clin Nutr, 2003; 77:512–516.

    PubMed  CAS  Google Scholar 

  57. Binkley NC, Krueger DC, Engelke JA, Foley AL, Suttie JW. Vitamin K supplementation reduces serum concentrations of under-gamma-carboxylated osteocalcin in healthy young and elderly adults. Am J Clin Nutr 2000; 72:1523–1528.

    PubMed  CAS  Google Scholar 

  58. Bach AU, Anderson SA, Foley AL, Williams EC, Suttie JW. Assessment of vitamin K status in human subjects administered “minidose” warfarin. Am J Clin Nutr 1996; 64:894–902.

    PubMed  CAS  Google Scholar 

  59. Booth SL, O’Brien-Morse ME, Dallal GE, Davidson KW, Gundberg CM. Response of vitamin K status to different intakes and sources of phylloquinone-rich foods: comparison of younger and older adults. Am J Clin Nutr 1999; 70:368–377.

    PubMed  CAS  Google Scholar 

  60. New SA, Bolton-Smith C, Grubb DA, Reid DM. Nutritional influences on bone mineral density: a cross-sectional study in premenopausal women. Am J Clin Nutr 1997; 65:1831–1839.

    PubMed  CAS  Google Scholar 

  61. Tucker KL, Hannan MT, Chen H, Cupples LA, Wilson PW, Kiel DP. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr 1999; 69:727–736.

    PubMed  CAS  Google Scholar 

  62. Arjmandi BH, Getlinger MJ, Goyal NV, et al. Role of soy protein with normal or reduced isoflavone content in reversing bone loss induced by ovarian hormone deficiency in rats. Am J Clin Nutr 1998; 68:1358S–1363S.

    PubMed  CAS  Google Scholar 

  63. Iwamoto I, Kosha S, Noguchi S, et al. A longitudinal study of the effect of vitamin K2 on bone mineral density in postmenopausal women a comparative study with vitamin D3 and estrogenprogestin therapy. Maturitas 1999; 31:161–164.

    Article  PubMed  CAS  Google Scholar 

  64. Shiraki M, Shiraki Y, Aoki C, Miura M. Vitamin K2 (menatetrenone) effectively prevents fractures and sustains lumbar bone mineral density in osteoporosis. J Bone Miner Res 2000; 15:515–521.

    Article  PubMed  CAS  Google Scholar 

  65. Ushiroyama T, Ikeda A, Ueki M. Effect of continuous combined therapy with vitamin K(2) and vitamin D(3) on bone mineral density and coagulofibrinolysis function in postmenopausal women. Maturitas 2002; 41:211–221.

    Article  PubMed  CAS  Google Scholar 

  66. Somekawa Y, Chigughi M, Harada M, Ishibashi T. Use of vitamin K2 (menatetrenone) and 1,25-dihydroxyvitamin D3 in the prevention of bone loss induced by leuprolide. J Clin Endocrinol Metab 1999; 84:2700–2704.

    Article  PubMed  CAS  Google Scholar 

  67. Braam L, Knapen M, Geusens P, et al. Vitamin K1 supplementation retards bone loss in postmenopausal women between 50 and 60 yr of age. Calcif Tissue Int 2003; 73:21–26.

    Article  PubMed  CAS  Google Scholar 

  68. Braam L. Effects of high vitamin K intake on bone and vascular health. Department of Biochemistry. Unviersity of Maastricht, Maastricht, 2002:139.

    Google Scholar 

  69. Vermeer C, Schurgers LJ. A comprehensive review of vitamin K and vitamin K antagonists. Hematol Oncol Clin N Am 2000; 14:339–353.

    Article  CAS  Google Scholar 

  70. Kohlmeier M, Salomon A, Saupe J, Shearer MJ. Transport of vitamin K to bone in humans. J Nutr 1996; 126:1192S–1196S.

    PubMed  CAS  Google Scholar 

  71. Usui Y, Tanimura H, Nishimura N, Kobayashi N, Okanoue T, Ozawa K. Vitamin K concentrations in the plasma and liver of surgical patients. Am J Clin Nutr 1990; 51:846–852.

    PubMed  CAS  Google Scholar 

  72. Booth SL, Tucker KL, McKeown NM, Davidson KW, Dallal GE, Sadowski JA. Relationships between dietary intakes and fasting plasma concentrations of fat-soluble vitamins in humans. J Nutr 1997; 127:587–592.

    PubMed  CAS  Google Scholar 

  73. Gundberg CM, Nieman SD, Abrams S, Rosen H. Vitamin K status and bone health: an analysis of methods for determination of undercarboxylated osteocalcin. J Clin Endocrinol Metab 1998; 83:3258–3266.

    Article  PubMed  CAS  Google Scholar 

  74. Booth SL, Lichtenstein AH, O’Brien-Morse M, et al. Effects of a hydrogenated form of vitamin K on bone formation and resorption. Am J Clin Nutr 2001; 74:783–790.

    PubMed  CAS  Google Scholar 

  75. Knapen MH, Jie KS, Hamulyak K, Vermeer C. Vitamin K-induced changes in markers for osteoblast activity and urinary calcium loss. Calcif Tissue Int 1993; 53:81–85.

    Article  PubMed  CAS  Google Scholar 

  76. Douglas AS, Robins SP, Hutchison JD, Porter RW, Stewart A, Reid DM. Carboxylation of osteocalcin in post-menopausal osteoporotic women following vitamin K and D supplementation. Bone 1995; 17:15–20.

    Article  PubMed  CAS  Google Scholar 

  77. Craciun AM, Groenen-van Dooren MM, Thijssen HH, Vermeer C. Induction of prothrombin synthesis by K-vitamins compared in vitamin K- deficient and in brodifacoum-treated rats. Biochim Biophys Acta 1998; 1380:75–81.

    Article  PubMed  CAS  Google Scholar 

  78. Binkley N, Krueger D, Todd H, Foley A, Engelke J, Suttie J. Serum undercarboxylated osteocalcin concentration is reduced by vitamin K supplementation. FASEB J 1999; 13:A238.

    Google Scholar 

  79. Binkley NC, Krueger DC, Kawahara TN, Engelke JA, Chappell RJ, Suttie JW. A high phylloquinone intake is required to achieve maximal osteocalcin gamma-carboxylation. Am J Clin Nutr 2002; 76:1055–1060.

    PubMed  CAS  Google Scholar 

  80. Knapen MH, Hamulyak K, Vermeer C. The effect of vitamin K supplementation on circulating osteocalcin (bone Gla protein) and urinary calcium excretion. Ann Intern Med 1989; 111:1001–1005.

    PubMed  CAS  Google Scholar 

  81. Kanai T, Takagi T, Masuhiro K, et al. Serum vitamin K level and bone mineral density in postmenopausal women. Intl J Gyn Ob 1997; 56:25–30.

    Article  CAS  Google Scholar 

  82. Gundberg C. Biology, physiology, and clinical chemistry of osteocalcin. J Clin Ligand Assay 1998; 21:128–138.

    Google Scholar 

  83. Craciun AM, Wolf J, Knapen MH, Brouns F, Vermeer C. Improved bone metabolism in female elite athletes after vitamin K supplementation. Int J Sports Med 1998; 19:479–484.

    Article  PubMed  CAS  Google Scholar 

  84. Hannon R, Blumsohn A, Naylor K, Eastell R. Response of biochemical markers of bone turnover to hormone replacement therapy: impact of biological variability. J Bone Miner Res 1998; 13:1124–1133.

    Article  PubMed  CAS  Google Scholar 

  85. Seibel MJ, Lang M, Geilenkeuser WJ. Interlaboratory variation of biochemical markers of bone turnover. Clin Chem 2001; 47:1443–1450.

    PubMed  CAS  Google Scholar 

  86. Vermeer C, Gijsbers BL, Craciun AM, Groenen-van Dooren MM, Knapen MH. Effects of vitamin K on bone mass and bone metabolism. J Nutr 1996; 126:1187S–1191S.

    PubMed  CAS  Google Scholar 

  87. Robert D, Jorgetti V, Lacour B, et al. Hypercalciuria during experimental vitamin K deficiency in the rat. Calcif Tissue Int 1985; 37:143–147.

    Article  PubMed  CAS  Google Scholar 

  88. Suttie J, Grossman C, Benton M. Specificity of the vitamin K and glutamyl binding sites of the liver microsomal gamma glutamyl carboxylase. Proceedings of the First International Congress on Vitamins and Biofactors in Life Science in Kobe, 1991, 1992, pp. 405–408.

    Google Scholar 

  89. Booth SL, Centurelli MA. Vitamin K: a practical guide to the dietary management of patients on warfarin. Nutr Rev 1999; 57:288–296.

    Article  PubMed  CAS  Google Scholar 

  90. Caraballo PJ, Heit JA, Atkinson EJ, et al. Long-term use of oral anticoagulants and the risk of fracture. Arch Intern Med 1999; 159:1750–1756.

    Article  PubMed  CAS  Google Scholar 

  91. Philip WJ, Martin JC, Richardson JM, Reid DM, Webster J, Douglas AS. Decreased axial and peripheral bone density in patients taking long-term warfarin. Q J Med 1995; 88:635–640.

    CAS  Google Scholar 

  92. Sato Y, Honda Y, Kunoh H, Oizumi K. Long-term oral anticoagulation reduces bone mass in patients with previous hemispheric infarction and nonrheumatic atrial fibrillation. Stroke 1997; 28:2390–2394.

    Article  PubMed  CAS  Google Scholar 

  93. Jamal SA, Browner WS, Bauer DC, Cummings SR. Warfarin use and risk for osteoporosis in elderly women. Study of Osteoporotic Fractures Research Group. Ann Intern Med 1998; 128:829–832.

    PubMed  CAS  Google Scholar 

  94. Rosen HN, Maitland LA, Suttie JW, Manning WJ, Glynn RJ, Greenspan SL. Vitamin K and maintenance of skeletal integrity in adults. Am J Med 1993; 94:62–68.

    Article  PubMed  CAS  Google Scholar 

  95. Caraballo PJ, Gabriel SE, Castro MR, Atkinson EJ, Melton LJ 3rd. Changes in bone density after exposure to oral anticoagulants: a meta- analysis. Osteoporos Int 1999; 9:441–448.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Booth, S.L., Charette, A.M. (2004). Vitamin K, Oral Anticoagulants, and Bone Health. In: Holick, M.F., Dawson-Hughes, B. (eds) Nutrition and Bone Health. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-740-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-740-6_27

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-451-7

  • Online ISBN: 978-1-59259-740-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics