Skip to main content

Oxidative Stress in Cardiac Valve Development

  • Chapter
  • First Online:
Studies on Atherosclerosis

Abstract

Formation of the mature valve structures begins during embryogenesis and is initiated with the generation of endocardial cushions following endothelial-to-mesenchymal transformation. As development progresses, endocardial cushions elongate and undergo extensive remodeling of the extracellular matrix by mesenchyme-like valve interstitial cells that reside within the maturing valve primordia. This process is in part, regulated by valve endothelial cells that overlay the valve leaflets and continues until postnatal stages when formation of the stratified valve structure is complete. Many signaling pathways have been shown to regulate valvulogenesis including Transforming Growth Factor β, Vascular endothelial growth factor, Wnt, Notch, and endothelial Nitric Oxide Synthase. In other systems, components of the reactive oxygen species (ROS) serve as secondary messengers to influence activity of these signaling pathways. As this has not been explored in developing valves, this chapter will discuss the potential role of ROS in the embryo and discuss how aberrations in this process could underlie valve pathology after birth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aVIC:

Activated valve interstitial cell

BMP:

Bone morphogenetic protein

ECM:

Extracellular matrix

EMT:

Endothelial-to-mesenchymal transformation

eNOS:

Endothelial nitric oxide signaling

eNOS:

Endothelial nitric oxide synthase

ERK:

Extracellular-signal-regulated kinase

MAPK:

Mitogen-activated protein kinase

MMP:

Matrix metalloproteinases

NFATc1:

Nuclear factor of activated T-cells (c1)

ROS:

Reactive oxygen species

SMA:

α-Smooth muscle actin

Tgfβ:

Transforming Growth Factor β

VEC:

Valve endothelial cell

VEGF:

Vascular endothelial growth factor

VIC:

Valve interstitial cell

References

  1. Burton GJ, Jauniaux E. Oxidative stress. Best Pract Res Clin Obstet Gynaecol. 2011;25(3):287–99.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hinton RB, Yutzey KE. Heart valve structure and function in development and disease. Annu Rev Physiol. 2011;73:29–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson RH, Ho SY, Becker AE. Anatomy of the human atrioventricular junctions revisited. Anat Rec. 2000;260(1):81–91.

    Article  CAS  PubMed  Google Scholar 

  4. Anderson RH. Clinical anatomy of the aortic root. Heart. 2000;84(6):670–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Garcia-Martinez V, Sanchez-Quintana D, Hurle JM. Histochemical and ultrastructural changes in the extracellular matrix of the developing chick semilunar heart valves. Acta Anat. 1991;142(1):87–96.

    Article  CAS  PubMed  Google Scholar 

  6. Gross L, Kugel MA. Topographic anatomy and histology of the valves in the human heart. Am J Pathol. 1931;7(5):445–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tao G, Kotick JD, Lincoln J. Heart valve development, maintenance, and disease: the role of endothelial cells. Curr Top Dev Biol. 2012;100:203–32.

    Article  CAS  PubMed  Google Scholar 

  8. Balachandran K, Sucosky P, Yoganathan AP. Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int J Inflamm. 2011;2011:263870.

    Article  Google Scholar 

  9. Lincoln J, Lange AW, Yutzey KE. Hearts and bones: shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development. Dev Biol. 2006;294(2):292–302.

    Article  CAS  PubMed  Google Scholar 

  10. Icardo JM, Colvee E. Atrioventricular valves of the mouse: III. Collagenous skeleton and myotendinous junction. Anat Rec. 1995;243(3):367–75.

    Article  CAS  PubMed  Google Scholar 

  11. Kunzelman KS et al. Differential collagen distribution in the mitral valve and its influence on biomechanical behaviour. J Heart Valve Dis. 1993;2(2):236–44.

    CAS  PubMed  Google Scholar 

  12. Rabkin-Aikawa E, Mayer Jr JE, Schoen FJ. Heart valve regeneration. Adv Biochem Eng Biotechnol. 2005;94:141–79.

    PubMed  Google Scholar 

  13. Aldous IG et al. Differences in collagen cross-linking between the four valves of the bovine heart: a possible role in adaptation to mechanical fatigue. Am J Physiol Heart Circ Physiol. 2009;296(6):H1898–906.

    Article  CAS  PubMed  Google Scholar 

  14. Grande-Allen KJ, Liao J. The heterogeneous biomechanics and mechanobiology of the mitral valve: implications for tissue engineering. Curr Cardiol Rep. 2011;13(2):113–20.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sacks MS, David Merryman W, Schmidt DE. On the biomechanics of heart valve function. J Biomech. 2009;42(12):1804–24.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schoen FJ. Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation. 2008;118(18):1864–80.

    Article  PubMed  Google Scholar 

  17. Misfeld M, Sievers HH. Heart valve macro- and microstructure. Phil Trans R Soc Lond B Biol Sci. 2007;362(1484):1421–36.

    Article  Google Scholar 

  18. Liu AC, Gotlieb AI. Characterization of cell motility in single heart valve interstitial cells in vitro. Histol Histopathol. 2007;22(8):873–82.

    CAS  PubMed  Google Scholar 

  19. Butcher JT, Nerem RM. Valvular endothelial cells regulate the phenotype of interstitial cells in co-culture: effects of steady shear stress. Tissue Eng. 2006;12(4):905–15.

    Article  CAS  PubMed  Google Scholar 

  20. Roos CM et al. Transcriptional and phenotypic changes in aorta and aortic valve with aging and MnSOD deficiency in mice. Am J Physiol Heart Circ Physiol. 2013;305(10):H1428–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miller JD et al. Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. J Am Coll Cardiol. 2008;52(10):843–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heistad DD et al. Novel aspects of oxidative stress in cardiovascular diseases. Circ J. 2009;73(2):201–7.

    Article  CAS  PubMed  Google Scholar 

  23. Perez-Pomares JM, Gonzalez-Rosa JM, Munoz-Chapuli R. Building the vertebrate heart - an evolutionary approach to cardiac development. Int J Dev Biol. 2009;53(8-10):1427–43.

    Article  PubMed  Google Scholar 

  24. Person AD, Klewer SE, Runyan RB. Cell biology of cardiac cushion development. Int Rev Cytol. 2005;243:287–335.

    Article  CAS  PubMed  Google Scholar 

  25. Eisenberg LM, Markwald RR. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res. 1995;77(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  26. Combs MD, Yutzey KE. Heart valve development: regulatory networks in development and disease. Circ Res. 2009;105(5):408–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lopez-Sanchez C, Garcia-Martinez V. Molecular determinants of cardiac specification. Cardiovasc Res. 2011;91(2):185–95.

    Article  CAS  PubMed  Google Scholar 

  28. Markwald RR et al. Developmental basis of adult cardiovascular diseases: valvular heart diseases. Ann N Y Acad Sci. 2010;1188:177–83.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schroeder JA et al. Form and function of developing heart valves: coordination by extracellular matrix and growth factor signaling. J Mol Med. 2003;81(7):392–403.

    Article  CAS  PubMed  Google Scholar 

  30. Lincoln J, Alfieri CM, Yutzey KE. Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos. Dev Dyn. 2004;230(2):239–50.

    Article  CAS  PubMed  Google Scholar 

  31. de Lange FJ et al. Lineage and morphogenetic analysis of the cardiac valves. Circ Res. 2004;95(6):645–54.

    Article  PubMed  CAS  Google Scholar 

  32. Lincoln J, Alfieri CM, Yutzey KE. BMP and FGF regulatory pathways control cell lineage diversification of heart valve precursor cells. Dev Biol. 2006;292(2):292–302.

    Article  PubMed  CAS  Google Scholar 

  33. Wessels A et al. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev Biol. 2012;366(2):111–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gittenberger-de Groot AC et al. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res. 1998;82(10):1043–52.

    Article  CAS  PubMed  Google Scholar 

  35. Cai CL et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature. 2008;454(7200):104–8.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou B et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008;454(7200):109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lockhart MM et al. The epicardium and the development of the atrioventricular junction in the murine heart. J Dev Biol. 2014;2(1):1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakamura T, Colbert MC, Robbins J. Neural crest cells retain multipotential characteristics in the developing valves and label the cardiac conduction system. Circ Res. 2006;98(12):1547–54.

    Article  CAS  PubMed  Google Scholar 

  39. Jiang X et al. Fate of the mammalian cardiac neural crest. Development. 2000;127(8):1607–16.

    CAS  PubMed  Google Scholar 

  40. Mjaatvedt CH et al. Normal distribution of melanocytes in the mouse heart. Anat Rec A Discov Mol Cell Evol Biol. 2005;285(2):748–57.

    Article  PubMed  Google Scholar 

  41. Hinton Jr RB et al. Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ Res. 2006;98(11):1431–8.

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y et al. Nitric oxide synthase-3 promotes embryonic development of atrioventricular valves. PLoS One. 2013;8(10), e77611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. El Accaoui RN et al. Aortic valve sclerosis in mice deficient in endothelial nitric oxide synthase. Am J Physiol Heart Circ Physiol. 2014;306(9):H1302–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Bosse K et al. Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease. J Mol Cell Cardiol. 2013;60:27–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gould ST et al. The role of valvular endothelial cell paracrine signaling and matrix elasticity on valvular interstitial cell activation. Biomaterials. 2014;35(11):3596–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chang AC et al. Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Dev Cell. 2011;21(2):288–300.

    Article  CAS  PubMed  Google Scholar 

  47. Timmerman LA et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004;18(1):99–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Feng Q et al. Development of heart failure and congenital septal defects in mice lacking endothelial nitric oxide synthase. Circulation. 2002;106(7):873–9.

    Article  CAS  PubMed  Google Scholar 

  49. Shesely EG et al. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 1996;93(23):13176–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee TC et al. Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation. 2000;101(20):2345–8.

    Article  CAS  PubMed  Google Scholar 

  51. Sampson N, Berger P, Zenzmaier C. Redox signaling as a therapeutic target to inhibit myofibroblast activation in degenerative fibrotic disease. Biomed Res Int. 2014;2014:131737.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Grubisha MJ, DeFranco DB. Local endocrine, paracrine and redox signaling networks impact estrogen and androgen crosstalk in the prostate cancer microenvironment. Steroids. 2013;78(6):538–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Samarakoon R, Overstreet JM, Higgins PJ. TGF-beta signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities. Cell Signal. 2013;25(1):264–8.

    Article  CAS  PubMed  Google Scholar 

  54. Barcellos-Hoff MH. Latency and activation in the control of TGF-beta. J Mammary Gland Biol Neoplasia. 1996;1(4):353–63.

    Article  Google Scholar 

  55. Amarnath S et al. Endogenous TGF-beta activation by reactive oxygen species is key to Foxp3 induction in TCR-stimulated and HIV-1-infected human CD4 + CD25− T cells. Retrovirology. 2007;4:57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Jobling MF et al. Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat Res. 2006;166(6):839–48.

    Article  CAS  PubMed  Google Scholar 

  57. Pociask DA, Sime PJ, Brody AR. Asbestos-derived reactive oxygen species activate TGF-beta1. Lab Invest. 2004;84(8):1013–23.

    Article  CAS  PubMed  Google Scholar 

  58. Sullivan DE et al. The latent form of TGFbeta(1) is induced by TNFalpha through an ERK specific pathway and is activated by asbestos-derived reactive oxygen species in vitro and in vivo. J Immunotoxicol. 2008;5(2):145–9.

    Article  CAS  PubMed  Google Scholar 

  59. Vodovotz Y et al. Regulation of transforming growth factor beta1 by nitric oxide. Cancer Res. 1999;59(9):2142–9.

    CAS  PubMed  Google Scholar 

  60. Wang H, Kochevar IE. Involvement of UVB-induced reactive oxygen species in TGF-beta biosynthesis and activation in keratinocytes. Free Radic Biol Med. 2005;38(7):890–7.

    Article  CAS  PubMed  Google Scholar 

  61. Leonarduzzi G et al. The lipid peroxidation end product 4-hydroxy-2,3-nonenal up-regulates transforming growth factor beta1 expression in the macrophage lineage: a link between oxidative injury and fibrosclerosis. FASEB J. 1997;11(11):851–7.

    CAS  PubMed  Google Scholar 

  62. Bellocq A et al. Reactive oxygen and nitrogen intermediates increase transforming growth factor-beta1 release from human epithelial alveolar cells through two different mechanisms. Am J Respir Cell Mol Biol. 1999;21(1):128–36.

    Article  CAS  PubMed  Google Scholar 

  63. Saito K et al. Iron chelation and a free radical scavenger suppress angiotensin II-induced upregulation of TGF-beta1 in the heart. Am J Physiol Heart Circ Physiol. 2005;288(4):H1836–43.

    Article  CAS  PubMed  Google Scholar 

  64. Shvedova AA et al. Increased accumulation of neutrophils and decreased fibrosis in the lung of NADPH oxidase-deficient C57BL/6 mice exposed to carbon nanotubes. Toxicol Appl Pharmacol. 2008;231(2):235–40.

    Article  CAS  PubMed  Google Scholar 

  65. Nakajima Y et al. Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat Rec. 2000;258(2):119–27.

    Article  CAS  PubMed  Google Scholar 

  66. Mercado-Pimentel ME, Runyan RB. Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs. 2007;185(1-3):146–56.

    Article  CAS  PubMed  Google Scholar 

  67. Sanford LP et al. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development. 1997;124(13):2659–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bartram U et al. Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-beta(2)-knockout mice. Circulation. 2001;103(22):2745–52.

    Article  CAS  PubMed  Google Scholar 

  69. Sridurongrit S et al. Signaling via the Tgf-beta type I receptor Alk5 in heart development. Dev Biol. 2008;322(1):208–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Todorovic V et al. Long form of latent TGF-beta binding protein 1 (Ltbp1L) regulates cardiac valve development. Dev Dyn. 2011;240(1):176–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee MW et al. The involvement of reactive oxygen species (ROS) and p38 mitogen-activated protein (MAP) kinase in TRAIL/Apo2L-induced apoptosis. FEBS Lett. 2002;512(1-3):313–8.

    Article  CAS  PubMed  Google Scholar 

  72. Benhar M et al. Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Mol Cell Biol. 2001;21(20):6913–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Krenz M et al. Role of ERK1/2 signaling in congenital valve malformations in Noonan syndrome. Proc Natl Acad Sci U S A. 2008;105(48):18930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Son Y et al. Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduct. 2011;2011:792639.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Cho HJ et al. Snail is required for transforming growth factor-beta-induced epithelial-mesenchymal transition by activating PI3 kinase/Akt signal pathway. Biochem Biophys Res Commun. 2007;353(2):337–43.

    Article  CAS  PubMed  Google Scholar 

  76. Romano LA, Runyan RB. Slug is an essential target of TGFbeta2 signaling in the developing chicken heart. Dev Biol. 2000;223(1):91–102.

    Article  CAS  PubMed  Google Scholar 

  77. Tao G et al. Mmp15 is a direct target of Snai1 during endothelial to mesenchymal transformation and endocardial cushion development. Dev Biol. 2011;359(2):209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang A, Dong Z, Yang T. Prostaglandin D2 inhibits TGF-beta1-induced epithelial-to-mesenchymal transition in MDCK cells. Am J Physiol Renal Physiol. 2006;291(6):F1332–42.

    Article  CAS  PubMed  Google Scholar 

  79. Gorowiec MR et al. Free radical generation induces epithelial-to-mesenchymal transition in lung epithelium via a TGF-beta1-dependent mechanism. Free Radic Biol Med. 2012;52(6):1024–32.

    Article  CAS  PubMed  Google Scholar 

  80. Rhyu DY et al. Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol. 2005;16(3):667–75.

    Article  CAS  PubMed  Google Scholar 

  81. Kim MC, Cui FJ, Kim Y. Hydrogen peroxide promotes epithelial to mesenchymal transition and stemness in human malignant mesothelioma cells. Asian Pac J Cancer Prev. 2013;14(6):3625–30.

    Article  PubMed  Google Scholar 

  82. Chen F et al. Loss of Ikkbeta promotes migration and proliferation of mouse embryo fibroblast cells. J Biol Chem. 2006;281(48):37142–9.

    Article  CAS  PubMed  Google Scholar 

  83. Dong R et al. Stabilization of snail by HuR in the process of hydrogen peroxide induced cell migration. Biochem Biophys Res Commun. 2007;356(1):318–21.

    Article  CAS  PubMed  Google Scholar 

  84. Cano A et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2(2):76–83.

    Article  CAS  PubMed  Google Scholar 

  85. Lim SO et al. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology. 2008;135(6):2128–40.e1–8.

    Article  CAS  PubMed  Google Scholar 

  86. Hurlstone AF et al. The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature. 2003;425(6958):633–7.

    Article  CAS  PubMed  Google Scholar 

  87. Liebner S et al. Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol. 2004;166(3):359–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Alfieri CM et al. Wnt signaling in heart valve development and osteogenic gene induction. Dev Biol. 2010;338(2):127–35.

    Article  CAS  PubMed  Google Scholar 

  89. Kajla S et al. A crucial role for Nox 1 in redox-dependent regulation of Wnt-beta-catenin signaling. FASEB J. 2012;26(5):2049–59.

    Article  CAS  PubMed  Google Scholar 

  90. Wang Y et al. Endocardial to myocardial notch-wnt-bmp axis regulates early heart valve development. PLoS One. 2013;8(4), e60244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Coant N et al. NADPH oxidase 1 modulates WNT and NOTCH1 signaling to control the fate of proliferative progenitor cells in the colon. Mol Cell Biol. 2010;30(11):2636–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Funato Y, Miki H. Redox regulation of Wnt signalling via nucleoredoxin. Free Radic Res. 2010;44(4):379–88.

    Article  CAS  PubMed  Google Scholar 

  93. Dor Y et al. A novel role for VEGF in endocardial cushion formation and its potential contribution to congenital heart defects. Development. 2001;128(9):1531–8.

    CAS  PubMed  Google Scholar 

  94. Armstrong EJ, Bischoff J. Heart valve development: endothelial cell signaling and differentiation. Circ Res. 2004;95(5):459–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ushio-Fukai M et al. Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res. 2002;91(12):1160–7.

    Article  CAS  PubMed  Google Scholar 

  96. Tojo T et al. Role of gp91phox (Nox2)-containing NAD(P)H oxidase in angiogenesis in response to hindlimb ischemia. Circulation. 2005;111(18):2347–55.

    Article  CAS  PubMed  Google Scholar 

  97. Stankunas K et al. VEGF signaling has distinct spatiotemporal roles during heart valve development. Dev Biol. 2010;347(2):325–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Domigan CK, Ziyad S, Iruela-Arispe ML. Canonical and noncanonical vascular endothelial growth factor pathways: new developments in biology and signal transduction. Arterioscler Thromb Vasc Biol. 2015;35(1):30–9.

    Article  CAS  PubMed  Google Scholar 

  99. Chakraborty S et al. Twist1 promotes heart valve cell proliferation and extracellular matrix gene expression during development in vivo and is expressed in human diseased aortic valves. Dev Biol. 2010;347(1):167–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hurle JM et al. Elastic extracellular matrix of the embryonic chick heart: an immunohistological study using laser confocal microscopy. Dev Dyn. 1994;200(4):321–32.

    Article  CAS  PubMed  Google Scholar 

  101. Rabkin E et al. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation. 2001;104(21):2525–32.

    Article  CAS  PubMed  Google Scholar 

  102. Lincoln J, Yutzey KE. Molecular and developmental mechanisms of congenital heart valve disease. Birth Defects Res A Clin Mol Teratol. 2011;91(6):526–34.

    Article  CAS  PubMed  Google Scholar 

  103. Aikawa E et al. Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering. Circulation. 2006;113(10):1344–52.

    Article  PubMed  Google Scholar 

  104. Pho M et al. Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves. Am J Physiol Heart Circ Physiol. 2008;294(4):H1767–78.

    Article  CAS  PubMed  Google Scholar 

  105. Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol. 2007;127(3):526–37.

    Article  CAS  PubMed  Google Scholar 

  106. Forman HJ et al. The chemistry of cell signaling by reactive oxygen and nitrogen species and 4-hydroxynonenal. Arch Biochem Biophys. 2008;477(2):183–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cucoranu I et al. NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res. 2005;97(9):900–7.

    Article  CAS  PubMed  Google Scholar 

  108. Hecker L et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med. 2009;15(9):1077–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hagler MA et al. TGF-beta signalling and reactive oxygen species drive fibrosis and matrix remodelling in myxomatous mitral valves. Cardiovasc Res. 2013;99(1):175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu RM, Gaston Pravia KA. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med. 2010;48(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  111. Hulin A et al. Emerging pathogenic mechanisms in human myxomatous mitral valve: lessons from past and novel data. Cardiovasc Pathol. 2013;22(4):245–50.

    Article  CAS  PubMed  Google Scholar 

  112. Miller JD et al. Lowering plasma cholesterol levels halts progression of aortic valve disease in mice. Circulation. 2009;119(20):2693–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gao F et al. Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem. 2008;283(10):6058–66.

    Article  CAS  PubMed  Google Scholar 

  114. Kliment CR et al. Oxidative stress alters syndecan-1 distribution in lungs with pulmonary fibrosis. J Biol Chem. 2009;284(6):3537–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gauldie J et al. Transfer of the active form of transforming growth factor-beta 1 gene to newborn rat lung induces changes consistent with bronchopulmonary dysplasia. Am J Pathol. 2003;163(6):2575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kliment CR, Oury TD. Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radic Biol Med. 2010;49(5):707–17.

    Article  CAS  PubMed  Google Scholar 

  117. Phillippi JA et al. Altered oxidative stress responses and increased type I collagen expression in bicuspid aortic valve patients. Ann Thorac Surg. 2010;90(6):1893–8.

    Article  PubMed  Google Scholar 

  118. Rajamannan NM et al. Atorvastatin inhibits calcification and enhances nitric oxide synthase production in the hypercholesterolaemic aortic valve. Heart. 2005;91(6):806–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fu X et al. Hypochlorous acid generated by myeloperoxidase modifies adjacent tryptophan and glycine residues in the catalytic domain of matrix metalloproteinase-7 (matrilysin): an oxidative mechanism for restraining proteolytic activity during inflammation. J Biol Chem. 2003;278(31):28403–9.

    Article  CAS  PubMed  Google Scholar 

  120. Grote K et al. Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res. 2003;92(11):e80–6.

    Article  CAS  PubMed  Google Scholar 

  121. Pouyet L, Carrier A. Mutant mouse models of oxidative stress. Transgenic Res. 2010;19(2):155–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy Lincoln .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huk, D., Lincoln, J. (2017). Oxidative Stress in Cardiac Valve Development. In: Rodriguez-Porcel, M., Chade, A., Miller, J. (eds) Studies on Atherosclerosis. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Boston, MA. https://doi.org/10.1007/978-1-4899-7693-2_1

Download citation

Publish with us

Policies and ethics