Skip to main content
Log in

Latency and activation in the control of TGF-β

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The biological activity of the transforming growth factor-β's (TGF-β)3 is tightly controlled by their persistance in the extracellular compartment as latent complexes. Each of the three mammalian isoform genes encodes a product that is cleaved intracellularly to form two polypeptides, each of which dimerizes. Mature TGF-β, a 24 kD homodimer, is noncovalently associated with the 80 kD latency-associated peptide (LAP). LAP is a fundamental component of TGF-β that is required for its efficient secretion, prevents it from binding to ubiquitous cell surface receptors, and maintains its availability in a large extracellular reservoir that is readily accessed by activation. This latent TGF-β complex (LTGF-β) is secreted by all cells and is abundant both in circulating forms and bound to the extracellular matrix. Activation describes the collective events leading to the release of TGF-β. Despite the importance of TGF-β regulation of growth and differentiation in physiological and malignant tissue processes, remarkably little is known about the mechanisms of activationin situ. Recent studies of irradiated mammary gland reveal certain features of TGF-β1 activation that may shed light on its regulation and potential roles in the normal and neoplastic mammary gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TGF-β:

Transforming growth factor β1

LTGF-β:

latent transforming growth factor β1

LAP:

latency associated peptide

ROS:

reactive oxygen species

tPA:

tissue-type plasminogen activator

PAI:

plasminogen activator inhibitor-1

References

  1. H. L. Moses, E. Y. Yang, and J. A. Pietenpol (1990). TGF-β stimulation and inhibition of cell proliferation: New mechanistic insights.Cell 63:245–247.

    Article  PubMed  CAS  Google Scholar 

  2. C. Nathan and M. Sporn (1991). Cytokines in context.J. Cell Biol. 113:981–986.

    PubMed  CAS  Google Scholar 

  3. W. A. Border and R. Ruoslahti (1992). Transforming growth factor-β in disease: The dark side of tissue repair.J. Clin. Invest. 90:1–7.

    Article  PubMed  CAS  Google Scholar 

  4. C. L. Arteaga, S. D. Hurd, A. R. Winnier, M. D. Johnson, B. M. Fendly, and J. T. Forbes (1993). Anti-transforming growth factor (TGF)-β antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity.J. Clin. Invest. 92:2569–2476.

    PubMed  CAS  Google Scholar 

  5. A. B. Glick, M. M. Lee, N. Darwiche, A. B. Kulkarni, S. Karlsson, and S. H. Yuspa (1994). Targeted deletion of the TGF-β1 gene causes rapid progression to squamous cell carcinoma.Genes Devel. 8:2429–2440.

    PubMed  CAS  Google Scholar 

  6. D. F. J. Pierce, M. D. Johnson, Y. Matsui, D. S. Robinson, L. I. Gold, and A. F. Purchio (1993). Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1.Genes Devel. 7:2308–2317.

    PubMed  CAS  Google Scholar 

  7. J. J. Letterio, A. G. Geiser, A. B. Kulkarni, N. S. Roche, M. B. Sporn, and A. B. Roberts (1994). Maternal rescue of transforming growth factor-β1 null mice.Science 264:1936–1938.

    PubMed  CAS  Google Scholar 

  8. R. Derynck, J. A. Jarrett, E. Y. Chen, D. H. Eaton, J. R. Bell, R. K. Associan, A. B. Roberts, M. B. Sporn, and D. V. Goeddel (1985). Human transforming growth factor-β complementary DNA sequence and expression in normal and transformed cells.Nature 316:701–705.

    PubMed  CAS  Google Scholar 

  9. K. Miyazono, U. Hellman, C. Wernstedt, and C.-H. Heldin (1988). Latent high molecular weight complex of transforming growth factor β1: Purification from human platelets and structural characterization.J. Biol. Chem. 263:6407–6415.

    PubMed  CAS  Google Scholar 

  10. L. M. Wakefield, D. M. Smith, K. C. Flanders, and M. B. Sporn (1988). Latent transforming growth factor-β from human platelets: A high molecular weight complex containing precursor sequences.J. Biol. Chem. 263:7646–7654.

    PubMed  CAS  Google Scholar 

  11. D. S. Romeo, K. Park, A. B. Roberts, M. B. Sporn, and S. J. Kim (1993). An element of the transforming growth factor-β1 5∋-untranslated region represses translation and specifically binds a cytosolic factor.Mol. Endocrinol. 7:759–766.

    PubMed  CAS  Google Scholar 

  12. K. Miyazono and C.-H. Heldin (1991). Latent forms of TGF-β: Molecular structure and mechanisms of activation. InClinical Applications of TGF-β, Wiley, Chichester, pp. 81–92.

    Google Scholar 

  13. R. Flaumenhaft and D. B. Rifkin (1992). The extracellular regulation of growth factor action.Mol. Biol. Cell 3:1057–1065.

    PubMed  CAS  Google Scholar 

  14. D. A. Lawrence (1991). Identification and activation of latent transforming growth factor β.Meth. Enzym. 198:327–336.

    Article  PubMed  CAS  Google Scholar 

  15. P. D. Brown, L. M. Wakefield, A. D. Levinson, and M. B. Sporn (1990). Physiochemical activation of recominant latent transforming growth factor-beta's 1, 2, and 3.Growth Factors 3:35–43.

    PubMed  CAS  Google Scholar 

  16. D. Danielpour, L. L. Dart, K. C. Flanders, A. B. Roberts, and M. B. Sporn (1989). Immunodetection and quantitation of the two forms of transforming growth factor-beta (TGF-β1 and TGF-β2).J. Cell. Physiol. 138:79–86.

    PubMed  CAS  Google Scholar 

  17. M. Abe, J. G. Harpel, C. N. Metz, I. Nunes, D. J. Loskutoff, and D. B. Rifkin (1994). An assay for transforming growth factor-beta using cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct.Anal. Biochem. 216:276–284.

    PubMed  CAS  Google Scholar 

  18. J. Taipale and J. Keskioja (1996). Hepatocyte growth factor releases epithelial and endothelial cells from growth arrest induced by transforming growth factor-β1.J. Biol. Chem. 272:4342–4348.

    Google Scholar 

  19. L. Wakefield, A. A. Colletta, B. K. McCune, and M. B. Sporn (1991). Roles for transforming growth factors-β in the genesis, prevention and treatment of breast cancer. In R. B. Dickson and M. E. Lippman (eds.),Genes, Oncogens, and Hormones: Advances in Cellular and Molecular Biology of Breast Cancer, Kluwer Academic Publishers, Boston, pp. 97–136.

    Google Scholar 

  20. A. B. Roberts, M. B. Sporn, R. K. Assoian, J. M. Smithe, N. S. Roche, L. M. Wakefield, U. I. Heine, L. A. Liotta, V. Falanga, J. H. Kehrl, and A. S. Fauci (1986). Transforming growth factor type β: Rapid induction of fibrosis and angiogenesisin vivo and stimulation of collagen formationin vitro.Proc. Natl. Acad. Sci. U.S.A. 83:4167–4171.

    PubMed  CAS  Google Scholar 

  21. A. Desmouliere, A. Geinoz, F. Gabbiani, and G. Gabbiani (1993). Transforming growth factor-β1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts.J. Cell Biol. 122:103–111.

    PubMed  CAS  Google Scholar 

  22. P. J. Miettinen, R. Ebner, A. R. Lopez, and R. Derynck (1994). TGF-b induced transdifferentiation of mammary epithelial cells to mesenchmal cells: Involvement of type I receptors.J. Cell Biol. 127:2021–2036.

    PubMed  CAS  Google Scholar 

  23. A. Antonelli-Orlidge, K. B. Saunders, S. R. Smith, and P. A. D'Amore (1989). An activated form of transforming growth factor β is produced by cocultures of endothelial cells and pericytes.Proc. Natl. Acad. Sci. U.S.A. 86:4544–4548.

    PubMed  CAS  Google Scholar 

  24. Y. Sato, R. Tsuboi, R. Lyons, H. Moses, and D. B. Rifkin (1990). Characterization of the activation of latent TGF-β by co-cultures of endothelial cells and pericytes or smooth muscle cells: A self-regulating system.J. Cell Biol. 111:757–763.

    PubMed  CAS  Google Scholar 

  25. Y. Sato, F. Okada, M. Abe, T. Seguchi, M. Kuwano, S. Sato, A. Furuya, N. Hanai, and T. Tamaoki (1993). The mechanism for the activation of latent TGF-β during co-culture of endothelial cells and smooth muscle cells: Cell-type specific targeting of latent TGF-β to smooth muscle cells.J. Cell Biol. 123:1249–1254.

    PubMed  CAS  Google Scholar 

  26. P. Dennis and D. B. Rifkin (1991). Cellular activation of latent transforming growth factor-b requires binding to the cation-independent mannose-6-phosphate/inslulin-like growth factor type II receptor.Proc. Natl. Acad. Sci. U.S.A. 88:xxx-xxx.

    Google Scholar 

  27. R. Flaumenhaft, M. Abe, Y. Sato, K. Miyzono, J. Harpel, C.-H. Heldin, and D. B. Rifkin (1993). Role of the latent TGF-β binding protein in the activation of latent TGF-β by co-cultures of endothelial and smooth muscle cells.J. Cell Biol. 120:995–1002.

    PubMed  CAS  Google Scholar 

  28. R. Flaumenhaft, M. Abe, P. Mignatti, and D. B. Rifkin (1992). Basic fibroblast growth factor-induced activation of latent transforming growth factor β in endothelial cells: Regulation of plasminogen activator activity.J. Cell Biol. 118:901–909.

    PubMed  CAS  Google Scholar 

  29. L. E. Odekon, F. Blasi, and D. B. Rifkin (1994). Requirement for receptor-bound urokinase in plasmin-dependent cellular conversion of latent TGF-β to TGF-β.J. Cell. Physiol. 158:398–407.

    Article  PubMed  CAS  Google Scholar 

  30. R. M. Lyons, J. Keski-Oja, and H. L. Moses (1988). Proteolytic activation of latent transforming growth factor-β from fibroblast conditioned medium.J. Cell Biol. 106:1659–1665.

    PubMed  CAS  Google Scholar 

  31. M. S. Anscher, I. R. Crocker, and R. L. Jirtle (1990). Transforming growth factor β1 expression in irradiated liver.Radiat. Res. 127:77–85.

    Google Scholar 

  32. B. D. Boyan, Z. Schwartz, S. Park-Snyder, D. D. Dean, F. Yang, D. Twardzik, and L. F. Bonewald (1994). Latent transforming growth factor-β is produced by chrondrocytes and activated by extracellular matrix vesicles upon exposure to 1,25-(OH)2D3.J. Biol. Chem. 269:28374–28381.

    PubMed  CAS  Google Scholar 

  33. K. Miyazono and C.-H. Heldin (1989). Role for carbohydrate structures in TGF-β1 latency.Nature 338:158–160.

    PubMed  CAS  Google Scholar 

  34. S. Schultz-Cherry and J. E. Murphy-Ullrich (1993). Thrombospondin causes activation of latent transforming growth factor-β secreted by endothelial cells by a novel mechanism.J. Cell Biol. 122:923–932.

    PubMed  CAS  Google Scholar 

  35. M. H. Barcellos-Hoff (1993). Radiation-induced transforming growth factor β and subsequent extracellular matrix reorganization in murine mammary gland.Cancer Res 53:3880–3886.

    PubMed  CAS  Google Scholar 

  36. M. H. Barcellos-Hoff, R. Derynck, M. L.-S. Tsang, and J. A. Weatherbee (1994). Transforming growth factor-β activation in irradiated murine mammary gland.J. Clin. Invest. 93:892–899.

    PubMed  CAS  Google Scholar 

  37. A. B. Roberts, S.-J. Kim, T. Noma, A. B. Glick, R. Lafyatis, R. Lechleider, S. B. Jakowlew, A. Geiser, M. A. O' Reilly, D. Danielpour, and M. B. Sporn (1991). Multiple forms of TGF-β: Distinct promoters and differential expression. In M. B. Sporn and A. B. Roberts (eds.),Clinical Applications of TGF-β, Wiley, Chichester, pp. 7–28.

    Google Scholar 

  38. B. A. Arrick, A. R. Lopez, F. Elfman, R. Ebner, C. H. Damsky, and R. Derynck (1992). Altered metabolic and adhesive properties and increased tumorigenesis associated with increased expression of transforming growth β1.J. Cell Biol. 118:715–726.

    Article  PubMed  CAS  Google Scholar 

  39. A. M. Brunner, H. Marquardt, A. R. Malacko, M. N. Lioubin, and A. F. Purchio (1989). Site-directed mutagenesis of cysteine residues in the pro region of the transforming growth factor β1 precursor.J. Biol. Chem. 264:13660–13664.

    PubMed  CAS  Google Scholar 

  40. K. C. Flanders, N. L. Tompson, D. S. Cissel, E. Van Obberghen-Schilling, C. C. Baker, M. E. Kass, L. R. Ellingsworth, A. B. Roberts, and M. B. Sporn (1989). Transforming growth factor-β1: Histochemical localization with antibodies to different epitopes.J. Cell Biol. 108:653–660.

    PubMed  CAS  Google Scholar 

  41. M. H. Barcellos-Hoff, E. J. Ehrhart, M. Kalia, R. Jirtle, K. Flanders, and M. L.-S. Tsang (1995). Immunohistochemical detection of active TGF-βin situ using engineered tissue.Am. J. Pathol. 147:1228–1237.

    PubMed  CAS  Google Scholar 

  42. G. A. Stouffer, J. LaMarre, S. L. Gonias, and G. K. Owens (1993). Activated α2-macroglobulin and transforming growth factor-β1 induce a synergistic smooth muscle cell proliferative response.J. Biol. Chem. 288:18340–18344.

    Google Scholar 

  43. M. J. Warburton, B. A. Gusterson, and M. J. O'Hare (1993). The synthesis of α2-macroglobulin by rat mammary myoepithelial cells is regulated by synergism between glucocorticoids and cyotkines.FEBS Lett. 332:57–60.

    PubMed  CAS  Google Scholar 

  44. A. E. Postlewaite, J. Keski-Oja, H. L. Moses, and A. H. Kang (1987). Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor β.J. Exp. Med. 165:251–256.

    PubMed  Google Scholar 

  45. E. J. Ehrhart, E. L. Gillette, and M. H. Barcellos-Hoff (1996). Immunohistochemical evidence of rapid extracellular matrix remodeling after iron-particle irradiation of mouse mammary gland.Radiat. Res. 145:157–162.

    PubMed  CAS  Google Scholar 

  46. N. Fukunaga, H. L. Burrows, M. Meyers, R. A. Schea, and D. A. Boothman (1992). Enhanced induction of tissue-type plasminogen activator in normal human cells compared to cancer-prone cells following ionizing radiation.Int. J. Radiat. Oncol. Biol. Phys. 24:949–957.

    PubMed  CAS  Google Scholar 

  47. R. Sawaya, P. J. Tofilon, S. Mohanam, F. Ali-Osman, L. A. Liotta, W. G. Stetler-Stevenson, and J. S. Rao (1994). Induction of tissue-type plasminogen activator and 72 kDa type IV collagenase by ionizing radiation in rat astrocytes.Int. J. Cancer. 56:214–218.

    PubMed  CAS  Google Scholar 

  48. P. Hainaut and J. Milner (1993). Redox modulation of p53 conformation and sequence-specific DNA bindingin vitro.Cancer Res. 53:4469–4473.

    PubMed  CAS  Google Scholar 

  49. G. Storz, L. A. Tartaglia, and B. N. Ames (1990). Transcriptional regulator of oxidative stress-inducible genes: Direct activation by oxidation.Science 248:189–194.

    PubMed  CAS  Google Scholar 

  50. R. Schreck, P. Riever, and P. A. Bauerle (1991). Reactive oxygen intermediates as apparently widely used messenges in the activation of the NF-κB transcription factor and HIV-1.Embo J. 10: 2247–2258.

    PubMed  CAS  Google Scholar 

  51. S. Xanthoudakis, G. Miao, F. Wang, Y. C. E. Pan, and T. Curran (1992). Redox activation of Fos-jun DNA binding activity is mediated by a DNA repair enzyme.Embo J. 11:3323–3335.

    PubMed  CAS  Google Scholar 

  52. M. H. Barcellos-Hoff and T. A. Dix (1996). Redox-mediated activation of latent transforming growth factor-β1.Molec. Endocrinol. (in press).

  53. E. R. Stadtman and C. N. Oliver (1991). Metal-catalyzed oxidation of proteins.J. Biol. Chem. 266:2005–2008.

    PubMed  CAS  Google Scholar 

  54. R. Shenkar, W. F. Coulson, and E. Abraham (1994). Antitransforming growth factor-β monoclonal antibodies prevent lung injury in hemorrhaged mice.Am. J. Respir. Cell Mol. Biol. 11:351–357.

    PubMed  CAS  Google Scholar 

  55. S. K. Das and B. L. Fanburg (1991). TGF-β1 produces a “prooxidant” effect on bovine pulmonary artery endothelial cells in culture.Am. J. Physiol. 261:L249-L254.

    PubMed  CAS  Google Scholar 

  56. M. Ohba, M. Shibanuma, T. Kuroki, and K. Nose (1994). Production of hydrogen peroxide by transforming growth factor-β1 and its involvement in induction ofegr-1 in mouse osteoblastic cells.J. Cell Biol. 126:1079–1088.

    PubMed  CAS  Google Scholar 

  57. C. Langer, J. M. Jurgenmeier, and G. Bauer (1996). Reactive oxygen species act at both TGF-β-dependent and -independent steps during induction of apoptosis of transformed cells by normal cells.Exp. Cell Res.222:117–124.

    PubMed  CAS  Google Scholar 

  58. G.B. Silberstein and C. W. Daniel (1987). Reversible inhibition of mammary gland growth by transforming growth factor-β.Science 237:291–293.

    PubMed  CAS  Google Scholar 

  59. C. W. Daniel, G. B. Silberstein, K. Van Horn, P. Strickland, and S. Robinson (1989). TGF-β1-induced inhibition of mouse mammary ductal growth: Developmental specificity and characterization.Devel. Biol. 135:20–30.

    Article  CAS  Google Scholar 

  60. C. W. Daniel, S. Robinson, and G. B. Silberstein (1996). The role of TGF-β in patterning and growth of the mammary ductual tree.J. Mam. Gland Biol. Neoplasia 1:331–341.

    CAS  Google Scholar 

  61. J. V. Soriano, L. Orci, and R. Montesano (1996). TGF-β1 induces morphogenesis of branching cords by cloned mammary epithelial cells at subpicomolar concentrations.Biochem. Biophys. Res. Commun. 220:879–885.

    PubMed  CAS  Google Scholar 

  62. K. L. Bruner, W. H. Rodgers, L. I. Gold, M. Korc, J. T. Hargrove, L. M. Matrisian, and K. G. Osteen (1995). Transforming growth factor β mediates the progesterone suppression of an epithelial metalloproteinase by adjacent stroma in the human endometrium.Proc. Natl. Acad. Sci. U.S.A. 92:7362–7366.

    PubMed  CAS  Google Scholar 

  63. G. H. Smith (1996). TGF-β and functional differentiation.J. Mam. Gland Biol. Neoplasia 1:343–352.

    CAS  Google Scholar 

  64. A. Mattsson, B.-I. Ruden, N. Wilking, and L. E. Rutqvist (1993). Radiation-induced breast cancer: Long-term follow-up of radiation therapy for benign breast disease.J. Natl. Cancer Inst. 85:1679–1685.

    PubMed  CAS  Google Scholar 

  65. J. Boice, D. Preston, G. Davis, and R. Monson (1991). Frequest chest X-ray fluoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts.Radiat. Res. 125:214–222.

    PubMed  Google Scholar 

  66. D. F. Pierce, A. E. Gorska, A. Chythil, K. S. Meise, D. L. Page, R. J. Coffey, Jr., and H. L. Moses (1995). Mammary tumor suppression by transforming growth factor β1 transgene expression.Proc. Natl. Acad. Sci. U.S.A. 92:4254–4258.

    PubMed  CAS  Google Scholar 

  67. C. L. Arteaga and R.J. Coffey (1992). Transforming growth factor-β isoforms in mammary neoplasia: More questions than answers.Human Pathol. 23:1–3.

    CAS  Google Scholar 

  68. T. Dickens and A. A. Colletta (1993). The pharmacological manipulation of members of the transforming growth factor beta family in the chemoprevention of breast cancer.BioEssays 15:71–74.

    PubMed  CAS  Google Scholar 

  69. T.M. Fynan and M. Reiss (1993). Resistance to inhibition of cell growth by transforming growth factor-β and its role in oncogenesis.Crit. Rev. Oncogen. 4:493–540.

    CAS  Google Scholar 

  70. M. G. Brattain, Y. Ko, S. S. Banerji, G. Wu, and J. K. V. Willson (1996). Defects of TGFβ receptor signaling in mammary cell tumorigensis.J. Mam. Gland Biol. Neoplasia 1(4):365–372.

    CAS  Google Scholar 

  71. A. B. Roberts, N. L. Thompson, U. Heine, C. Flanders, and M. B. Sporn (1988). Transforming growth factor-beta: Possible roles in carcinogenesis.Br. J. Cancer 57:594–600.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Helen Barcellos-Hoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barcellos-Hoff, M.H. Latency and activation in the control of TGF-β. J Mammary Gland Biol Neoplasia 1, 353–363 (1996). https://doi.org/10.1007/BF02017391

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02017391

Key words

Navigation