Skip to main content

A Cell Population Model Structured by Cell Age Incorporating Cell–Cell Adhesion

  • Chapter
  • First Online:
Mathematical Oncology 2013

Abstract

An analysis is given of a continuum model of a proliferating cell population, which incorporates cell movement in space and cell progression through the cell cycle. The model consists of a nonlinear partial differential equation for the cell density in the spatial position and the cell age coordinates. The equation contains a diffusion term corresponding to random cell movement, a nonlocal dispersion term corresponding to cell–cell adhesion, a cell age-dependent boundary condition corresponding to cell division, and a nonlinear logistic term corresponding to constrained population growth. Basic properties of the solutions are proved, including existence, uniqueness, positivity, and long-term behavior dependent on parametric input. The model is illustrated by simulations applicable to in vitro wound closure experiments, which are widely used for experimental testing of cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.C. Arciero, Q. Mi, M.F. Branco, D.J. Hackam, D. Swigon, Continuum model of collective cell migration in wound healing and colony expansion. Biophys. J. 100, 535–543 (2011)

    Article  Google Scholar 

  2. N.J. Armstrong, K.J. Painter, J.A. Sherratt, A continuum approach to modelling cell–cell adhesion. J. Theor. Biol. 243, 98–113 (2006)

    Article  MathSciNet  Google Scholar 

  3. N.J. Armstrong, K.J. Painter, J.A. Sherratt, Adding adhesion to a chemical signalling model for somite formation. Bull. Math. Biol. 71, 1–24 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Byrne, D. Draso, Individual based and continuum models of growing cell populations: a comparison. J. Math. Biol. 58, 657–687 (2009)

    Article  MathSciNet  Google Scholar 

  5. H. Byrne, M.A.J. Chaplain, D.L. Evans, I. Hopkinson, Mathematical modelling of angiogenesis in wound healing: comparison of theory and experiment. J. Theor. Med. 2, 175–197 (2000)

    Article  MATH  Google Scholar 

  6. X. Chen, A. Friedman: A free boundary problem arising in a model of wound healing. SIAM J. Math. Anal. 32(4), 778–800 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Christini, J. Lowengrub, Multi-Scale Modeling of Cancer (Cambridge University Press, Cambrigde, 2010)

    Book  Google Scholar 

  8. G. Di Blasio, Mathematical analysis for an epidemic model with spatial and age structure. J. Evol. Equat. 10(4), 929–953 (2010)

    Article  MATH  Google Scholar 

  9. G. Di Blasio, A. Lorenzi, An identification problem in age-dependent population diffusion. Num. Funct. Anal. Optim. 34(1), 36–73 (2013)

    Article  MATH  Google Scholar 

  10. G.J. Doherty, H.T. McMahon, Mediation, modulation and consequences of membrane-cytoskeleton interactions. Ann. Rev. Biophys. 37, 65–95 (2008)

    Article  Google Scholar 

  11. A. Ducrot, P. Magal, S. Ruan, Travelling wave solutions in multigroup age-structured epidemic models. Arch. Ration. Mech. Anal. 195(1), 311–331 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Ducrot, Travelling waves for a size and space structured model in population dynamics: point to sustained oscillating solution connections. J. Differ. Equat. 250(1), 410–449 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Durrett, Cancer modeling: a personal perspective. Notices Am. Math. Soc. 60(3), 304–309 (2013)

    Article  MathSciNet  Google Scholar 

  14. J. Dyson, E. Sánchez, R. Villella-Bressan, G.F. Webb, An age and spatially structured model of tumor invasion with haptotaxis. Discrete Contin. Dyn. Syst. -B 8(1), 45–60 (2007)

    Article  MATH  Google Scholar 

  15. J. Dyson, R. Villella-Bressan, G.F. Webb, A spatially structured model of tumor growth with cell age, cell size and mutation of cell phenotypes. Math. Model. Nat. Phenom. 2(3), 69–100 (2007)

    Article  MathSciNet  Google Scholar 

  16. J. Dyson, R. Villella-Bressan, G.F. Webb, An age and spatially structured model of tumor invasion with haptotaxis II. Math. Pop. Stud. 15, 73–95 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Dyson, S. Gourley, R. Villella-Bressan, G.F. Webb, Existence and asymptotic properties of solutions of a nonlocal evolution equation modelling cell–cell adhesion. SIAM J. Math. Anal. 42(4), 1784–1804 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Dyson, S. Gourley, G.F. Webb, A nonlocal evolution equation model of cell–cell adhesion in higher dimensional space. J. Biol. Dyn. 7(Suppl 1), 68–87 (2013). doi:10.1080/17513758.2012.755572

    Article  MathSciNet  Google Scholar 

  19. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics (American Mathematical Society, Providence, 2004)

    Google Scholar 

  20. W.E. Fitzgibbon, M.E. Parrott, G.F. Webb, Diffusive epidemic models with spatial and age dependent heterogeneity. Discrete Contin. Dyn. Syst. 1(1), 35–57 (1995)

    MathSciNet  MATH  Google Scholar 

  21. W.E. Fitzgibbon, M.E. Parrott, G.F. Webb, A diffusive age-structured SEIRS epidemic model. Meth. Appl. Anal. 3(3), 358–369 (1996)

    MathSciNet  MATH  Google Scholar 

  22. A. Friedman, Tutorials in Mathematical Biosciences, II: Cell Cycle, Proliferation, and Cancer. Springer Lecture Notes in Mathematics, vol. 1872 (Springer, New York, 2005)

    Google Scholar 

  23. A. Friedman, Mathematical analysis and challenges arising from models of tumor growth. Math. Mod. Meth. Appl. Sci. 17, 1751–1772 (2007)

    Article  MATH  Google Scholar 

  24. A. Friedman, B. Hu, C. Xue, Analysis of a mathematical model of ischemic cutaneous wounds. SIAM J. Math. Anal. 42, 2013–2040 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. E.A. Gaffney, P.K. Maini, J.A. Sherratt, P.D. Dale, Wound healing in the corneal epithelium: biological mechanisms and mathematical models. J. Theor. Med. 1, 13–23 (1997)

    Article  MATH  Google Scholar 

  26. E.A. Gaffney, P.K. Maini, J.A. Sherratt, S. Tutt, The mathematical modelling of cell kinetics in corneal epithelial wound healing. J. Theor. Biol. 197, 111–141 (1999)

    Article  Google Scholar 

  27. A. Gandolfi, M. Iannelli, G. Marnoschi, An age-structured model of epidermis growth. J. Math. Biol. 62, 15–40 (2011)

    Article  Google Scholar 

  28. A. Gandolfi, M. Iannelli, G. Marinoschi, Time evolution for a model of epidermis growth. J. Evol. Equat. 13, 509–533 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Gerisch, M.A.J. Chaplain, Mathematical modelling of cancer cell invasion of tissue: local and nonlocal models and the effect of adhesion. J. Theor. Biol. 250, 684–704 (2008)

    Article  MathSciNet  Google Scholar 

  30. D. Guidetti, On elliptic systems in \(L^{1}\). Osaka J. Math. 30, 397–429 (1993)

    MathSciNet  MATH  Google Scholar 

  31. H.J.A.M. Heijmans, The Dynamical Behaviour of the Age-Size-Distribution of a Cell Population (Centre for Mathematics and Computer Science, Amsterdam; Springer, Berlin, 1984)

    Google Scholar 

  32. D. Henry, Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840 (Springer, New York, 1981)

    Google Scholar 

  33. M. Kubo, M. Langlais, Periodic solutions for a population dynamics problem with age-dependence and spatial structure. J. Math. Biol. 29(4), 363–378 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Kubo, M. Langlais, Periodic solutions for nonlinear population dynamics models with age-dependence and spatial structure. J. Differ. Equat. 109(2), 274–294 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. P. Laurençot, Ch. Walker, Proteus mirabilis swarm-colony development with drift. J. Math. Pures Appl. 92(5), 476–498 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. J.S. Lowengrub, H.B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristin, Nonlinear models of cancer: bridging the gap between cells and tumours. Nonlinearity 23, R1–R91 (2010)

    Article  MATH  Google Scholar 

  37. L. Lorenzi, A. Lunardi, G. Metafune, D. Pallara, Analytic semigroups and reaction diffusion problems. Internet Seminar 2004–2005, http://www.math.unipr.it/~lunardi/LectureNotes.html

  38. A. Lunardi, An introduction to interpolation theory. Internet Seminar January 2005, http://www.math.unipr.it/~lunardi/LectureNotes.html

  39. J.A.J. Metz, O. Diekmann, The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, vol. 68 (Springer, New York, 1986)

    Google Scholar 

  40. X. Mora, Semilinear parabolic problems define semiflows on C k spaces. Trans. Am. Math. Soc. 278, 21–55 (1983)

    MathSciNet  MATH  Google Scholar 

  41. P.J. Murray, A. Walter, A.G. Fletcher, C.M. Edwards, M.J. Tindall, P.K. Maini, Comparing a discrete and continuum model of the intestinal crypt. Phys. Biol. 8(2), 026011 (2010)

    Google Scholar 

  42. P.J. Murray, J-W. Kang, G.R. Mirams, S.-Y. Shin, H.M. Byrne, P.K. Maini, K.-H. Cho, Modelling spatially regulated β-catenin dynamics and invasion in intestinal crypts. Biophys. J. 99(3), 716–725 (2010)

    Google Scholar 

  43. K.J. Painter, N.J. Armstrong, J.A. Sherratt, The impact of adhesion on cellular invasion processes in cancer and development. J. Theor. Biol. 264, 1057–1067 (2010)

    Article  MathSciNet  Google Scholar 

  44. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations (Springer, Berlin, 1983)

    Book  MATH  Google Scholar 

  45. G.J. Pettet, M.A.J. Chaplain, D.S.L. McElwain, J. Norbury, A model of wound healing-angiogenesis in soft tissue. Math. Biosci. 136, 35–63 (1996)

    Article  MATH  Google Scholar 

  46. G.J. Pettet, M.A.J. Chaplain, D.S.L. McElwain, H.M. Byrne: On the role of angiogenesis in wound healing. Proc. Roy. Soc. Lond. B 263, 1487–1493 (1996)

    Article  Google Scholar 

  47. J.S. Ross, J.A. Fletcher, G.P. Linette, J. Stec, E. Clark, M. Ayers, W. Fraser Symmans, L. Pusztai, K.J. Bloom, The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist 8(4), 307–25 (2003)

    Article  Google Scholar 

  48. S. Ruan, J. Wu, Modeling spatial spread of communicable diseases involving animal hosts, in Spatial Ecology, S. Cantrell, C. Cosner, S. Ruan (Chapman & Hall CRC Press, Boca Raton, 2009), pp. 293–316

    Google Scholar 

  49. J.A. Sherratt, J.C. Dallon, Theoretical models of wound healing: past successes and future challenges. Comp. Rend. Biol. 325(5), 557–564 (2002)

    Article  Google Scholar 

  50. J.A. Sherratt, J.D. Murray, Mathematical analysis of a basic model for epidermal wound healing. Proc. Biol. Sci. 241, 29–36 (1990)

    Article  Google Scholar 

  51. J.A. Sherratt, J.D. Murray, Models of epidermal wound healing. J. Math. Biol. 31, 703–716 (1993)

    Article  MATH  Google Scholar 

  52. J.A. Sherratt, S.A. Gourley, N.J. Armstrong, K.J. Painter, Boundedness of solutions of a nonlocal reaction-diffusion model for adhesion in cell aggregation and cancer invasion. Euro. J. Appl. Math. 20, 123–144 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. J.W.-H. So, J. Wu, X. Zou, A reaction-diffusion model for a single species with age structure. I Travelling wavefronts on unbounded domains. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 457(2012),1841–1853 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. S.L. Tucker, S.O. Zimmerman, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables. SIAM J. Appl. Math. 48(3), 549–591 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  55. S. Turner, J.A. Sherratt, Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J. Theor. Biol. 216, 85–100 (2002)

    Article  MathSciNet  Google Scholar 

  56. Ch. Walker, A haptotaxis model with age and spatial structure and nonlinear age-boundary conditions. PAMM 7(1), 1040601–1040602 (2007)

    Article  Google Scholar 

  57. Ch. Walker, Global well-posedness of a haptotaxis model with spatial and age structure. Differ. Integral Equat. 20(9), 1053–1074 (2007)

    MATH  Google Scholar 

  58. Ch. Walker, Global existence for an age and spatially structured haptotaxis model with nonlinear age-boundary conditions. Eur. J. Appl. Math. 19, 113–147 (2008)

    Article  MATH  Google Scholar 

  59. Ch. Walker, Positive equilibrium solutions for age-and spatially-structured population models. SIAM J. Math. Anal. 41(4), 1366–1387 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  60. Ch. Walker, Global bifurcation of positive equilibria in nonlinear population models. J. Differ. Equat. 248(7), 1756–1776 (2010)

    Article  MATH  Google Scholar 

  61. Ch. Walker, Bifurcation of positive equilibria in nonlinear structured population models with varying mortality rates. Ann. Math. Pura Appl. 190(1), 1–19 (2011)

    Article  MATH  Google Scholar 

  62. Ch. Walker, On positive solutions of some systems of reaction-diffusion equations with nonlocal initial conditions. J. Reine Angew. Math. 660, 149–179 (2011)

    MathSciNet  MATH  Google Scholar 

  63. Ch. Walker, On nonlocal parabolic steady-state equations of cooperative or competing systems. Nonlinear Anal. Real World Appl. 12(6), 3552–3571 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ch. Walker, A note on a nonlocal nonlinear reaction-diffusion model. Appl. Math. Lett. 25(11), 1772–1777 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  65. Ch. Walker, Global continua of positive solutions for some quasilinear parabolic equation with a nonlocal initial condition. J. Dyn. Differ. Equat. 25, 159–172 (2013). doi:10.1007/s10884-013-9292-7

    Article  MATH  Google Scholar 

  66. Ch. Walker, Some remarks on the asymptotic behavior of the semigroup associated with age-structured diffusive populations. Monatsh. Math. 170, 481–501 (2013). doi:10.1007/s00605-012-0428-3

    Article  MathSciNet  MATH  Google Scholar 

  67. S.E. Wang, I. Shin, F.Y. Wu, D.B. Friedman, C.L. Arteaga, HER2/Neu (ErbB2) signaling to Rac1-Pak1 is temporally and spatially modulated by transforming growth factor β. Cancer Res. 66(19), 9591–9600 (2006)

    Google Scholar 

  68. G.F. Webb, An age-dependent epidemic model with spatial diffusion. Arch. Ration. Mech. Anal. 75(1), 91–102 (1980)

    Article  MATH  Google Scholar 

  69. G.F. Webb, A recovery-relapse epidemic model with spatial diffusion. J. Math. Biol. 14(2), 77–194 (1982)

    Article  MathSciNet  Google Scholar 

  70. G.F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics. Monographs and textbooks in Pure and Applied Mathematics (Marcel Dekker, New York, 1985)

    Google Scholar 

  71. G.F. Webb, Population models structured by age, size and spatial position, in Structured Population Models in Biology and Epidemiology, ed. by P. Magal, S. Ruan. Lecture Notes in Mathematics, vol. 1936, Mathematical Biosciences Series (Springer, Berlin, 2008), pp.1–49

    Google Scholar 

  72. C. Xue, A. Friedman, C.K. Sen, A mathematical model of ischemic cutaneous wounds. Proc. Natl. Acad. Sci. USA 106, 16782–16787 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet Dyson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dyson, J., Webb, G.F. (2014). A Cell Population Model Structured by Cell Age Incorporating Cell–Cell Adhesion. In: d'Onofrio, A., Gandolfi, A. (eds) Mathematical Oncology 2013. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-0458-7_4

Download citation

Publish with us

Policies and ethics