Advertisement

Food Enzymes pp 212-236 | Cite as

Pectic Enzymes

  • Dominic W. S. Wong
Chapter

Abstract

Pectic enzymes constitute a unique group of enzymes that catalyze the degradation of pectic polymers in plant cell walls. Depolymerization of pectin is generally associated with the process of fruit ripening. These enzymes therefore play a significant role in the changes occurring in postharvest storage of fruits and vegetables. The control of these enzymes in transgenic tomato fruit has become one of the successful examples in the application of antisense RNA to manipulate gene expression (Kramer et al. 1990).

Keywords

Aspergillus Niger Tomato Fruit Galacturonic Acid Pectate Lyase Polygalacturonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, Z. M., and Brady, C. J. 1982. Purification and characterization of the polygalacturonases of tomato fruits. Aust. J. Plant Physiol. 9, 155–169.CrossRefGoogle Scholar
  2. Anderson M. M., and Nagel, C. W. 1964. Effect of the unsaturated bond on the degradation of the tetragalacturonic acids by a transeliminase. Nature 203, 649.CrossRefGoogle Scholar
  3. Baron, A.; Romœouts, F.; Drilleau, J. F.; and Pilnik, W. 1980. Purification et propriétés de la pectinestérase produite par Aspergillus niger. Lebensm-Wiss. u.-Technol. 13, 330–333.Google Scholar
  4. Barras, F.; Thurn, K. K.; and Chatterjee, A. K. 1987. Resolution of four pectate lyase structural genes of Erwinia chrysanthemi (EC16) and characterization of the enzymes produced in Escherichia coli. Mol. Gen. Genet. 209, 319–325.CrossRefGoogle Scholar
  5. BeMiller, J N 1986. An introduction to pectins: Structure and properties. In: Chemistry and Function of Pectins, M. L. Fishman and J. J. Jen, eds., A CS Sym. Ser. 310, American Chemical Society, Washington, D.C.Google Scholar
  6. BeMiller, J N, and Kumari, G. V. 1972. Beta-elimination in uronic acids: Evidence for an E1cB mechanism. Carbohydr. Res. 25, 419–428.CrossRefGoogle Scholar
  7. Bertheau, Y.; Madgidi-Hervan, E.; Kotoujansky, A.; Nguyen, The, C.; Andro, T.; and Coleno, A. 1984. Detection of depolymerase isoenzymes after electro- phoresis or electrofocusing, or in titration curves. Anal. Biochem. 139, 383–389.Google Scholar
  8. Brady, C. J. 1976. The pectinesterase of the pulp of the banana fruit. Aust. J. Plant PhysioL 3, 163–172.CrossRefGoogle Scholar
  9. Brady, C. J.; Macalpine, G.; Mcglasson, W. B.; and Ueda, Y. 1982. Polygalacturonase in tomato fruits and the induction of ripening. Aust. J. Plant Physiol. 9, 171–178.CrossRefGoogle Scholar
  10. Brown, S. M., and Crouch, M. L. 1990. Characterization of a gene family abundantly expressed in Oenothera organensis pollen that shows sequence similarity to polygalacturonase. The Plant Cell 2, 263–274.Google Scholar
  11. Bussink, H. J. D.; Kester, H. C. M.; and Visser, J. 1990. Molecular cloning; nucleotide sequence and expression of the gene encoding prepro-polygalacturonase II of Aspergillus niger. FEBS Lett. 273, 127–130.CrossRefGoogle Scholar
  12. Castaldo, D.; Quagliuolo, L.; Servillo, L.; Balestrieri, C., and Giovane, A. 1989. Isolation and characterization of pectin methylesterase from apple fruit. J. Food Sci. 54, 653–655.CrossRefGoogle Scholar
  13. Chesson, A., and Codner, R. C. 1978. The maceration of vegetable tissue by a strain of Bacillus subtilus. J. AppL BacterioL 44, 347–364.CrossRefGoogle Scholar
  14. Collmer, A., and Keen, N. T. 1986. The role of pectic enzymes in plant pathogenesis. Ann. Rev. PhytopathoL 24, 383–409.CrossRefGoogle Scholar
  15. Crawford, M. S., and Kolattukudy, P. E. 1987. Pectate lyase from Fusarium solani f. sp. pisi: Purification, characterization, in vitro translation of the mRNA, and involvement in pathogenicity. Arch. Biochem. Biophys. 258, 196–205.CrossRefGoogle Scholar
  16. Dave, B. A., and Vaughn, R. H. 1971. Purification and properties of a polygalacturonase acid trans-eliminase produced by Bacillus pumilus. J. Bacteriol. 108, 166–174.Google Scholar
  17. Dean, R. A., and Timberlake, W. E. 1989. Regulation of the Aspergillus nidulans pectate lyase gene (pelA). The Plant Cell 1, 275–284.Google Scholar
  18. DellaPenna, D., and Bennett, A. B. 1988. In vitro synthesis and processing of tomato fruit polygalacturonase. Plant Physiol. 86, 1057–1063.Google Scholar
  19. DellaPenna, D.; Lashbrook, C. C.; Toenjes, K.; Giovannori, J. J.; Fischer, R. L.; and Bennett, A. B. 1990. Polygalacturonase isozymes and pectin depolymerization in transgenic rin tomato fruit. Plant Physiol. 94, 1882–1886.CrossRefGoogle Scholar
  20. Demain, A. L., and Phaff, H. J. 1954. Hydrolysis of the oligogalacturonides and pectic acid by yeast. J. Biol. Chem. 210, 381–393.Google Scholar
  21. Doplco, B.; Lowe, A. L.; Wilson, I. D.; Merodio, C.; and Grierson, D. 1993. Cloning and characterization of avocado fruit mRNAs and their expression during ripening and low-temperature storage. Plant Mol. Biol. 21, 437–449.CrossRefGoogle Scholar
  22. Favey, S.; Bourbon, C.; Bertheau, Y.; Kotoujansky, A.; and Boccara, M. 1992. Purification of the acidic pectate lyase and nucleotide sequence of the corresponding gene (pelA) of Erwinia chrysanthemi strain 3937. J. Gen. Microbiol. 138, 499–508.CrossRefGoogle Scholar
  23. Forster, H., and Ranched, I. 1985. Purification and characterization of extracellular pectinesterases from Phytophthora infestans. Plant Physiol. 77, 109–112.CrossRefGoogle Scholar
  24. Garibaldi, A., and Bateman, D. F. 1971. Pectic enzymes produced by Erwinia chrysanthemi and their effects on plant tissue. Physiol. Plant Pathol. 1, 25–40.CrossRefGoogle Scholar
  25. Giovane, A.; Quagliuolo, L.; Castaldo, D.; Servillo, L.; and Balestrieri, C. 1990. Pectin methyl esterase from Actinidia chinensis fruits. Phytochemistry 29, 2821–2823.CrossRefGoogle Scholar
  26. Giovannoni, J. J.; DellaPenna, D.; Bennett, A. B.; and Fischer, R. L. 1989. Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. The Plant Cell 1, 53–63.Google Scholar
  27. Grierson, D.; Tucker, G. A.; Keen, J.; Ray, J.; Bird, C. R.; and Schuch, W. 1986. Sequencing and identification of a cDNA clone for tomato polygalacturonase. Nucl. Acids Res. 14, 8595–8603.CrossRefGoogle Scholar
  28. Harriman, R. W.; Tieman, D. M.; and Handa, A. K. 1991. Molecular cloning of tomato pectin methylesterase gene and its expression in Rutgers, ripening inhibitor, nonripening, and never ripe tomato fruits. Plant Physiol. 97, 80–87.CrossRefGoogle Scholar
  29. Hasegawa, S., and Nagel, C. W. 1962. The characterization of an a,ß-unsaturated digalacturonic acid. J. Biol. Chem. 237, 619–621.Google Scholar
  30. Hasegawa, S., and Nagel, C. W. 1966. A new pectic acid transeliminase produced exocellularly by a Bacillus. J. Food Sci. 31, 838–845.CrossRefGoogle Scholar
  31. Hsu, E. J., and Vaughn, R. H. 1969. Production and catabolite repression of the constitutive polygalacturonic acid trans-eliminase of Aeromonas liquefaciens. J. Bacteriol. 98, 172.Google Scholar
  32. Huang, J., and Schell, M. A. 1990. DNA sequence analysis of pglA and mechanisms of export of its polygalacturonase product from Pseudomonas solanacearum. J. Bacteriol. 172, 3879–3887.Google Scholar
  33. Huber, D. J. 1983. Polyuronide degradation and hemicellulose modifications in ripening tomato fruit. J. Am. Soc. Hort. Sci. 108, 405–409.Google Scholar
  34. Hugouvieux-Cotte-Pattat, N., and Robert-Baudouy, J. 1987. Hexuronate catabolism in Erwinia chrysanthemi. J. Bacteriol. 169, 1223–1231.Google Scholar
  35. Hultin, H. O.; Sun, B.; and Bulger, J. 1966. Pectin methyl esterases of the banana. Purification and properties. J. Food Sci. 31, 320–327.CrossRefGoogle Scholar
  36. Ishii, S.; Kiho, K.; Sugiyama, S.; and Sugimoto, H. 1979. Low-methoxyl pectin prepared by pectinesterase from Aspergillus japonicus. J. Food Sci. 44, 611–614.CrossRefGoogle Scholar
  37. Keen, N. T., and Tamaki, S. 1986. Structure of two pectate lyase genes from Erwinia chrysanthemi EC16 and their high-level expression in Escherichia coli. J. Bacteriol. 168, 595–606.Google Scholar
  38. Keubets, M. J. H., and Pilnik, W. 1974.13-Elimination of pectin in the presence of anions and cations. Carbohydr. Res. 33, 359–362.Google Scholar
  39. Keon, J. P. R., and Waksman, G. 1990. Common amino acid domain among endopolygalacturonases of Ascomycete fungi. Appl. Environ. Microbiol. 56, 2522–2528.Google Scholar
  40. Khanh, N. Q.; Albrecht, H.; Rutthowski, E.; Loffler, F.; Gottschalk, M.; and Jany K.-D. 1990. Nucleotide and derived amino acid sequence of a pectinesterase cDNA isolated from Aspergillus niger strain RH5344. Nucl. Acids Res. 18, 42–62.CrossRefGoogle Scholar
  41. Knegt, E.; Vermeer, E.; and Bruinsma, J. 1988. Conversion of the polygalacturonase isoenzymes from ripening tomato fruits. Physiologia Plantarum 72, 108–114.CrossRefGoogle Scholar
  42. Knegt, E.; Vermeer, E.; Pak, C.; and Bruinsma, J. 1991. Function of the polygalacturonase converter in ripening tomato fruit. Physiologia Plantarum 82,237–242.Google Scholar
  43. Kogoya, Y.; Setoguchi, M.; Yokohiki, K.; and Hatanaka, C. 1984. Affinity chromatography of exopolygalacturonate lyase from Erwinia carotovora subsp. carotovora. Agric. Biol. Chem. 48, 1055–1060.CrossRefGoogle Scholar
  44. Kohn, R.; Markovic, O.; and Machova, E. 1983. Deesterification mode of pectin by pectin esterases of Aspergillus foetidus, tomatoes and alfalfa. Collection Czechoslovak Chem. Comm. 48, 790–797.CrossRefGoogle Scholar
  45. Koller, A., and Neukom, H. 1969. Untersuchungen über den Abbaumechanisms. einer gereinigten polygalakturonase aus Aspergillus niger. Eur. J. Biochem. 7, 485–489.CrossRefGoogle Scholar
  46. Kramer, M.; Sanders, R. A.; Sheehy, R. E.; Melts, M.; Kuehn, M.; and Hiatt, W. R. 1990. Field evaluation of tomatoes with reduced polygalacturonase of antisense RNA. Plant Biol. 11 (Horticultural Biotechnology) 347–355.Google Scholar
  47. Lee, M., and Macmillan, J. D. 1968. Mode of action of pectic enzymes. I. Purification and certain properties of tomato pectinesterase. Biochemistry 7, 4005–4010.CrossRefGoogle Scholar
  48. Lei, S.-P.; Lin, H.-C.; Wang, S.-S.; Callaway, J.; and Wilcox, G. 1987. Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. J. Bacteriol. 169, 4379–4383.Google Scholar
  49. Liao, C.-H. 1991. Cloning of pectate lyase gene pel from Pseudomonas fluorescens and detection of sequences homologous to pel in Pseudomonas viridafiava and Pseudomonas putida. J. Bacteriol. 173, 4386–4393.Google Scholar
  50. Liao, C.-H.; Hung, H. Y.; and Chatteriee, A. K. 1988. An extracellular pectate lyase is the pathogenicity factor of the soft-rotting bacterium Pseudomonas viridiliava. Mol. Plant-Microbe Interact. 1, 199–206.CrossRefGoogle Scholar
  51. Liu, Y. K., and Lux, B. S. 1978. Purification and characterization of endo-polygalacturonase from Rhizopus arrhizus 1. Food Sci. 43, 721–726.CrossRefGoogle Scholar
  52. Markovic, O., and Jornvall, H. 1986. Pectinesterase. The primary structure of the tomato enzyme. Eur. J. Biochem. 158, 455–462.CrossRefGoogle Scholar
  53. Markovic, O., and Jornvall, H. 1992. Disulfide bridges in tomato pectinesterase: Variations from pectinesterases of other species; conservation of possible active site segments. Protein Science 1, 1288–1292.CrossRefGoogle Scholar
  54. Markovic, O., and Kohn, R. 1984. Mode of pectin deesterification by Trichoderma reesei pectinesterase. Experientia 40, 842–843.CrossRefGoogle Scholar
  55. Markovic, O., and Patocka, J. 1977. Action of iodine on the tomato pectinesterase. Experientia 33, 711–713.Google Scholar
  56. Martinez, M. J.; Alconada, M. T.; Guillen, F.; Vazquez, C.; and Reyes, F. 1991. Pectic activities from Fusarium oxysporum f. sp. melons: Purification and characterization of an exopolygalacturonase. FEMS Microbiol. Lett. 81, 145–150.CrossRefGoogle Scholar
  57. Matsui, I.; Ishikawa, K.; Miyairi, S.; Fuxui, S.; and Honda, K. 1992a. A mutant a-amylase with enhanced activity specific for short substrates. Biochemistry 31, 5232–5236.CrossRefGoogle Scholar
  58. Matsui, I.; Ishikawa, K.; Miyairi, S.; Fuxui, S.; and Honda, K. 1992b. Alteration of bond-cleavage pattern in the hydrolysis catalyzed by Saccharomycopsis a-amylase altered by site-directed mutagenesis. Biochemistry 31, 5232–5236.CrossRefGoogle Scholar
  59. Miyazaki, Y. 1991. Purification and characterization of endo-pectate lyase from Bacillus macerans. Agric. Biol. Chem. 55, 25–30.CrossRefGoogle Scholar
  60. Moshrefi, M., and Lux, B. S. 1983. Carbohydrate composition and electrophoretic properties of tomato polygalacturonase isoenzymes. Eur. J. Biochem. 135, 511–514.CrossRefGoogle Scholar
  61. Moustacas, A.-M.; Nabi, J.; Diamantidis, G.; Noat, G.; and Crasnier, M. 1986. Electrostatic effects and the dynamics of enzyme reactions at the surface of plant cells. 2. The role of pectin methyl esterase in the modulation of electrostatic effects in soybean cell walls. Eur. J. Biochem. 155, 191–197.CrossRefGoogle Scholar
  62. Nari, J.; Noat, G.; and Ricard, J. 1991. Pectin methylesterase, metal ions and plant cell-wall extension. Biochem. J. 279, 343–350.Google Scholar
  63. Nasser, W.; Chalet, F.; and Robert-Baudouy, J. 1990. Purification and characterization of extracellular pectate lyase from Bacillus subtilis. Biochimie 72, 689–695.CrossRefGoogle Scholar
  64. Nasuno, S., and Starr, M. P. 1967. Polygalacturonic acid trans-eliminase of Xanthomonas campestris. Biochem. J. 104, 178.Google Scholar
  65. Niogret, M.-F.; Dubald, M.; Mandaron, P.; and Mache, R. 1991. Characterization of pollen polygalacturonase encoded by several cDNA clones in maize. Plant Mol. Biol. 17, 1155–1164.CrossRefGoogle Scholar
  66. Patel, D. S., and Phaff, H. J. 1959. On the mechanism of action of yeast endopolygalacturonase on oligogalacturonides and their reduced and oxidized derivatives. J. Biol. Chem. 234, 237–241.Google Scholar
  67. Perombelon, M. C. M., and Kelman, A. 1980. Ecology of the soft rot Erwinias. Ann. Rev. Phytopathol. 18, 361–387.CrossRefGoogle Scholar
  68. Pilnik, W., and Rombouts, F. M. 1979. Ultilization of pectic enzymes in food production. In: Proceedings of the Fifth Internal Congress of Food Science and Technology, Hideochiba, ed., Kodansha, Ltd., and Elsevier Scientific Publ. Co.Google Scholar
  69. Pilnik, W., and Voragen, A. G. J. 1993. Pectic enzymes in fruit and vegetable juice manufacture. In: Enzymes in Food Processing. 3d ed., T. Nagodawithana and G. Reed, eds., Academic Press, New York and San Diego.Google Scholar
  70. Plastow, G. S. 1988. Molecular cloning and nucleotide sequence of the pectin methyl esterase gene of Erwinia chrysanthemi B374. Mol. Microbiol. 2, 247–254.CrossRefGoogle Scholar
  71. Pogson, B. J.; Brady, C. J.; and Orr, G. R. 1991. On the occurrence and structure of subunits of endopolygalacturonase isoforms in mature-green and ripening tomato fruits. Aust. J. Plant Physiol. 18, 65–79.CrossRefGoogle Scholar
  72. Polizeli, M. L. T. M.; Jorge, J. A.; and Terenzi, H. F. 1991. Pectinase production by Neurospora crassa: Purification and biochemical characterization of extra-cellular polygalacturonase activity. J. Gen. Microbiol. 137, 1815–1823.CrossRefGoogle Scholar
  73. Pressey, R. 1986. Changes in polygalacturonase isoenzymes and converter in tomatoes during ripening. HortScience 21, 1183–1185.Google Scholar
  74. Pressey, R. 1988. Reevaluation of the changes in polygalacturonases in tomatoes during ripening. Planta 174, 39–43.CrossRefGoogle Scholar
  75. Pressey, R., and Avants, J. K. 1973. Two forms of polygalacturonase in tomatoes. Biochim. Biophys. Acta 309, 363–369.CrossRefGoogle Scholar
  76. Pressey, R., and Avants, J. K. 1975. Modes of action of carrot and peach exopolygalacturonases. Phytochemistry 14, 957–961.CrossRefGoogle Scholar
  77. Preston III, J. F.; Rice, J. D.; Chow, M. C.; and Brown, B. J. 1991. Kinetic comparisons of trimer-generating pectate and alginate lyases by reversed-phase ion-pair liquid chromatography. Carbohydr. Res. 215, 147–157.CrossRefGoogle Scholar
  78. Preston III, J. F.; Rice, J. D.; Ingram, L. O.; and Keen, N. T. 1992. Differential depolymerization mechanisms of pectate lyases secreted by Erwinia chrysanthemi EC16. J. Bacteriol. 174, 2039–2042.Google Scholar
  79. Pupillo, P.; Mazzucchi, U.; and Pierini, G. 1976. Pectic lyase isozymes produced by Erwinia chrysanthemi Burkh. et al. in polypectate broth or in Dieffenbachia leaves. Physiol. Plant Pathol. 9, 113–120.CrossRefGoogle Scholar
  80. Quantick, P.; Cervone, F.; and Wood, R. K. S. 1983. Isoenzymes of a polygalacturonate trans-eliminase produced by Erwinia atroseptica in potato tissue and in liquid culture. Physiol. Plant Pathol. 22, 77–86.Google Scholar
  81. Ray, J.; Knapp, J.; Grierson, D.; Bird, C.; and Schuch, W. 1988. Identification and sequence determination of a cDNA clone for tomato pectin esterase. Eur. J. Biochem. 174, 119–124.CrossRefGoogle Scholar
  82. Reverchon, S.; Huang, Y.; Bourson, C.; and Robert-Baudouy, J. 1989. Nucleotide sequences of Erwinia chrysanthemi ogl and pelE genes negatively regulated by the kdgR gene product. Gene 85, 125–134.CrossRefGoogle Scholar
  83. Rexova-Benkova, L., and Markovic, O. 1976. Pectic enzymes. Adv. Carbohydr. Chem. Biochem. 33, 323–385.CrossRefGoogle Scholar
  84. Ruttkowski, E.; Labitzke, R.; Khanh, N. W.; Loffler, F.; Gottschalk, M.; and Jany, K.-D. 1990. Cloning and DNA sequence analysis of a polygalacturonase cDNA from Aspergillus niger RH5344. Biochim. Biophys. Acta 1087, 104–106.CrossRefGoogle Scholar
  85. Sakellaris, G.; Níkdlaropoulqb, S.; and Evangelopoulos, A. E. 1989. Purification and characterization of an extracellular polygalacturonase from Lactobacillus plantarum strain BA11. J. Appl. Bacteriol. 67, 77–85.CrossRefGoogle Scholar
  86. Scott-Craig, J. S.; Panaccione, D. G.; Cervone, F.; and Walton, J. D. 1990. Endopolygalacturonase is not required for pathogenicity of Cochliobolus car-bonum on maize. The Plant Cell 2, 1191–1200.Google Scholar
  87. Sheehy, R. E.; Pearson, J.; Bardy, C. J.; and Hiatt, W. R. 1987. Molecular characterization of tomato fruit polygalacturonase. Mol. Gen. Genet. 208, 30–36.CrossRefGoogle Scholar
  88. Spok, A.; Stubenrauch, G.; Schorgendorfer, K.; and Schwab, H. 1991. Molecular cloning and sequencing of a pectinesterase gene from Pseudomonas solanacearum. J. Gen. Microbiol. 137, 131–140.CrossRefGoogle Scholar
  89. Sugiura, J.; Yasuda, M.; Kamimiya, S.; Izaki, K., and Takahashi, H. 1984. Purification and properties of two pectate lyases produced by Erwinia carotovora. J. Gen. Appl. Microbiol. 30, 167–175.CrossRefGoogle Scholar
  90. Tamaki, S. J.; Robeson, G. M.; Manulis, S.; and Keen, N. T. 1988. Structure and organization of the pel genes from Erwinia chrysanthemi EC16. J. Bacteriol. 170, 3468–3478.Google Scholar
  91. Tanabe, H.; Kobayashi, Y.; Matuo, Y.; Nishi, N., and Wada, F. 1984. Isolation and fundamental properties of endo-pectate lyase pI — isozymes from Erwinia carotovara. Agric. Biol. Chem. 48, 2113–2120.CrossRefGoogle Scholar
  92. Termote, F.; Rombouts, F. M.; and Pilniki, W. 1977. Stabilization of cloud in pectinesterase active orange juice by pectic acid hydrolysates. J. Food Biochem. 1, 15–34.CrossRefGoogle Scholar
  93. Tucker, G. A.; Robertson, N. G.; and Grierson, D. 1980. Changes in polygalacturonase isoenzymes during the “ripening” of normal and mutant tomato fruit. Eur. J. Biochem. 112, 119–124.CrossRefGoogle Scholar
  94. Tucker, G. A.; Robertson, N. G.; and Grierson, D. 1981. The conversion of tomato-fruit polygalacturonase isoenzyme 2 into isoenzyme 1 in vitro. Eur. J. Biochem. 115, 87–90.CrossRefGoogle Scholar
  95. Tucker, G. A.; Robertson, N. G.; and Grierson, D. 1982. Purification and changes in activities of tomato pectinesterase isoenzymes. J. Sci. Food Agric. 33, 396–400.CrossRefGoogle Scholar
  96. Van Gijsegem, F. 1986. Analysis of the pectin-degrading enzymes secreted by three strains of Erwinia chrysanthemi. J. Gen. Microbiol. 132, 617–624.Google Scholar
  97. Versteeg, C.; Rombouts, F. M.; and Pilnik, W. 1978. Purification and some characteristics of two pectinesterase isoenzymes from orange. Lebensm-Wiss. u.Technol. 11, 267–274.Google Scholar
  98. Voragen, A. G. J.; Schols, H. A.; Siliha, H. A. I.; and Pilnik, W. 1986. Enzymic lysis of pectic substances in cell walls: Some implications for fruit juice technology. In: Chemistry and Function of Pectins, M. L. Fishman, and J. J. Jen, eds., ACS Sym. Ser. 310, American Chemical Society, Washington, D.C.Google Scholar
  99. Yoder, M. D.; Dechaine, D. A.; and Jurnak, F. 1990. Preliminary crystallographic analysis of the plant pathogenic factor, pectate lyase C from Erwinia chrysanthemi. J. Biol. Chem. 265, 11429–11431.Google Scholar
  100. Yoder, M. D.; Keen, N. T.; and Jurnak, F. 1993. New domain motif: The structure of pectate lyase C, a secreted plant virulence factor. Science 260, 1503–1507.CrossRefGoogle Scholar
  101. Yoder, M. D.; Lietzke, S. E.; and Jurnak, F. 1994. Unusual structural features in the parallel 0-helix in pectate lyases. Structure 1, 241–251.CrossRefGoogle Scholar
  102. Yoshida, A.; Ito, K.; Kamio, Y.; and Izaki, K. 1991A. Purification and properties of pectate lyase III of Erwinia carotovora Er. Agric. Biol. Chem. 55,601–602.Google Scholar
  103. Yoshida, A.; Izuta, M.; Ito, K.; Kamio, Y.; and Izaki, K. 1991B. Cloning and characterization of the pectate lyase III gene of Erwinia carotovora Er. Agric. Biol. Chem. 55, 933–940.Google Scholar
  104. Zheng, L.; Heupel, R. C.; and DellaPenna, D. 1992. The ß subunit of tomato fruit polygalacturonase isoenzyme 1: Isolation, characterization, and identification of unique structural features. The Plant Cell 4, 1147–1156.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Dominic W. S. Wong

There are no affiliations available

Personalised recommendations