Skip to main content
Log in

Mathematical analysis for an epidemic model with spatial and age structure

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

A system of parabolic–hyperbolic equations with a non-local boundary condition, arising in mathematical theory of epidemics, is analyzed. For such a system, well–posedness as well as Sobolev regularity with respect to the space variables is proved. Asymptotic behavior of the solutions is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann H.: Dual semigroups and second order linear elliptic boundary value problems. Isr. J. Math. 45, 225–254 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amann H., Esher J.: Strongly continuous dual semigroups. Ann. Mat. Pura e Appl. IV, 41–62 (1996)

    Article  Google Scholar 

  3. Busenberg S.N., Cooke K., Iannelli M.: Endemic threshold and stability in a class of age-structured epidemics. SIAM J. Appl. Math. 48, 1379–1395 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Busenberg S.N., Iannelli M., Thieme H.R.: Global behaviour of an age-structured epidemic model. SIAM J. Math. Anal. 4, 1065–1080 (1991)

    Article  MathSciNet  Google Scholar 

  5. Busenberg S.N., Langlais M.: Global behaviour in age structured SIS models with seasonal periodicities and vertical transmission. J. Math. Anal. Appl. 213, 511–533 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Butzer P.L., Berens H.: Semi-Groups of Operators and Approximation. Springer, Berlin (1967)

    MATH  Google Scholar 

  7. Cha Y., Iannelli M., Milner F.A.: Existence and uniqueness of endemic states for the age-structured SIR epidemic model. Math. Biosc. 150, 177–190 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Da Prato G. (1976). Applications croissantes et équations d’ évolutions dans les espaces de Banach. Institutiones Mathematicae II, Istituto Nazionale di Alta Matematica, Academic Press Inc., London, 1976.

  9. Da Prato G., and P Grisvard. Sommes d’ opérateurs linéaires et équations différentielles opérationelles. J. Math. Pures et Appl. 54:305–387.

  10. G. Di Blasio. A problem arising in the mathematical theory of epidemics. In Nonlinear Phenomena in Mathematical Sciences. Academic Press, New York, pp. 313–327, 1982.

  11. G. Di Blasio and A. Lorenzi. Direct and inverse problems in age-structured population diffusion. Discret. Cont. Dynam. Syst. S (to appear).

  12. Ducrot A.: Travelling wave solutions for a scalar age-structured equation. Discret. Cont. Dynam. Syst. B 7, 251–273 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ducrot A., Magal P.: Travelling wave solutions for an infection age-structured model with diffusion. Proc R. Soc Edinburgh-A 139, 2307–2325 (2009)

    MathSciNet  Google Scholar 

  14. Dyson J., Sanchez E., Villella-Bressan R., Webb G.F.: An age and spatially structured model of tumor invasion with haptotaxis. Discret. Cont. Dynam. Syst. B 8, 45–60 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Feng Z., Huang W., Castillo-Chavez C.: Global behaviour of a multi-group SIS epidemic model with age structure. J. Diff. Eqs. 218, 292–324 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fitzgibbon W.E., Parrot M.E., Webb G.F.: Diffusive epidemics models with spatial and age dependent heterogeneity. Discret. Contin. Dynam. Syst. 1, 35–57 (1995)

    MATH  Google Scholar 

  17. Franceschetti A., Pugliese A.: Threshold behaviour of a SIR epidemic model with age structure and immigration. J. Math. Biol. 57, 1–27 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. I. Hisashi. Mathematical analysis of an age-structured SIR epidemic model with vertical transmission. Discret. Contin. Dynam. Syst. B 6:69–96.

  19. Kim M.Y.: Global dynamics of approximate solutions to an age-structured epidemic model with diffusion. Adv. Comput. Math. 25, 451–474 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    MATH  Google Scholar 

  21. H. Triebel. Interpolation Theory, Functions Spaces, Differential Operators. North–Holland, 1978.

  22. Walker C.: Global well-posedness of a haptotaxis model with spatial and age structure. Diff. Int. Eqs. 20, 1053–1074 (2007)

    MATH  Google Scholar 

  23. G.F. Webb. Population models structured by age, size and position. In Structured Population Models in Biology and Epidemiology. Lecture Notes in Mathematics, Vol. 1936, Springer, Berlin, New York, pp. 1–49, 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Di Blasio.

Additional information

This work was partially supported by the project: Equazioni di Evoluzione e Applicazioni of the Sapienza Università di Roma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Blasio, G. Mathematical analysis for an epidemic model with spatial and age structure. J. Evol. Equ. 10, 929–953 (2010). https://doi.org/10.1007/s00028-010-0077-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-010-0077-8

Mathematics Subject Classification (2000)

Keywords

Navigation