Stochastic Constraints and Variance Reduction Techniques

  • Tito Homem-de-Mello
  • Güzin Bayraksan
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 216)


We provide an overview of two select topics in Monte Carlo simulation-based methods for stochastic optimization: problems with stochastic constraints and variance reduction techniques. While Monte Carlo simulation-based methods have been successfully used for stochastic optimization problems with deterministic constraints, there is a growing body of work on its use for problems with stochastic constraints. The presence of stochastic constraints brings new challenges in ensuring and testing optimality, allocating sample sizes, etc., especially due to difficulties in determining feasibility. We review results for general stochastic constraints and also discuss special cases such as probabilistic and stochastic dominance constraints. Next, we review the use of variance reduction techniques (VRT) in a stochastic optimization setting. While this is a well-studied topic in statistics and simulation, the use of VRT in stochastic optimization requires a more thorough analysis. We discuss asymptotic properties of the resulting approximations and their use within Monte Carlo simulation-based solution methods.


Importance Sampling Stochastic Optimization Latin Hypercube Sampling Stochastic Optimization Problem Variance Reduction Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported in part by the National Science Foundation under Grant CMMI-1345626, and by Conicyt-Chile under grant Fondecyt 1120244.


  1. 1.
    S. Ahmed and A. Shapiro. Solving chance-constrained stochastic programs via sampling and integer programming. In Tutorials in Operations Research, pages 261–269. INFORMS, 2008.Google Scholar
  2. 2.
    S. Andradóttir and S.-H. Kim. Fully sequential procedures for comparing constrained systems via simulation. Naval Research Logistics, 57(5):403–421, 2010.Google Scholar
  3. 3.
    S. Asmussen and P. Glynn. Stochastic Simulation. Springer, New York, 2007.Google Scholar
  4. 4.
    J. Atlason, M. Epelman, and G. Henderson. Call center staffing with simulation and cutting plane methods. Annals of Operations Research, 127:333–358, 2004.CrossRefGoogle Scholar
  5. 5.
    T. G. Bailey, P. Jensen, and D. Morton. Response surface analysis of two-stage stochastic linear programming with recourse. Naval Research Logistics, 46:753–778, 1999.CrossRefGoogle Scholar
  6. 6.
    J. Barrera, T. Homem-de-Mello, E. Moreno, B. K. Pagnoncelli, and G. Canessa. Chance-constrained problems and rare events: an importance sampling approach. Preprint available at Optimization Online (, 2014.
  7. 7.
    D. Batur and S.-H. Kim. Finding feasible systems in the presence of constraints on multiple performance measures. ACM Transactions on Modeling and Computer Simulation, 20, 2010. Article No. 13.Google Scholar
  8. 8.
    G. Bayraksan and D. P. Morton. Assessing solution quality in stochastic programs via sampling. In Tutorials in Operations Research, pages 102–122. INFORMS, 2009.Google Scholar
  9. 9.
    B. Bettonvil, E. del Castillo, and J. P. Kleijnen. Statistical testing of optimality conditions in multiresponse simulation-based optimization. European Journal of Operational Research, 199(2):448–458, 2009.CrossRefGoogle Scholar
  10. 10.
    B. Biller and S. Ghosh. Multivariate input processes. In S. G. Henderson and B. L. Nelson, editors, Simulation, volume 13 of Handbooks in Operations Research and Management Science, chapter 5. Elsevier Science Publishers B.V., Amsterdam, Netherlands, 2006.Google Scholar
  11. 11.
    J. R. Birge. Particle Methods for Data-Driven Simulation and Optimization, volume 8 of INFORMS TutORials in Operations Research, chapter 5, pages 92–102. INFORMS, Hannover, MD, 2012.Google Scholar
  12. 12.
    J. Blanchet and H. Lam. State-dependent importance sampling for rare-event simulation: An overview and recent advances. Surveys in Operations Research and Management Science, 17(1):38–59, 2012.CrossRefGoogle Scholar
  13. 13.
    G. Calafiore and M. C. Campi. Uncertain convex programs: randomized solutions and confidence levels. Mathematical Programming, 102(1, Ser. A):25–46, 2005.Google Scholar
  14. 14.
    M. C. Campi and S. Garatti. A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality. Journal of Optimization Theory and Applications, 148(2):257–280, 2011.CrossRefGoogle Scholar
  15. 15.
    M. C. Campi, S. Garatti, and M. Prandini. The scenario approach for systems and control design. Annual Reviews in Control, 33:149–157, 2009.CrossRefGoogle Scholar
  16. 16.
    A. Charnes and W. W. Cooper. Chance-constrained programming. Management Science, 5:73–79, 1959.CrossRefGoogle Scholar
  17. 17.
    C. Chen and L. Lee. Stochastic Simulation Optimization: An Optimal Computing Budget Allocation. World Scientific Publishing Co. Pte. Ltd., 2011.Google Scholar
  18. 18.
    G. Dantzig and G. Infanger. Multi-stage stochastic linear programs for portfolio optimization. Annals of Operations Research, 45:59–76, 1993.CrossRefGoogle Scholar
  19. 19.
    G. B. Dantzig and P. W. Glynn. Parallel processors for planning under uncertainty. Annals of Operations Research, 22:1–21, 1990.CrossRefGoogle Scholar
  20. 20.
    P. T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A tutorial on the cross-entropy method. Annals of Operations Research, 134:19–67, 2005.CrossRefGoogle Scholar
  21. 21.
    D. Dentcheva and A. Ruszczyński. Optimization with stochastic dominance constraints. SIAM Journal on Optimization, 14(2):548–566, 2003.CrossRefGoogle Scholar
  22. 22.
    D. Dentcheva and A. Ruszczyński. Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints. Mathematical Programming, 99:329–350, 2004.CrossRefGoogle Scholar
  23. 23.
    D. Dentcheva, A. Ruszczyński, and A. Prékopa. Concavity and efficient points of discrete distributions in probabilistic programming. Mathematical Programming, 89:55–77, 2000.CrossRefGoogle Scholar
  24. 24.
    J. Dick and F. Pillichshammer. Digital Nets and Sequences. Cambridge University Press, 2010.Google Scholar
  25. 25.
    S. S. Drew. Quasi-Monte Carlo Methods for Stochastic Programming. PhD thesis, Northwestern University, 2007.Google Scholar
  26. 26.
    S. S. Drew and T. Homem-de-Mello. Quasi-Monte Carlo strategies for stochastic optimization. In L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, editors, Proceedings of the 2006 Winter Simulation Conference, pages 774–782, IEEE, Piscataway, NJ, 2006.CrossRefGoogle Scholar
  27. 27.
    G. Fishman. Monte Carlo: Concepts, Algorithms and Applications. Springer-Verlag, New York, NY, 1997.Google Scholar
  28. 28.
    M. B. Freimer, J. T. Linderoth, and D. J. Thomas. The impact of sampling methods on bias and variance in stochastic linear programs. Computational Optimization and Applications, 51(1):51–75, 2012.CrossRefGoogle Scholar
  29. 29.
    I. Friedel and A. Keller. Fast generation of randomized low-discrepancy point sets. In Monte Carlo and quasi-Monte Carlo methods, 2000 (Hong Kong), pages 257–273. Springer, Berlin, 2002. Software available at
  30. 30.
    M. Fu. Optimization via simulation: A review. Annals of Operations Research, 53:199–247, 1994.CrossRefGoogle Scholar
  31. 31.
    P. Glasserman. Monte Carlo Metods in Financial Engineering. Springer, 2003.Google Scholar
  32. 32.
    P. Glasserman, P. Heidelberger, and P. Shahabuddin. Asymptotically optimal importance sampling and stratification for pricing path dependent options. Journal of Mathematical Finance, 9(2):117–152, 1999.CrossRefGoogle Scholar
  33. 33.
    C. Healey, S. Andradóttir, and S.-H. Kim. Minimal switching procedures for constrained ranking and selection under independent and common random numbers. Technical report, Georgia Institute of Technology, 2014.Google Scholar
  34. 34.
    C. Healey, S. Andradóttir, and S.-H. Kim. Selection procedures for simulations with multiple constraints under independent and correlated sampling. ACM Transactions on Modeling and Computer Simulation, 24(3), 2014.Google Scholar
  35. 35.
    H. Heitsch, H. Leovey, and W. Römisch. Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic programs? Available at the Stochastic Programming e-Print Series,, 2013.
  36. 36.
    J. Higle. Variance reduction and objective function evaluation in stochastic linear programs. INFORMS Journal on Computing, 10: 236–247, 1998.CrossRefGoogle Scholar
  37. 37.
    T. Homem-de-Mello. On rates of convergence for stochastic optimization problems under non-i.i.d. sampling. SIAM Journal on Optimization, 19(2):524–551, 2008.Google Scholar
  38. 38.
    T. Homem-de-Mello and G. Bayraksan. Monte Carlo sampling-based methods for stochastic optimization. Surveys in Operations Research and Management Science, 19:56–85, 2014.CrossRefGoogle Scholar
  39. 39.
    T. Homem-de-Mello and S. Mehrotra. A cutting surface method for linear programs with polyhedral stochastic dominance constraints. SIAM Journal on Optimization, 20(3):1250–1273, 2009.CrossRefGoogle Scholar
  40. 40.
    T. Homem-de-Mello, V. L. de Matos, and E. C. Finardi. Sampling strategies and stopping criteria for stochastic dual dynamic programming: a case study in long-term hydrothermal scheduling. Energy Systems, 2:1–31, 2011.CrossRefGoogle Scholar
  41. 41.
    L. J. Hong and B. L. Nelson. Chance constrained selection of the best. Working paper, Northwestern University, 2014.Google Scholar
  42. 42.
    L. J. Hong, Y. Yang, and L. Zhang. Sequential convex approximations to joint chance constrained programs: A Monte Carlo approach. Operations Research, 59(3):617–630, 2011.CrossRefGoogle Scholar
  43. 43.
    J. Hu, T. Homem-de-Mello, and S. Mehrotra. Sample average approximation of stochastic dominance constrained programs. Mathematical Programming, Ser. A, 133:171–201, 2011.Google Scholar
  44. 44.
    S. Hunter and R. Pasupathy. Optimal sampling laws for stochastically constrained simulation optimization. INFORMS Journal on Computing, 25(3):527–542, 2013.CrossRefGoogle Scholar
  45. 45.
    G. Infanger. Monte Carlo (importance) sampling within a Benders decomposition algorithm for stochastic linear programs. Annals of Operations Research, 39:69–95, 1992.CrossRefGoogle Scholar
  46. 46.
    J. Kalagnanam and U. Diwekar. An efficient sampling technique for off-line quality control. Technometrics, 39(3):308–319, 1997.CrossRefGoogle Scholar
  47. 47.
    S.-H. Kim and B. Nelson. Selecting the best system. In S. Handerson and B. Nelson, editors, Handbooks in Operations Research and Management Science, Volume 13: Simulation. Elsevier, 2006.Google Scholar
  48. 48.
    A. J. King and R. T. Rockafellar. Asymptotic theory for solutions in statistical estimation and stochastic programming. Mathematics of Operations Research, 18:148–162, 1993.CrossRefGoogle Scholar
  49. 49.
    M. Koivu. Variance reduction in sample approximations of stochastic programs. Mathematical Programming, 103(3):463–485, 2005.CrossRefGoogle Scholar
  50. 50.
    V. Kozmík and D. Morton. Evaluating policies in risk-averse multi-stage stochastic programming, Mathematical Programming, published online, 2014.Google Scholar
  51. 51.
    P. Krokhmal, J. Palmquist, and S. Uryasev. Portfolio optimization with conditional value-at-risk objective and constraints. Journal of Risk, 4:43–68, 2002.Google Scholar
  52. 52.
    A. M. Law. Simulation Modeling and Analysis. McGraw-Hill, 5th edition, 2014.Google Scholar
  53. 53.
    P. L’Ecuyer. SSJ Users Guide (Package hups: Tools for Quasi-Monte Carlo). University of Montreal, 2009. Software users guide, available at
  54. 54.
    P. L’Ecuyer and C. Lemieux. Recent advances in randomized quasi-Monte Carlo methods. In M. Dror, P. L’Ecuyer, and F. Szidarovszky, editors, Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, pages 419–474. Kluwer Academic Publishers, Boston, 2002.Google Scholar
  55. 55.
    P. L’Ecuyer and D. Munger. LatticeBuilder: A general software tool for constructing rank-1 lattice rules. ACM Transactions on Mathematical Software, 2012. To appear. Software available at
  56. 56.
    Monte Carlo and Quasi Monte Carlo Methods 2010, H. Wozniakowski and L. Plaskota, Eds., Springer-Verlag, Berlin, 133–159, 2012.Google Scholar
  57. 57.
    L. H. Lee, N. A. Pujowidianto, L.-W. Li, C.-H. Chen, and C. M. Yap. Approximate simulation budget allocation for selecting the best design in the presence of stochastic constraints. IEEE Transactions on Automatic Control, 57:2940–2945, 2012.CrossRefGoogle Scholar
  58. 58.
    C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling. Springer Series in Statistics. Springer, New York, 2009.Google Scholar
  59. 59.
    C. Lemieux, M. Cieslak, and K. Luttmer. RandQMC Users Guide: A Package for Randomized Quasi-Monte Carlo Methods in C. University of Waterloo, 2004. Software users guide, available at
  60. 60.
    J. T. Linderoth, A. Shapiro, and S. J. Wright. The empirical behavior of sampling methods for stochastic programming. Annals of Operations Research, 142(1):215–241, 2006.CrossRefGoogle Scholar
  61. 61.
    Y. Liu, H. Xu, and J. J. Ye. Penalized sample average approximation methods for stochastic mathematical programs with complementarity constraints. Mathematics of Operations Research, 36(4):670–694, 2011.CrossRefGoogle Scholar
  62. 62.
    J. Luedtke and S. Ahmed. A sample approximation approach for optimization with probabilistic constraints. SIAM Journal on Optimization, 19(2):674–699, 2008.CrossRefGoogle Scholar
  63. 63.
    J. Luedtke, S. Ahmed, and G. Nemhauser. An integer programming approach for linear programs with probabilistic constraints. Mathematical Programming, 122(2):247–272, 2010.CrossRefGoogle Scholar
  64. 64.
    W. K. Mak, D. P. Morton, and R. K. Wood. Monte Carlo bounding techniques for determining solution quality in stochastic programs. Operations Research Letters, 24:47–56, 1999.CrossRefGoogle Scholar
  65. 65.
    M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21:239–245, 1979.Google Scholar
  66. 66.
    A. Müller and D. Stoyan. Comparison Methods for Stochastic Models and Risks. John Wiley & Sons, Chichester, 2002.Google Scholar
  67. 67.
    J. C. Neddermeyer. Computationally efficient nonparametric importance sampling. Journal of the American Statistical Association, 104(486):788–802, 2009.CrossRefGoogle Scholar
  68. 68.
    B. Nelson and J. Staum. Control variates for screening, selection, and estimation of the best. ACM Transactions on Modeling and Computer Simulation, 16:52–75, 2006.CrossRefGoogle Scholar
  69. 69.
    B. L. Nelson. Control variate remedies. Operations Research, 38: 359–375, 1990.CrossRefGoogle Scholar
  70. 70.
    A. Nemirovski and A. Shapiro. Scenario approximation of chance constraints. In G. Calafiore and F. Dabbene, editors, Probabilistic and Randomized Methods for Design Under Uncertainty, pages 3–48. Springer, London, 2005.Google Scholar
  71. 71.
    A. Nemirovski and A. Shapiro. Convex approximations of chance constrained programs. SIAM Journal on Optimization, 17(4):969–996, 2006.CrossRefGoogle Scholar
  72. 72.
    H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, PA, 1992.CrossRefGoogle Scholar
  73. 73.
    V. Norkin, G. Pflug, and A. Ruszczyński. A branch and bound method for stochastic global optimization. Mathematical Programming, 83:425–450, 1998.Google Scholar
  74. 74.
    W. Ogryczak and A. Ruszczyński. On consistency of stochastic dominance and mean-semideviation models. Mathematical Programming Series B, 89(2):217–232, 2001.CrossRefGoogle Scholar
  75. 75.
    A. B. Owen. A central limit theorem for Latin hypercube sampling. Journal of the Royal Statistical Society, Ser. B, 54:541–551, 1992.Google Scholar
  76. 76.
    A. B. Owen. Latin supercube sampling for very high-dimensional simulations. ACM Transactions on Modeling and Computer Simulation, 8:71–102, 1998.CrossRefGoogle Scholar
  77. 77.
    A. B. Owen. The dimension distribution and quadrature test functions. Statistica Sinica, 13(1):1–17, 2003.Google Scholar
  78. 78.
    B. K. Pagnoncelli, S. Ahmed, and A. Shapiro. Computational study of a chance constrained portfolio selection problem. Journal of Optimization Theory and Applications, 142(2):399–416, 2009.CrossRefGoogle Scholar
  79. 79.
    B. K. Pagnoncelli, D. Reich, and M. C. Campi. Risk-return trade-off with the scenario approach in practice: a case study in portfolio selection. Journal of Optimization Theory and Applications, 155(2): 707–722, 2012.CrossRefGoogle Scholar
  80. 80.
    C. Park and S.-H. Kim. Penalty function with memory for discrete optimization via simulation with stochastic constraints. Technical report, Georgia Institute of Technology, 2014.Google Scholar
  81. 81.
    T. Pennanen. Epi-convergent discretizations of multistage stochastic programs. Mathematics of Operations Research, 30:245–256, 2005.CrossRefGoogle Scholar
  82. 82.
    T. Pennanen and M. Koivu. Epi-convergent discretizations of stochastic programs via integration quadratures. Numerische Mathematik, 100:141–163, 2005.CrossRefGoogle Scholar
  83. 83.
    P. Pierre-Louis, D. Morton, and G. Bayraksan. A combined deterministic and sampling-based sequential bounding method for stochastic programming. In Proceedings of the 2011 Winter Simulation Conference, pages 4172–4183, IEEE, Piscataway, NJ, 2011.Google Scholar
  84. 84.
    A. Prékopa. Probabilistic programming. In A. Ruszczynski and A. Shapiro, editors, Handbook of Stochastic Optimization. Elsevier Science Publishers B.V., Amsterdam, Netherlands, 2003.Google Scholar
  85. 85.
    N. A. Pujowidianto, S. Hunter, R. Pasupathy, L. Lee, and C.-H. Chen. On approximating optimal sampling laws for stochastically constrained simulation optimization on large finite sets. Technical report, Virginia Polytechnic Institute and State University, 2013.Google Scholar
  86. 86.
    J. Royset. Optimality functions in stochastic programming. Mathematical Programming, 135(1–2):293–321, 2012.CrossRefGoogle Scholar
  87. 87.
    R. Rubinstein, G. Samordnitsky, and M. Shaked. Antithetic variates, mutlivariate dependence and simulation of stochastic systems. Management Science, 311(1):66–77, 1985.CrossRefGoogle Scholar
  88. 88.
    R. Y. Rubinstein and A. Shapiro. Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method. John Wiley & Sons, Chichester, England, 1993.Google Scholar
  89. 89.
    M. Shaked and J. G. Shanthikumar. Stochastic Orders and their Applications. Academic Press, Boston, 1994.Google Scholar
  90. 90.
    A. Shapiro. Asymptotic behavior of optimal solutions in stochastic programming. Mathematics of Operations Research, 18:829–845, 1993.CrossRefGoogle Scholar
  91. 91.
    A. Shapiro. Monte Carlo sampling methods. In A. Ruszczynski and A. Shapiro., editors, Stochastic Programming, volume 10 of Handbooks in Operations Research and Management Science. Elsevier Science Publishers B.V., Amsterdam, Netherlands, 2003.Google Scholar
  92. 92.
    A. Shapiro and T. Homem-de-Mello. A simulation-based approach to two-stage stochastic programming with recourse. Mathematical Programming, 81:301–325, 1998.Google Scholar
  93. 93.
    A. Shapiro, T. Homem-de-Mello, and J. C. Kim. Conditioning of convex piecewise linear stochastic programs. Mathematical Programming, 94:1–19, 2002.CrossRefGoogle Scholar
  94. 94.
    A. Shapiro, D. Dentcheva, and A. Ruszczyński. Stochastic Programming: Modeling and Theory. SIAM Series on Optimization, 2009.Google Scholar
  95. 95.
    D. Siegmund. Importance sampling in the Monte Carlo study of sequential tests. The Annals of Statistics, 4(4):673–684, 1976.CrossRefGoogle Scholar
  96. 96.
    M. L. Stein. Large sample properties of simulations using Latin hypercube sampling. Technometrics, 29:143–151, 1987.CrossRefGoogle Scholar
  97. 97.
    R. Stockbridge and G. Bayraksan. Variance reduction in Monte Carlo sampling-based optimality gap estimators for two-stage stochastic linear programming. Technical report, the Ohio State University, 2014.Google Scholar
  98. 98.
    S. Tsai and B. Nelson. Fully sequential selection procedures with control variates. IIE Transactions, 42:71–82, 2010.CrossRefGoogle Scholar
  99. 99.
    J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ, 2nd edition, 1947.Google Scholar
  100. 100.
    W. Wang and S. Ahmed. Sample average approximation of expected value constrained stochastic programs. Operations Research Letters, 36:515–519, 2008.CrossRefGoogle Scholar
  101. 101.
    L. Zhang and T. Homem-de-Mello. An optimal path model for the risk-averse traveler, 2014. Preprint available at Optimization Online (
  102. 102.
    P. Zhang. Nonparametric importance sampling. Journal of the American Statistical Association, 91:1245–1253, 1996.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Universidad Adolfo IbañezSantiagoChile
  2. 2.The Ohio State UniversityColumbusUSA

Personalised recommendations