Nitrogen Metabolism in Normal and Cirrhotic Liver

  • Dieter Häussinger
  • Rainer Steeb
  • Stephan Kaiser
  • Matthias Wettstein
  • Barbara Stoll
  • Wolfgang Gerok
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 272)


In the intact liver acinus, the pathways of ammonia and glutamine metabolism are embedded into a sophisticated structural and functional organization with metabolic interactions between different hepatocyte populations. This provided a new insight into the role of the liver in maintaining ammonia and bicarbonate homeostasis. A specialized cell population at the hepatic venous outflow of the liver acinus acts as a scavenger for ammonia and probably also for various signal molecules (“perivenous scavenger cell hypothesis”). Mitochondrial glutaminase and carbonic anhydrase are controlling HCO 3 - and NH 4 + input into carbamoylphosphate synthetase in periportal hepatocytes, thereby adding important targets of urea cycle flux control under physiological and pathological conditions. Chronic and acute liver diseases are associated with disturbances of this structural and functional organization. This results in a new understanding of the pathogenetic mechanism contributing to the development of hyperammonemia, acid-base disturbances and possibly other extrahepatic manifestations in liver cirrhosis.


Glutamine Synthetase Urea Cycle Glutamine Metabolism Urea Synthesis Carbamoylphosphate Synthetase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Häussinger, D. (1990). Nitrogen metabolism in liver: Structured and Functional organization and physiological relevance. Biochem, J., 267,281–290.Google Scholar
  2. 2.
    Jungermann, K. & Katz, N. (1989). Functional specialization of different hepatocyte populations. Physiol. Rev., 6g, 708–784.Google Scholar
  3. 3.
    Meijer, A.J., Lamers, W.H. & Chamaleau, R.A.F.M. (1989). Nitrogen metabolism and ornithine cycle function. Physiol Rev., in press.Google Scholar
  4. 4.
    Häussinger, D., Meijer, A.J., Gerok, W. & Sies, H. (1988). Hepatic nitrogen metabolism and acid-base homeostasis. In: pH homeostasis (Häussinger, D., ed.) pp. 337–377, Academic Press London.Google Scholar
  5. 5.
    Traber, P.G., Chianale, J. & Gumucio, J.J. (1988). Physiologic significance and regulation of hepatocellular heterogeneity. Gastroenterology 95, 30–43.Google Scholar
  6. 6.
    Häussinger D. (1983). Hepatocyte heterogeneity in glutamine and ammonia metabolism and the role of an intercellular glutamine cycle during ureogenesis in perfused rat liver. Eur. J. Biochem. 133:269–274.PubMedCrossRefGoogle Scholar
  7. 7.
    Häussinger, D. & Gerok, W. (1984). Hepatocyte heterogeneity in ammonia metabolism: impairment of glutamine synthetase in CC14 induced liver cell necrosis with no effect on urea synthesis. Chem. Biol. Interact. 48, 191–194.PubMedCrossRefGoogle Scholar
  8. 8.
    Gebhardt, R., Burger, H.J., Schreiber, K.L. & Mecke, D. (1988). Alterations of hepatic enzyme levels and of acinar distribution of glutamine synthetase in response to experimental liver injury in the rat. Hepatology 8, 822–830.PubMedCrossRefGoogle Scholar
  9. 9.
    Gaasbeek-Janzen, J.W., Lamers, W.H., Moorman, A.F.M., De Graaf, A., Los, A.J. & Charles, R. (1984). Immunhistochemical localization of carbamoylphosphate synthetase (ammonia) in adult rat liver. J. Histochem. Cytochem. 32, 557–564.PubMedCrossRefGoogle Scholar
  10. 10.
    Saheki, T., Yagi, Y., Sase, M., Nakano, K. & Sato, E. (1983). Immunhistochemical localization of argininosuccinate synthetase in the liver of control and citrullinemic patients. Biomed. Res. 4, 235–238.Google Scholar
  11. 11.
    Gebhardt, R. & Mecke, D. (1983). Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. Embo. J. 2, 567–572.PubMedGoogle Scholar
  12. 12.
    Moorman, A.F.M., De Boer, A.J., Geerts, W.J.C., Zande, L.V.D., Lamers, W.H. & Charles, R. (1988). Complementary distribution of carbamoylphosphate synthetase (ammonia) and glutamine synthetase in rat liver acinus is regulated at a pretranslational level. J. Histochem. Cytochem. 36, 751–755.PubMedCrossRefGoogle Scholar
  13. 13.
    Gebhardt, R., Ebert, A. & Bauer, G. (1988). Heterogeneous expression of glutamine synthetase mRNA in rat liver parenchyma by in situ hybridization and Northern blot analysis of RNA from periportal and perivenous hepatocytes. FEBS Lett. 241, 89–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Häussinger, D. & Gerok, W. (1983). Hepatocyte heterogeneity in glutamate uptake in isolated perfused rat liver. Eur. J. Biochem. 136, 421–425.PubMedCrossRefGoogle Scholar
  15. 15.
    Stoll, B. & Häussinger, D. (1989). Functional hepatocyte heterogeneity. Vascular oxoglutarate is almost exclusively taken up by perivenous glutamine-synthetase-containing hepatocytes. Eur. J. Biochem. 181, 709–716.PubMedCrossRefGoogle Scholar
  16. 16.
    Häussinger, D., Stoll, B., Stehle, T. & Gerok, W. (1989). Hepatocyte heterogeneity in glutamate metabolism and bidirectional transport in isolated perfused rat liver. Eur. J. Biochem. 185, 189–195.PubMedCrossRefGoogle Scholar
  17. 17.
    Smith, D.D. & Campbell, J.W. (1988). Distribution of glutamine synthetase and carbamoylphosphate synthetase I in vertebrate liver. Proc. Natl. Acad. Sci. 85, 160–164.PubMedCrossRefGoogle Scholar
  18. 18.
    Lamers, W.H., Gassbeek Janzen, J.W., te Kortschot, A., Charles, R. & Moorman, A.F.M. (1987). The development of enzymic zonation in liver parenchyma is related to the development of the acinar architecture. Differentiation 35, 228–235.PubMedCrossRefGoogle Scholar
  19. 19.
    Sies, H. & Häussinger, D. (1984). Hepatic glutamine and ammonia metabolism. Nitrogen and redox balance and the intercellular glutamine cycle. In: Glutamine Metabolism in Mammalian Tissues (Häussinger, D. & Sies, H., eds.) pp 78–97, Springer Verlag Heidelberg.CrossRefGoogle Scholar
  20. 20.
    Lusty, C. (1978). Carbamoylphosphate synthetase I of ratliver mitochondria. Purification, properties and polypeptide molecular weight. Eur. J. Biochem. 85, 373–383.PubMedCrossRefGoogle Scholar
  21. 21.
    Meijer, A.J., Lof, C, Ramos, I. & Verhoeven, A.J. (1985). Control of ureogenesis. Eur. J. Biochem. 148, 189–196.PubMedCrossRefGoogle Scholar
  22. 22.
    Deuel, T.F., Louie, M. & Lerner, M. (1978). Glutamine synthetase from rat liver J. Biol. Chem. 253, 6111–6118.PubMedGoogle Scholar
  23. 23.
    Häussinger, D., Weiss, L. & Sies, H. (1975). Activation of pyruvate dehydrogenase during metabolism of ammonium ions in hemoglobin-free perfused rat liver. Eur. J. Biochem. 52, 421–431.PubMedCrossRefGoogle Scholar
  24. 24.
    Kaiser, S., Gerok, W. & Häussinger, D. (1988). Ammonia and glutamine metabolism in human liver slices: new aspects on the pathogenesis of hyperammonemia in chronic liver disease. Eur. J. Clin. Invest. 18, 535–542.PubMedCrossRefGoogle Scholar
  25. 25.
    Cooper, A.J.L., Nieves, E., Coleman, A.E., Filc-DeRicco, S. & Gelbard, A.S. (1987). Short-term metabolic fate of [ N] ammonia in rat liver in vivo. J. Biol. Chem. 262, 1073–1080.PubMedGoogle Scholar
  26. 26.
    McGivan, J.D., Bradford, N.M., Verhoeven, A.J. & Meijer, A.J. (1984). Liver glutaminase. In: Glutamine Metabolism in Mammalian Tissues (Häussinger, D. & Sies, H., eds.) pp. 122–137, Springer Verlag Heidelberg.CrossRefGoogle Scholar
  27. 27.
    McGivan, J.D. (1989). Liver glutamine metabolism. In: Glutamine and Glutamate in Mammals (Kvamme, E., ed.) Vol. 1, pp. 183–202, CRC Press, Inc. Boca Raton.Google Scholar
  28. 28.
    Joseph, S.K. & McGivan, J.D. (1978). The effect of ammonium chloride and glucagon on the metabolism of glutamine in isolated liver cells from starved rats. Biochim. Biophys. Acta 543, 16–28.PubMedCrossRefGoogle Scholar
  29. 29.
    Häussinger, D. & Sies, H. (1979). Hepatic glutamine metabolism under the influence of the portal ammonia concentration in the perfused rat liver. Eur. J. Biochem. 101, 179–184.PubMedCrossRefGoogle Scholar
  30. 30.
    Häussinger, D., Gerok, W. & Sies, H. (1983). Regulation of flux through glutaminase and glutamine synthetase in isolated perfused rat liver. Biochim. Biophys. Acta 755, 272–278.PubMedCrossRefGoogle Scholar
  31. 31.
    Verhoeven, A.J., van Iwaarden, J.F., Joseph, S.K. & Meijer, A.J. (1983). Control of liver glutaminase by ammonia and pH. Eur. J. Biochem. 133, 241–244.PubMedCrossRefGoogle Scholar
  32. 32.
    McGivan, J.D. & Bradford, N.M. (1983). Characteristics of the activation of glutaminase by ammonia in sonicated rat liver mitochondria. Biochim. Biophys. Acta 759, 296–302.PubMedCrossRefGoogle Scholar
  33. 33.
    Häussinger, D., Lang, F., Bauers, K., Stehle, T. & Gerok, W. (1990). Interactions between glutamine metabolism and cell volume regulation. Eur. J. Biochem., 188, 689–695.PubMedCrossRefGoogle Scholar
  34. 34.
    Häussinger, D. & Stehle, T. (1988). Hepatocyte heterogeneity in response to icosanoids. The perivenous scavenger cell hypothesis. Eur. J. Biochem. 175, 395–403.PubMedCrossRefGoogle Scholar
  35. 35.
    Häussinger, D., ed. (1988). pH Homeostasis, Academic Press London.Google Scholar
  36. 36.
    Oliver, J., Koelz, A.M., Costello, J. & Bourke, E. (1977). Acid-base-induced alterations in glutamine metabolism and ureogenesis in perfused muscle and liver of the rat. Eur. J. Clin. Invest. 7, 445–449.PubMedCrossRefGoogle Scholar
  37. 37.
    Atkinson, D.E. & Camien, M. (1982). The role of urea synthesis in the removal of metabolic bicarbonate and the regulation of blood pH. Curr. Top. Cell. Reg. 21, 261– 302.Google Scholar
  38. 38.
    Atkinson, D.E. & Bourke, E. (1984). The role of ureagenesis in pH homeostasis. Trends Biochem. Sci. 9, 297–300.CrossRefGoogle Scholar
  39. 39.
    Häussinger, D., Gerok, W. & Sies, H. (1984). Hepatic role in pH regulation: role of the intercellular glutamine cycle. Trends Biochem. Sci. 9, 300–302.CrossRefGoogle Scholar
  40. 40.
    Häussinger, D., Gerok, W. & Sies, H. (1986). The effect of urea synthesis on extracellular pH in isolated perfused rat liver. Biochem. J. 236, 261–265.PubMedGoogle Scholar
  41. 41.
    Häussinger, D., Steeb, R. & Gerok, W. (1990) Ammonium and bicarbonate homeostasis in chronic liver disease. Klin. Wschr. 68, 175–182.PubMedCrossRefGoogle Scholar
  42. 42.
    Gebhardt, R. & Mecke, D. (1984). Cellular distribution and regulation of glutamine synthetase in liver. In: Glutamine Metabolism in Mammalian Tissues (Häussinger, D. & Sies, H., eds.) pp. 98–121, Springer Verlag Heidelberg.CrossRefGoogle Scholar
  43. 43.
    Moormann A.F.M., Vermeulen, J.L.M., Charles, R. & Lamers, W.H. (1989). Localization of ammonia metabolizing enzymes in human liver: ontogenesis of heterogeneity. Hepatology 9, 367–372.CrossRefGoogle Scholar
  44. 44.
    Rubio, V., Ramponi, G. & Grisolia, S. (1981). Carbamoylphosphate synthetase I of human liver. Purification, some properties and immunological cross-reactivity with the rat liver enzyme. Biochim. Biophys. Acta 659, 150–160.PubMedGoogle Scholar
  45. 45.
    Snodgrass, P.J. & Lund, P. (1984). Allosteric properties of phosphate-activated glutaminase of human liver mitochondria. Biochim. Biophys. Acta 798, 21–27.PubMedCrossRefGoogle Scholar
  46. 46.
    Häussinger, D., Kaiser, S., Stehle, T. & Gerok, W. (1986). Liver carbonic anhydrase and urea synthesis. The effect of diuretics. Biochem. Pharmacol. 35, 3317–3322.PubMedCrossRefGoogle Scholar
  47. 47.
    Ugarte, G., Pino, M.E., Valenzuela, J., & Lorca, F. (1963). Urea cycle enzymatic abnormalities in patients with endogenous hepatic coma. Gastroenterology 45, 182–188.PubMedGoogle Scholar
  48. 48.
    Kathra, B.S., Smith, R.B., Millikan, W., Sewell, C.W., Warren, W.D. & Rudman, D. (1974). Activities of Krebs-Henseleit enzymes in normal and cirrhotic human liver. J. Lab. Clin. Med. 84, 708–715.Google Scholar
  49. 49.
    Adibi, S.A., Fekl, W., Langenbeck, U. & Schauder, P., eds. (1984). Branched chain amino acids and ketoacids in health disease. S. Karger Basel New York.Google Scholar
  50. 50.
    Mendenhall, C.L., Rouster, S., Marshall, L. & Weesner, R. (1986). Am. J. Gastroenterol. 81, 540–543.PubMedGoogle Scholar
  51. 51.
    Häussinger, D. & Gerok, W. (1984). Regulation of hepatic glutamate metabolism. Role of 2-oxoacids in glutamate release from isolated perfused rat liver. Eur. J. Biochem. 143, 491–497.PubMedCrossRefGoogle Scholar
  52. 52.
    Häussinger, D., Stehle, T. & Colombo, J.P. (1989). Benzoate stimulates glutamate release from perfused rat liver. Biochem. J. 264, 837–843PubMedGoogle Scholar
  53. 53.
    Ballard, R.A., Vinocur, B., Reynolds, J.W., Wennberg, R.P., Merritt, A., Sweetman, L. & Nyhan, W.L. (1978). Transient hyperammonemia of the preterm infant. New Engl. J. Med. 299, 920–925.PubMedCrossRefGoogle Scholar
  54. 54.
    Oster, J.R. & Perez, G.O. (1986). J. Hepatol. 2, 299–306.PubMedCrossRefGoogle Scholar
  55. 55.
    Dölle, W. (1965). “Der Säurebasenstoffwechsel bei Leberzirrhose” Dr. A. Hüthig Verlag Heidelberg.Google Scholar
  56. 56.
    Brosnan, J.T., Vinay, P., Gougoux, A. & Halperin, M.L. (1988). Renal ammonium production and implications for acid-base balance. In: pH Homeostasis (Häussinger, D., ed.) pp. 281–304.Google Scholar
  57. 57.
    Welbourne, T.C., Weber, M. & Bank, N. (1972). J. Clin. Invest. 51, 1852–1860.PubMedCrossRefGoogle Scholar
  58. 58.
    Tizianello, A., De Ferrari, G., Garibotto, G., Gurreri, G. & Robaudo, C. (1980). Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J. Clin. Invest. 65, 1162–1173.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Dieter Häussinger
    • 1
  • Rainer Steeb
    • 1
  • Stephan Kaiser
    • 1
  • Matthias Wettstein
    • 1
  • Barbara Stoll
    • 1
  • Wolfgang Gerok
    • 1
  1. 1.Medizinische UniversitätsklinikFreiburgGerman

Personalised recommendations