Skip to main content
Log in

Sampling strategies and stopping criteria for stochastic dual dynamic programming: a case study in long-term hydrothermal scheduling

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

The long-term hydrothermal scheduling is one of the most important problems to be solved in the power systems area. This problem aims to obtain an optimal policy, under water (energy) resources uncertainty, for hydro and thermal plants over a multi-annual planning horizon. It is natural to model the problem as a multi-stage stochastic program, a class of models for which algorithms have been developed. The original stochastic process is represented by a finite scenario tree and, because of the large number of stages, a sampling-based method such as the Stochastic Dual Dynamic Programming (SDDP) algorithm is required. The purpose of this paper is two-fold. Firstly, we study the application of two alternative sampling strategies to the standard Monte Carlo—namely, Latin hypercube sampling and randomized quasi-Monte Carlo—for the generation of scenario trees, as well as for the sampling of scenarios that is part of the SDDP algorithm. Secondly, we discuss the formulation of stopping criteria for the optimization algorithm in terms of statistical hypothesis tests, which allows us to propose an alternative criterion that is more robust than that originally proposed for the SDDP. We test these ideas on a problem associated with the whole Brazilian power system, with a three-year planning horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey, T.G., Jensen, P., Morton, D.: Response surface analysis of two-stage stochastic linear programming with recourse. Nav. Res. Logist. 46, 753–778 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayraksan, G., Morton, D.P.: Assessing solution quality in stochastic programs. Math. Program. 108, 495–514 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, Z.L., Powell, W.B.: Convergent cutting plane and partial-sampling algorithm for multistage stochastic linear programs with recourse. J. Optim. Theory Appl. 102, 497–524 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chiralaksanakul, A., Morton, D.P.: Assessing policy quality in multi-stage stochastic programming. Manuscript, The University of Texas at Austin, available at SPEPS. http://edoc.hu-berlin.de/browsing/speps/ (2004)

  5. de Matos, V.L., Finardi, E.C.: A stochastic optimization model for long term hydrothermal scheduling. Manuscript, Laboratório de Planejamento de Sistemas de Energia Elétrica, Federal University of Santa Catarina, Brazil (2010)

  6. de Matos, V.L., Finardi, E.C., da Silva, E.L.: Comparison between the energy equivalent reservoir per subsystem and per cascade in the long-term operation planning in Brazil. In: EngOpt 2008-International Conference on Engineering Optimization, Rio de Janeiro (2008)

    Google Scholar 

  7. Donohue, C., Birge, J.R.: The abridged nested decomposition method for multistage stochastic programming. Algorithmic Oper. Res. 1(1), 20–30 (2006)

    MathSciNet  MATH  Google Scholar 

  8. dos Santos, M.L., da Silva, E.L., Finardi, E.C., Goncalves, R.E.: Practical aspects in solving the medium-term operation planning problem of hydrothermal power systems by using the progressive hedging method. Int. J. Electr. Power Energy Syst. 31(9), 546–552 (2009)

    Article  Google Scholar 

  9. Drew, S.S., Homem-de-Mello, T.: Quasi-Monte Carlo strategies for stochastic optimization. In: Perrone, L.F., Wieland, F.P., Liu, J., Lawson, B.G., Nicol, D.M., Fujimoto, R.M. (eds.) Proceedings of the 2006 Winter Simulation Conference, pp. 774–782. IEEE Press, New York (2006)

    Chapter  Google Scholar 

  10. Finardi, E.C., da Silva, E.L.: Solving the hydro unit commitment problem via dual decomposition and sequential quadratic programming. IEEE Trans. Power Syst. 21(2), 835–844 (2006)

    Article  Google Scholar 

  11. Friedel, I., Keller, A.: Fast generation of randomized low-discrepancy point sets. In: Monte Carlo and Quasi-Monte Carlo Methods, 2000, Hong Kong, pp. 257–273. Springer, Berlin (2002). Software available at http://www.multires.caltech.edu/software/libseq/

    Google Scholar 

  12. Heitsch, H., Römisch, W.: Scenario tree modeling for multistage stochastic programs. Math. Program. 118, 371–406 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hilli, P., Pennanen, T.: Numerical study of discretizations of multistage stochastic programs. Kybernetika 44(2), 185–204 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Hindsberger, M., Philpott, A.B.: ReSa: A method for solving multi-stage stochastic linear programs. In: SPIX Stochastic Programming Symposium, Berlin (2001)

    Google Scholar 

  15. Homem-de-Mello, T.: On rates of convergence for stochastic optimization problems under non-i.i.d. sampling. SIAM J. Optim. 19(2), 524–551 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Infanger, G., Morton, D.P.: Cut sharing for multistage stochastic linear programs with interstage dependency. Math. Program. 75, 241–256 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Kalagnanam, J., Diwekar, U.: An efficient sampling technique for off-line quality control. Technometrics 39(3), 308–319 (1997)

    Article  MATH  Google Scholar 

  18. Koivu, M.: Variance reduction in sample approximations of stochastic programs. Math. Program. 103(3), 463–485 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. L’Ecuyer, P., Lemieux, C.: Recent advances in randomized quasi-Monte Carlo methods. In: Dror, M., L’Ecuyer, P., Szidarovszky, F. (eds.) Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, pp. 419–474. Kluwer Academic, Boston (2002)

    Google Scholar 

  20. Linderoth, J.T., Shapiro, A., Wright, S.J.: The empirical behavior of sampling methods for stochastic programming. Ann. Oper. Res. 142(1), 215–241 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Loh, W.: On Latin hypercube sampling. Ann. Stat. 24(5), 2058–2080 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mak, W.K., Morton, D.P., Wood, R.K.: Monte Carlo bounding techniques for determining solution quality in stochastic programs. Oper. Res. Lett. 24, 47–56 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. Morton, D.P.: Stopping rules for a class of sampling-based stochastic programming algorithms. Oper. Res. 46(5), 710–718 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  26. Noakes, D.J., McLeod, A.I., Hipel, K.W.: Forecasting monthly riverflow time series. Int. J. Forecast. 1(2), 179–190 (1985)

    Article  Google Scholar 

  27. Owen, A.B.: Monte Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal. 34(5), 1884–1910 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Owen, A.B.: Latin supercube sampling for very high-dimensional simulations. ACM Trans. Model. Comput. Simul. 8, 71–102 (1998)

    Article  MATH  Google Scholar 

  29. Pennanen, T.: Epi-convergent discretizations of multistage stochastic programs. Math. Oper. Res. 30, 245–256 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pennanen, T., Koivu, M.: Epi-convergent discretizations of stochastic programs via integration quadratures. Numer. Math. 100, 141–163 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pereira, M.V.F., Pinto, L.M.V.G.: Multi-stage stochastic optimization applied to energy planning. Math. Program. 52, 359–375 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Philpott, A., Guan, Z.: On the convergence of stochastic dual dynamic programming and related methods. Oper. Res. Lett. 36, 450–455 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ruszczyński, A.: Decomposition methods. In: Ruszczyński, A., Shapiro, A. (eds.) Handbook of Stochastic Optimization. Elsevier, Amsterdam (2003)

    Google Scholar 

  34. Shapiro, A.: Monte Carlo sampling methods. In: Ruszczyński, A., Shapiro, A. (eds.) Handbook of Stochastic Optimization. Elsevier, Amsterdam (2003a)

    Google Scholar 

  35. Shapiro, A.: Inference of statistical bounds for multistage stochastic programming problems. Math. Methods Oper. Res. 58, 57–68 (2003b)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shapiro, A.: Analysis of stochastic dual dynamic programming method. Eur. J. Oper. Res. 209, 63–72 (2011)

    Article  MATH  Google Scholar 

  37. Shapiro, A., Homem-de-Mello, T.: A simulation-based approach to two-stage stochastic programming with recourse. Math. Program. 81, 301–325 (1998)

    MathSciNet  MATH  Google Scholar 

  38. Shapiro, A., Homem-de-Mello, T., Kim, J.C.: Conditioning of convex piecewise linear stochastic programs. Math. Program. 94, 1–19 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Spanier, J.: Quasi-Monte Carlo methods for particle transport problems. In: Niederreiter, H., Shiue, P. (eds.) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pp. 121–148. Springer, New York (1995)

    Google Scholar 

  40. Stein, M.L.: Large sample properties of simulations using Latin hypercube sampling. Technometrics 29, 143–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wasserman, L.: All of Statistics: A Concise Course in Statistical Inference. Springer, Berlin (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tito Homem-de-Mello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homem-de-Mello, T., de Matos, V.L. & Finardi, E.C. Sampling strategies and stopping criteria for stochastic dual dynamic programming: a case study in long-term hydrothermal scheduling. Energy Syst 2, 1–31 (2011). https://doi.org/10.1007/s12667-011-0024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-011-0024-y

Keywords

Navigation