Skip to main content
Log in

Low-dose vitamin K2 (MK-4) supplementation for 12 months improves bone metabolism and prevents forearm bone loss in postmenopausal Japanese women

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Menaquinone-4 (MK-4) administered at a pharmacological dosage of 45 mg/day has been used for the treatment of osteoporosis in Japan. However, it is not known whether a lower dose of MK-4 supplementation is beneficial for bone health in healthy postmenopausal women. The aim of this study was to examine the long-term effects of 1.5-mg daily supplementation of MK-4 on the various markers of bone turnover and bone mineral density (BMD). The study was performed as a randomized, double-blind, placebo-controlled trial. The participants (aged 50–65 years) were randomly assigned to one of two groups according to the MK-4 dose received: the placebo-control group (n = 24) and the 1.5-mg MK-4 group (n = 24). The baseline concentrations of undercarboxylated osteocalcin (ucOC) were high in both groups (>5.1 ng/ml). After 6 and 12 months, the serum ucOC concentrations were significantly lower in the MK-4 group than in the control group. In the control group, there was no significant change in serum pentosidine concentrations. However, in the MK-4 group, the concentration of pentosidine at 6 and 12 months was significantly lower than that at baseline. The forearm BMD was significantly lower after 12 months than at 6 months in the control group. However, there was no significant decrease in BMD in the MK-4 group during the study period. These results suggest that low-dose MK-4 supplementation for 6–12 months improved bone quality in the postmenopausal Japanese women by decreasing the serum ucOC and pentosidine concentrations, without any substantial adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Gla:

γ-Carboxyglutaminate

PK:

Phylloquionone

MK:

Menaquinone

OC:

Osteocalcin

DRIs:

Dietary reference intakes

AI:

Adequate intake

ucOC:

Undercarboxylated OC

BMD:

Bone mineral density

TC:

Total cholesterol

TG:

Triacylglycerol

HDL:

High density lipoprotein

LDL:

Low density lipoprotein

E2 :

17β-Estradiol

BS-ALP:

Bone-specific alkaline phosphatase

GlaOC:

γ-Carboxylated OC

DPD:

Deoxypiridinoline

25[OH]D:

25-Hydroxyvitamin D

References

  1. Vermeer C (1990) Gamma-carboxyglutamate-containing proteins and the vitamin-K-dependent carboxylase. Biochem J 266:625–636

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Adams J, Pepping J (2005) Vitamin K in the treatment and prevention of osteoporosis and arterial calcification. Am J Health Syst Pharm 62:1574–1581

    Article  CAS  PubMed  Google Scholar 

  3. Okano T, Shimomura Y, Yamane M, Suhara Y, Kamao M, Sugiura M, Nakagawa K (2008) Conversion of phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) in mice: two possible routes for menaquinone-4 accumulation in cerebra of mice. J Biol Chem 283:11270–11279

    Article  CAS  PubMed  Google Scholar 

  4. Plaza SM, Lamson DW (2005) Vitamin K2 in bone metabolism and osteoporosis. Altern Med Rev 10:24–35

    PubMed  Google Scholar 

  5. Ozuru R, Sugimoto T, Yamaguchi T, Chihara K (2002) Time-dependent effects of vitamin K2 (menatetrenone) on bone metabolism in postmenopausal women. Endocr J 49:363–370

    Article  CAS  PubMed  Google Scholar 

  6. Iwamoto I, Kosha S, Noguchi S, Murakami M, Fujino T, Douchi T, Nagata Y (1999) A longitudinal study of the effect of vitamin K2 on bone mineral density in postmenopausal women a comparative study with vitamin D3 and estrogen–progestin therapy. Maturitas 31:161–164

    Article  CAS  PubMed  Google Scholar 

  7. Ishida Y, Kawai S (2004) Comparative efficacy of hormone replacement therapy, etidronate, calcitonin, alfacalcidol, and vitamin K in postmenopausal women with osteoporosis: the Yamaguchi Osteoporosis Prevention Study. Am J Med 117:549–555

    Article  CAS  PubMed  Google Scholar 

  8. Shiraki M, Shiraki Y, Aoki C, Miura M (2000) Vitamin K2 (menatetrenone) effectively prevents fractures and sustains lumbar bone mineral density in osteoporosis. J Bone Miner Res 15:515–521

    Article  CAS  PubMed  Google Scholar 

  9. Cockayne S, Adamson J, Lanham-New S, Shearer MJ, Gilbody S, Torgerson DJ (2006) Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med 166:1256–1261

    Article  CAS  PubMed  Google Scholar 

  10. Binkley NC, Krueger DC, Kawahara TN, Engelke JA, Chappell RJ, Suttie JW (2002) A high phylloquinone intake is required to achieve maximal osteocalcin gamma-carboxylation. Am J Clin Nutr 76:1055–1060

    CAS  PubMed  Google Scholar 

  11. Fang Y, Hu C, Tao X, Wan Y, Tao F (2012) Effect of vitamin K on bone mineral density: a meta-analysis of randomized controlled trials. J Bone Miner Metab 30:60–68

    Article  CAS  PubMed  Google Scholar 

  12. Koitaya N, Ezaki J, Nishimuta M, Yamauchi J, Hashizume E, Morishita K, Miyachi M, Sasaki S, Ishimi Y (2009) Effect of low dose of vitamin K2 (MK-4) supplementation on bio-indices in postmenopausal Japanese women. J Nutr Sci Vitaminol 55:15–21

    Article  CAS  PubMed  Google Scholar 

  13. Ministry of Health, Labour, and Welfare, Japan (2010) Dietary reference intakes for Japanese. Daiichi Shuppan, Tokyo

  14. Booth SL, Martini L, Peterson JW, Saltzman E, Dallal GE, Wood RJ (2003) Dietary phylloquinone depletion and repletion in older women. J Nutr 133:2565–2569

    CAS  PubMed  Google Scholar 

  15. Kaneki M, Hodges SJ, Hosoi T, Fujiwara S, Lyons A, Crean SJ, Ishida N, Nakagawa M, Takechi M, Sano Y, Mizuno Y, Hoshino S, Miyao M, Inoue S, Horiki K, Shiraki M, Ouchi Y, Orimo H (2001) Japanese fermented soybean food as the major determinant of the large geographic difference in circulating levels of vitamin K2: possible implications for hip-fracture risk. Nutrition 17:315–321

    Article  CAS  PubMed  Google Scholar 

  16. Tsugawa N, Shiraki M, Suhara Y, Kamano M, Ozaki R, Tanaka K, Okano T (2008) Low plasma phylloquinone concentration is associated with high incidence of vertebral fracture in Japanese women. J Bone Miner Metab 26:79–85

    Article  CAS  PubMed  Google Scholar 

  17. Langenberg JP, Tjaden UR (1984) Improved method for the determination of vitamin K1 epoxide in human plasma with electrofluorimetric reaction detection. J Chromatogr 289:377–385

    Article  CAS  PubMed  Google Scholar 

  18. Kagawa Y (2005) Standard tables of food composition in Japan. 5th revised edition. Kagawa Education Institute of Nutrition, Tokyo

  19. Tsugawa N, Shiraki M, Suhara Y, Kamano M, Tanaka K, Okano T (2006) Vitamin K status of healthy Japanese women: age-related vitamin K requirement for γ-carboxylation of osteocalcin. Am J Clin Nutr 83:380–386

    CAS  PubMed  Google Scholar 

  20. Knapen MH, Nieuwenhuijzen Kruseman AC, Wouters RS, Vermeer C (1998) Correlation of serum osteocalcin fractions with bone mineral density in women during the first 10 years after menopause. Calcif Tissue Int 63:375–379

    Article  CAS  PubMed  Google Scholar 

  21. Sokoll LJ, Sadowski JA (1996) Comparison of biochemical indexes for assessing vitamin K nutritional status in a healthy adult population. Am J Clin Nutr 63:566–573

    CAS  PubMed  Google Scholar 

  22. Szulc P, Chapuy MC, Meunier PJ, Delmas PD (1993) Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J Clin Invest 91:17–74

    Google Scholar 

  23. Knapen MH, Jie KS, Hamulyak K, Vermeer C (1993) Vitamin K-induced changes in markers for osteoblast activity and urinary calcium loss. Calcif Tissue Int 53:81–85

    Article  CAS  PubMed  Google Scholar 

  24. Szulc P, Arlot M, Chapuy MC, Duboeuf F, Meunier PJ, Delmas PD (1994) Serum undercarboxylated osteocalcin correlates with hip bone mineral density in elderly women. J Bone Miner Res 9:1591–1595

    Article  CAS  PubMed  Google Scholar 

  25. Takahashi M, Naitou K, Ohishi T, Kushida K, Miura M (2001) Effect of vitamin K and/or D on undercarboxylated and intact osteocalcin in osteoporotic patients with vertebral or hip fractures. Clin Endocrinol 54:219–224

    Article  CAS  Google Scholar 

  26. Knapen MH, Schurgers LJ, Vermeer C (2007) Vitamin K2 supplementation improves hip bone geometry and bone strength indices in postmenopausal women. Osteoporos Int 18:963–972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Shiraki M, Aoki C, Yamazaki N, Ito Y, Tsugawa N, Suhara Y, Okano T (2007) Clinical assessment of undercarboxylated osteocalcin measurement in serum using an electrochemiluminescence immunoassay: establishments of cut-off values to determine vitamin K insufficiency in bone and to predict fracture leading to clinical use of vitamin K2. Jpn J Med Pharm Sci 57:537–546

    CAS  Google Scholar 

  28. Bügel S (2008) Vitamin K and bone health in adult humans. Vitam Horm 78:393–416

    Article  PubMed  Google Scholar 

  29. Wang X, Shen X, Li X, Agrawal CM (2002) Age-related changes in the collagen network and toughness of bone. Bone (NY) 31:1–7

    Article  Google Scholar 

  30. Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21:195–214

    Article  CAS  PubMed  Google Scholar 

  31. Ichikawa T, Horie-Inoue K, Ikeda K, Blumberg B, Inoue S (2006) Steroid and xenobiotic receptor SXR mediates vitamin K2-activated transcription of extracellular matrix-related genes and collagen accumulation in osteoblastic cells. J Biol Chem 281:16927–16934

    Article  CAS  PubMed  Google Scholar 

  32. Vervoort LM, Ronden JE, Thijssen HH (1997) The potent antioxidant activity of the vitamin K cycle in microsomal lipid peroxidation. Biochem Pharmacol 54:871–876

    Article  CAS  PubMed  Google Scholar 

  33. Roux C, Arabi A, Porcher R, Garnero P (2003) Serum leptin as a determinant of bone resorption in healthy postmenopausal women. Bone (NY) 33:847–852

    Article  CAS  Google Scholar 

  34. Zhang H, Xie H, Zhao Q, Xie GQ, Wu XP, Liao EY, Luo XH (2010) Relationships between serum adiponectin, apelin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in post-menopausal Chinese women. J Endocrinol Invest 33:707–711

    CAS  PubMed  Google Scholar 

  35. Zhang Y, Zhou P, Kimondo JW (2012) Adiponectin and osteocalcin: relation to insulin sensitivity. Biochem Cell Biol 90:613–620

    Article  CAS  PubMed  Google Scholar 

  36. Orimo H, Nakamura T, Hosoi T, Iki M, Uenishi K, Endo N, Ohta H, Shiraki M, Sugimoto T, Suzuki T, Soen S, Nishizawa Y, Hagino H, Fukunaga M, Fujiwara S (2012) Japanese 2011 guidelines for prevention and treatment of osteoporosis: executive summary. Arch Osteoporos 7:3–20

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the dedicated women who participated in this study. This study was supported by a grant from the National Institute of Health and Nutrition, Ministry of Health, Labor and Welfare, Japan and KYOWA HAKKO BIO. Co., Ltd.

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiko Ishimi.

About this article

Cite this article

Koitaya, N., Sekiguchi, M., Tousen, Y. et al. Low-dose vitamin K2 (MK-4) supplementation for 12 months improves bone metabolism and prevents forearm bone loss in postmenopausal Japanese women. J Bone Miner Metab 32, 142–150 (2014). https://doi.org/10.1007/s00774-013-0472-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-013-0472-7

Keywords

Navigation