Plant Hormones and the Biosynthesis of Gibberellins: The Early-13-Hydroxylation Pathway Leading to GA1

  • Bernard O. Phinney
  • Clive R. Spray
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 24)

Abstract

This report will briefly review the gibberellin (GA) biosynthetic pathway, from mevalonic acid (MVA) to ent-kau-rene, to GA12-aldehyde, to the C19 gibberellins. Emphasis will be given to the early-13-hydroxylation pathway, a branch pathway from GA12-aldehyde that leads to the bioactive gibberellin, GA1. The use of GA mutants in the analysis of GA biosynthesis will be discussed. Thus it is not the purpose of this paper to give a detailed analysis of the GA biosynthetic pathway, nor to give an analysis of the chemistry of this interesting class of natural products, nor to review the physiology of the gibberellins.

Keywords

Maize Aldehyde Epoxide Tritium Lactone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    GRAEBE, J.E., AND J. ROPERS. 1978. Gibberellins In: Phytohormones and related compounds: A comprehensive treatise. (D.S. Letham, P.B. Goodwin and T.J. Higgins, eds.), Vol. 1, Elsevier/North Holland Medical Press, Amsterdam, pp 107–204.Google Scholar
  2. 2.
    BEARDER, J.R. 1980. Plant hormones and other growth substances — their background, structures and occurrence In: Encyclopedia of plant physiology, New Series, (J. MacMillan, ed.), Vol. 9, Springer-Verlag, Berlin, pp 9–112.Google Scholar
  3. 3.
    CROZIER, A., ed. 1983. The biochemistry and physiology of gibberellins, Vol. 1, Praeger, New York. 568 pp.Google Scholar
  4. 4.
    GRAEBE, J.E., P. HEDDEN AND W. RADEMACHER. 1980. Gibberellin biosynthesis In: Gibberellins — chemistry, physiology and use, Monograph 5. (J.R. Lenton, ed.), British Plant Growth Regulator Group, Wantage, U.K., pp 31–47.Google Scholar
  5. 5.
    GRAEBE, J.E. 1986. Gibberellin biosynthesis from gibberellin A12-aldehyde In: Plant growth substances 1985. (M. Bopp, ed.), Springer-Verlag, Berlin, pp. 74–82.CrossRefGoogle Scholar
  6. 6.
    MACMILLAN, J., AND B.O. PHINNEY. 1987. Biochemical genetics and the regulation of stem elongation by gibberellins In: Physiology of cell expansion during growth. (D.J. Cosgrove and D.P. Knievel, eds.), American Society of Plant Pysiologists, Rockville, pp. 156–171.Google Scholar
  7. 7.
    PHINNEY, B.O. 1985. Gibberellin A1, dwarfism and shoot elongation in higher plants. Biologia Plantarum (Prague) 27: 47–53.Google Scholar
  8. 8.
    JONES, R.L., AND J.L. STODDART. 1977. Gibberellins and seed germination In: The physiology and biochemistry of seed dormancy and germination. (A.A. Khan, ed.), Elsevier/North Holland Biomedical Press, Amsterdam, pp. 77–109.Google Scholar
  9. 9.
    PHARIS, R.P., AND R.W. KING. 1985. Gibberellins and reproductive development in seed plants. Ann. Rev. Plant Physiol. 36: 517–568.CrossRefGoogle Scholar
  10. 10.
    REID, J.B. 1986. Gibberellin mutants In: A genetic approach to plant biochemistry. (A.D. Blonstein and P.J. King, eds.), Springer-Verlag, New York, pp. 1–34.CrossRefGoogle Scholar
  11. 11.
    REID, J.B. 1987. The genetic control of growth via hormones In: Plant hormones and their role in plant growth and development. (P.J. Davies, ed.), Martinus Nijhoff, Dordrecht, pp. 318–340.CrossRefGoogle Scholar
  12. 12.
    GRAEBE, J.E. 1987. Gibberellin biosynthesis and control. Ann. Rev. Plant Physiol. 38: 419–465.CrossRefGoogle Scholar
  13. 13.
    REID, J.B. 1990. Phytohormone mutants in plant research. J. Plant Growth Regul. 9: (in press).Google Scholar
  14. 14.
    ATZORN, R., A. CROZIER, C.T. WHEELER AND G. SANDBERG. 1988. Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175: 532–538.CrossRefGoogle Scholar
  15. 15.
    BOTTINI R., M. FULCHIERI, D. PEARCE AND R.P. PHARIS. 1989. Identification of gibberellins A1, A3, and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol. 90: 45–47.PubMedCrossRefGoogle Scholar
  16. 16.
    PHINNEY, B.O. 1983. The history of the gibberellins. In: The biochemistry and physiology of gibberellins. (A. Crozier, ed.), Vol. 1, Praeger, New York. pp. 19–52.Google Scholar
  17. 17.
    DURLEY, R.C., C.R. SHARP, S.L. MAKI, M.L. BRENNER AND M. G. CARNES. 1989. Immunoaffinity techniques applied to the purification of gibberellins from plant extracts. Plant Physiol. 90: 445–451.PubMedCrossRefGoogle Scholar
  18. 18.
    SMITH, V.A., AND J. MACMILLAN. 1989. An immunological approach to gibberellin purification and quantification. Plant Physiol. 90: 1148–1155.PubMedCrossRefGoogle Scholar
  19. 19.
    FUJIOKA, S., H. YAMANE, C.R. SPRAY, P. GASKIN, J. MACMILLAN, B.O. PHINNEY AND N. TAKAHASHI. 1988. Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L. Plant Physiol. 88: 1367–1372.PubMedCrossRefGoogle Scholar
  20. 20.
    ALBONE, K.S., J. MACMILLAN, A.R. PITT AND C.L. WILLIS. 1986. Isotope labelling in ring A of gibberellin A20. Tetrahedron 42: 3203–3214.CrossRefGoogle Scholar
  21. 21.
    PHINNEY, B.O. 1956. Growth response of single-gene dwarf mutants in maize to gibberellic acid. Proc. Natl. Acad. Sci. USA 42: 185–189.PubMedCrossRefGoogle Scholar
  22. 22.
    COE, E.H., AND M.G. NEUFFER. 1977. The genetics of corn In: Corn and corn improvement. (G.F. Sprague, ed.), Agronomy 18: 111–223.Google Scholar
  23. 23.
    PHINNEY, B.O., AND C.R. SPRAY. 1982. Chemical genetics and the gibberellin pathway in Zea mays L. In: Plant growth substances 1982. (P.F. Wareing, ed.), Academic Press, London, pp. 101–110.Google Scholar
  24. 24.
    SPRAY, C.R., B.O. PHINNEY, P. GASKIN, S.J. GILMOUR AND J. MACMILLAN. 1984. Internode length in Zea mays L. The dwarf-1 mutation controls the 3β-hydroxylation of gibberellin A20 to gibberellin A1. Planta 160: 464–468.CrossRefGoogle Scholar
  25. 25.
    INGRAM, T.J., J.B. REID, W.C. POTTS AND I.C. MURFET. 1983. Internode length in Pisum. IV. The effect of the Le gene on gibberellin metabolism. Physiol. Plant. 59: 607–616.CrossRefGoogle Scholar
  26. 26.
    INGRAM, T.J., J.B. REID, I.C. MURFET, P. GASKIN, C.L. WILLIS AND J. MACMILLAN. 1984. Internode length in Pisum. The le-gene controls the 3β-hydroxylation of gibberellin A20 to gibberellin A1. Planta 160: 455–463.CrossRefGoogle Scholar
  27. 27.
    INGRAM, T.J., J.B. REID AND J. MACMILLAN. 1986. The quantitative relationship between gibberellin A1 and internode elongation in Pisum sativum L. Planta 168: 414–420.CrossRefGoogle Scholar
  28. 28.
    MURAKAMI, Y. 1972. Dwarfing genes in rice and their relation to gibberellin biosynthesis In: Plant growth substances 1970. (D.J. Carr, ed.), Springer-Verlag, Berlin, pp. 166–174.Google Scholar
  29. 29.
    SUZUKI, Y., S. KUROGOCHI, N. MUROFUSHI, Y. OTA AND N. TAKAHASHI. 1981. Seasonal changes of GA1, GA19 and abscisic acid in three rice cultivars. Plant Cell Physiol. 22: 1085–1093.Google Scholar
  30. 30.
    ZEEVAART, J.A.D. 1984. Gibberellins in single gene dwarf mutants of tomato. Plant Physiol. (Suppl.) 75: 186.Google Scholar
  31. 31.
    KOORNNEEF, M., AND J.H. VAN DER VEEN. 1980. Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) Heynh. Theor. Appl. Genet. 58: 257–263.CrossRefGoogle Scholar
  32. 32.
    ROOD, S.B., D. PEARCE, P.H. WILLIAMS AND R.P. PHARIS. 1989. A gibberellin-deficient Brassica mutant -rosette. Plant Physiol. 89: 482–487.PubMedCrossRefGoogle Scholar
  33. 33.
    MACMILLAN, J., AND N. TAKAHASHI. 1968. Proposed proce- dure for the allocation of trivial names to the gibberellins. Nature (London) 217: 170–171.CrossRefGoogle Scholar
  34. 34.
    BIRNBERG, P.R., S.L. MAKI, M.L. BRENNER, G.C. DAVIES AND M.G. CARNES. 1986. An improved, enzymatic synthesis of labeled gibberellin A12-aldehyde and gibberellin A12. Anal. Biochem. 153: 1–8.PubMedCrossRefGoogle Scholar
  35. 35.
    DUNCAN, J.D., AND C.A. WEST. 1981. Properties of kaurene synthetase from Marah macrocarpus endosperm: evidence for the participation of separate but interacting enzymes. Plant Physiol. 68: 1128–1134.PubMedCrossRefGoogle Scholar
  36. 36.
    HEDDEN, P., AND B.O. PHINNEY. 1979. Comparison of ent-kaurene and ent-isokaurene synthesis in cell-free systems from etiolated shoots of normal and dwarf-5 maize seedlings. Phytochemistry 18: 1475–1479.CrossRefGoogle Scholar
  37. 37.
    SUZUKI, Y., B.O. PHINNEY, P. GASKIN AND J. MACMILLAN. 1989. Elongating internodes of Zea mays (maize): early steps in the GA biosynthetic pathway. Plant Physiol. (Suppl.) 89: 107.Google Scholar
  38. 38.
    BEARDER, J.R., J. MACMILLAN, C.M. WELS AND B.O. PHINNEY. 1973. Metabolism of steviol and its derivatives by Gibberella fujikuroi, mutant Bl-41a. J. Chem. Soc. Chem. Commun. 778–779.Google Scholar
  39. 39.
    KAMIYA, Y., AND J.E. GRAEBE. 1983. The biosynthesis of all major pea gibberellins in a cell-free system from Pisum sativum. Phytochemistry 22: 681–689.CrossRefGoogle Scholar
  40. 40.
    TAKAHASHI, M., Y. KAMIYA, N. TAKAHASHI AND J.E. GRAEBE. 1986. Metabolism of gibberellins in a cell-free system from immature seeds of Phaseolus vulgaris L. Planta 168: 190–199.Google Scholar
  41. 41.
    HEUPEL, R.C., B.O. PHINNEY, C.R. SPRAY, P. GASKIN, J. MACMILLAN, P. HEDDEN AND J.E. GRAEBE. 1985. Native gibberellins and the metabolism of [14C] gibberellin A53 and of [17–13C,17–3H2] gibberellin A20 in tassels of Zea mays. Phytochemistry 24: 47–53.CrossRefGoogle Scholar
  42. 42.
    FUJIOKA, S., H. YAMANE, C.R. SPRAY, M. KATSUMI, B.O. PHINNEY, P. GASKIN, J. MACMILLAN AND N. TAKAHASHI. 1988. The dominant non-gibberellin responding dwarf mutant (D8) of maize accumulates native gibberellins. Proc. Natl. Acad. Sci. USA 85: 9031–9035.PubMedCrossRefGoogle Scholar
  43. 43.
    BLANCHARD, J.S., AND S. ENGLARD. 1983. γ-Butyrobetaine hydroxylase: primary and secondary tritium kinetic isotope effects. Biochemistry 22: 5922–5929.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Bernard O. Phinney
    • 1
  • Clive R. Spray
    • 1
  1. 1.Department of BiologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations