Advertisement

Functions of DNA Helicases in the DNA Metabolism of Escherichia Coli

  • Mahmoud Abdel-Monem
  • Helen M. Arthur
  • Inga Benz
  • Hartmut Hoffmann-Berling
  • Ursula Reygers
  • Anita Seiter
  • Gisela Taucher-Scholz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 179)

Abstract

DNA helicases catalyze the separation of double-stranded DNA into single strands using the energy of ATP hydrolysis. The four helicases which have been found in Escherichia coli are listed in Table 1. These enzymes are the helicases I, II, III and the helicase specified by the rep gene. As the table shows the four proteins differ considerably with respect to Mr, number of molecules per cell and, in particular, mechanism of action. Each of the helicases requires a region of single-stranded DNA to initiate unwinding, and each of the four enzymes unwinds DNA unidirectionally relative to the chemical polarity of the DNA strand to which it is bound. The direction of unwinding depends on the nature of the helicase.

Keywords

Replication Fork Chromosomal Replication Chemical Polarity Single Strand Binding Protein Helicase Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geider, K. and Hoffmann-Berling, H. (1981) Ann. Rev. Biochem. 50, 233.PubMedCrossRefGoogle Scholar
  2. 2.
    Denhardt, D.T., Dressler, D.H. and Hathaway, A. (1967) Proc. Natl. Acad. Sci. U.S.A. 57, 813.PubMedCrossRefGoogle Scholar
  3. 3.
    Tessman, I., Fassler, J.S. and Benneth, D.C. (1982) J. Bact. 151, 1637.PubMedGoogle Scholar
  4. 4.
    Abdel-Monem, M., Taucher-Scholz, G. and Klinkert, M.-Q. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4659.PubMedCrossRefGoogle Scholar
  5. 5.
    Manning, P.A. and Achtman, M. (1979) in: “Bacterial Outer Membranes”, M. Inouye, ed., Wiley & Sons, Inc., New York.Google Scholar
  6. 6.
    Everett, R. and Willets, N. (1980) J. Mol. Biol. 136, 129.PubMedCrossRefGoogle Scholar
  7. 7.
    Sarathy, P.V. and Siddiqi, O. (1973) J. Mol. Biol. 78, 443.PubMedCrossRefGoogle Scholar
  8. 8.
    Kingsman, A. and Willets, N. (1978) J. Mol. Biol. 122, 287.Google Scholar
  9. 9.
    Kolodkin, A.L., Capage, M.A., Golub, E.I. and Low, K.B. (1983) Proc. Natl. Acad. Sci, U.S.A. 80, 4422.PubMedCrossRefGoogle Scholar
  10. 10.
    Oeda, K., Horiuchi, T. and Sekiguchi, M. (1982) Nature 298, 98.PubMedCrossRefGoogle Scholar
  11. 11.
    Arthur, H.M., Bramhill, D., Eastlake, P.B. and Emmerson, P.T. (1982) Gene, 19, 285.PubMedCrossRefGoogle Scholar
  12. 12.
    Maples, V.F. and Kushner, S.R. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 5616.PubMedCrossRefGoogle Scholar
  13. 13.
    Taucher-Scholz, G. and Hoffmann-Berling, H. (1983) Eur. J. Biochem. 137, 573.PubMedCrossRefGoogle Scholar
  14. 14.
    Hickson, J.D., Arthur, H.M., Bramhill, D. and Emmerson, P.T. (1983) Mol. Gen. Genet. 190, 265.PubMedCrossRefGoogle Scholar
  15. 15.
    Kumura, K., Oeda, K., Akiyama, M., Horiuchi, T. and Sekiguchi, M. (1983) in: Cellular responses to DNA damage, Friedberg, E.C. and Bridges, B.R. , eds. UCLA Symposia on Molecular and Cellular Biology, New Series, Volume 11, Alan R. Liss, Inc., New York, in press.Google Scholar
  16. 16.
    Rothman, R.H. and Clark, A.J. (1977) Mol. Gen. Genet. 155, 267.PubMedCrossRefGoogle Scholar
  17. 17.
    Arthur, H.M. and Lloyd, R.G. (1980) Mol. Gen. Genet. 180, 185.PubMedCrossRefGoogle Scholar
  18. 18.
    Lloyd, R.G. (1983) Mol. Gen. Genet. 189, 157.Google Scholar
  19. 19.
    Smirnov, G.B., Filkova, E.V. and Skavronskaya, A.G. (1972) Mol. Gen. Genet. 118, 51.PubMedCrossRefGoogle Scholar
  20. 20.
    Siegel, E.C. (1981) Mol. Gen. Genet. 184, 526.PubMedCrossRefGoogle Scholar
  21. 21.
    Nevers, P. and Spatz, H.C. (1975) Mol. Gen. Genet. 139, 233.PubMedGoogle Scholar
  22. 22.
    Lu, A.L., Clark, S. and Modrich, P. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4639.PubMedCrossRefGoogle Scholar
  23. 23.
    Kushner, S.R., Shaepherd, J. Edwards, G. and Maples, V.F. (1978) in: “DNA Repair Mechanisms”, P.C. Hanawalt, E. Friedberg and C.F. Fox, eds., Academic Press, New York.Google Scholar
  24. 24.
    Klinkert, M.-Q., Klein, A. and Abdel-Monem, M. (1980) J. Biol. Chem. 255, 9746.PubMedGoogle Scholar
  25. 25.
    Lane, H.F.D. and Denhardt, D.T. (1975) J. Mol. Biol. 97, 99.PubMedCrossRefGoogle Scholar
  26. 25.
    Calendar, R., Lindgvist, G., Sironi, G. and Clark, A.J. (1970) Virology 40, 72.PubMedCrossRefGoogle Scholar
  27. 27.
    Taucher-Scholz, G., Abdel-Monem, M. and Hoffmann-Berling, H. (1983) in: “Mechanisms of DNA Replication and Recombination”, UCLA Symposia on Molecular and Cellular Biology, New Series, Volume 10, N.R. Cozzarelli, ed., Alan R. Liss, Inc., New York, in press.Google Scholar
  28. 28.
    Arthur, H.M. and Eastlake, P.B. (1983) Gene, in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Mahmoud Abdel-Monem
    • 1
  • Helen M. Arthur
    • 2
  • Inga Benz
    • 1
  • Hartmut Hoffmann-Berling
    • 1
  • Ursula Reygers
    • 1
  • Anita Seiter
    • 1
  • Gisela Taucher-Scholz
    • 1
  1. 1.Abteilung Molekulare BiologieMax-Planck-Institut für medizinische ForschungHeidelbergFederal Republic of Germany
  2. 2.Department of BiochemistryThe University of Newcastle upon TyneNewcastle upon TyneUK

Personalised recommendations