Skip to main content

Hepatic Glutamine and Ammonia Metabolism

Nitrogen and Redox Balance and the Intercellular Glutamine Cycle

  • Conference paper
Glutamine Metabolism in Mammalian Tissues

Abstract

Our interest in glutamine metabolism arose from an investigation of mitochondrial NADPH/NADP+ as affected during the metabolism of ammonia in the process of ureogenesis [1, 2 ]. Glutamine served as a compound yielding ammonia plus glutamate within the mitochondria via the activity of mitochondrial glutaminase, whereas added ammonia yielded glutamate only at the expense of 2-oxoglutarate via reductive animation [3]. Clearly, such model experiments on redox compartmentation have a physiological bearing, because the effects occur at portal concentrations of ammonia and glutamine within the physiological range of about 0.3 mM and 0.6 mM, respectively [4]. Thus, this article will present the redox transitions related to this important sector of nitrogen metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sies H, Haussinger D, Grosskopf M (1974) Mitochondrial nicotinamide nucleotide systems: ammonium chloride responses and associated metabolic transitions in hemoglobin-free perfused rat liver. Hoppe-Seyler’s Z Physiol Chem 355. 305–318

    Article  PubMed  CAS  Google Scholar 

  2. Sies H, Summer KH, Biicher Th (1975) A process requiring mitochondrial NADPH: urea formation from ammonia. Febs Lett 54: 274–278

    Article  PubMed  CAS  Google Scholar 

  3. Häussinger D, Weiss L, Sies H (1975) Activation of pyruvate dehydrogenase during metabolism of ammonium ions in hemoglobin perfused rat liver. Eur J Biochem 52: 421–431

    Article  PubMed  Google Scholar 

  4. Häussinger D, Sies H (1979) Hepatic glutamine metabolism under the influence of the portal ammonia concentration in the perfused rat liver. Eur J Biochem 101: 179–184

    Article  PubMed  Google Scholar 

  5. Krebs HA (1935) Metabolism of amino acids. The synthesis of glutamine from glutamic acid and ammonia and the enzymic hydrolysis of glutamine in animal tissues. Biochem J 29: 1951–1959

    PubMed  CAS  Google Scholar 

  6. Horowifz ML, Knox WE (1968) A phosphate activated glutaminase in rat liver different from that in kidney and other tissues. Enzymol Biol Clin 9: 241–255

    Google Scholar 

  7. DuRuisseau JP, Greenstein JP, Winitz M, Birnbaum SM (1957) Studies on the metabolism of amino acids and related compounds in vivo. VI. Free amino acid levels in the tissues of rats protected against ammonia toxicity. Arch Biochem Biophys 68: 161–171

    Article  CAS  Google Scholar 

  8. Schimassek H, Gerok W (1965) Control of the levels of free amino acids in plasma by the liver. Biochem Z 343: 407–415

    PubMed  CAS  Google Scholar 

  9. Addae SK, Lotspeich WD (1968) Glutamine balance in metabolic acidosis as studied with the artificial kidney. Am J Physiol 215: 278–281

    PubMed  CAS  Google Scholar 

  10. Lund P (1971) Control of glutamine synthesis in rat liver. Biochem J 124: 653–660

    PubMed  CAS  Google Scholar 

  11. Saheki T, Katunuma N (1975) Analysis of regulatory factors for urea synthesis by isolated perfused rat liver. J Biochem 77: 659–669

    PubMed  CAS  Google Scholar 

  12. Chamalaun RAFM, Tager JM (1970) Nitrogen metabolism in the perfused rat liver. Biochim Biophys Acta 222: 119–134

    Article  PubMed  CAS  Google Scholar 

  13. Atkinson DE, Camien MN (1982) The role of urea synthesis in the removal of metabolic bicarbonate and the regulation of blood pH. Curr Top Cell Regul 21: 261–302

    PubMed  CAS  Google Scholar 

  14. Gebhardt R, Mecke D (1983) Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. Embo J 2: 567–570

    PubMed  CAS  Google Scholar 

  15. Haussinger D (1983) Hepatocyte heterogeneity in glutamine and ammonia metabolism and the role of an intercellular glutamine cycle during ureogenesis in perfused rat liver. Eur J Biochem 133: 269–275

    Article  PubMed  CAS  Google Scholar 

  16. Bücher Th, Sies, H (1976) Mitochondrial and cytosolic redox states in perfused rat liver: methods and problems in metabolic compartmentation. In: Tager JM, Söling HD, Williamson JR (eds) Use of isolated liver cells and kidney tubules in metabolic studies. Elsevier/North Holland, Amsterdam, pp 41–64

    Google Scholar 

  17. Sies H, Summer KH, Häussinger D, Bücher Th (1976) NADPH utilisation in mitochondria: urea synthesis from ammonia in rat liver cells. In: Tager JM, Söling HD, Williamson JR (eds) Use of isolated liver cells and kidney tubules in metabolic studies. Elsevier/North Holland, Amsterdam, pp 311–316

    Google Scholar 

  18. Häussinger D, Gerok W, Sies H (1982) Inhibition of pyruvate dehydrogenase during the metabolism of glutamine and proline in hemoglobin-free perfused rat liver. Eur J Biochem 126: 69–76

    Article  PubMed  Google Scholar 

  19. Sies H, Graf P, Crane D (1983) Decreased flux through pyruvate dehydrogenase during calcium ion movements induced by vasopressin, a-adrenergic agonists and the ionophore A 23187 in perfused rat liver. Biochem J 212: 271–278

    PubMed  CAS  Google Scholar 

  20. Häussinger D, Sies H (1984) Effect of phenylephrine on hepatic glutamine and glutamate metabolism. Biochem J (in press)

    Google Scholar 

  21. Lund P, Watford M (1976) Glutamine as a precursor of urea. In: Grisolia S, Baguena R, Mayor F (eds) The urea cycle. Wiley, New York London, pp 479–488

    Google Scholar 

  22. Häussinger D, Gerok W, Sies H (1983) Regulation of flux through glutaminase and glutamine synthetase in isolated perfused rat liver. Biochim Biophys Acta 755: 272–278

    Article  PubMed  Google Scholar 

  23. Sies H (1978) The use of perfusion of liver and other organs for the study of microsomal electron transport and cytochrom P 450 systems. Methods Enzymol 52: 48–59

    Article  PubMed  CAS  Google Scholar 

  24. Meister A (1980) Catalytic mechanism of glutamine synthetase; overview of glutamine metabolism. In: Mora J, Palacios R (eds) Glutamine: metabolism, enzymology and regulation. Academic Press, London New York, pp 1–40

    Google Scholar 

  25. Charles R (1968) Mitochondrial citrulline synthese: een ammoniak fixerend en ATP verbruikend procès. PhD thesis, Univ Amsterdam, Rotatype, Amsterdam

    Google Scholar 

  26. Häussinger D, Sies H (1975) Activation of glutaminase by ammonium ions in perfused rat liver. Abstr Commun 10th FEBS Meet 1497

    Google Scholar 

  27. Joseph S, McGivan JD (1978) The effect of ammonium choride and glucagon on the metabolism of glutamine in isolated liver cells from starved rats. Biochim Biophys Acta 543: 16–28

    Article  PubMed  CAS  Google Scholar 

  28. Nordmann R, Petit MA, Nordmann J (1972) Recherches sur le mécanisme de l’accumulation intra-hépatique d’acides aminés dicarboxyliques au cours de l’intoxication ammoniacale. Biochimie 54: 1473–1478

    Article  PubMed  CAS  Google Scholar 

  29. Häussinger D, Akerboom TPM, Sies H (1980) The role of pH and the lack of a requirement for hydrogenca:bonate in the regulation of hepatic glutamine metabolism. Hoppe-Seyler’s Z Physiol Chem 361: 995–1001

    Article  PubMed  Google Scholar 

  30. Verhoeven AJ, Van Iwaarden JF, Joseph SK, Meijer AJ (1983) Control of rat liver glutaminase by ammonia and pH. Eur J Biochem 133: 241–244

    Article  PubMed  CAS  Google Scholar 

  31. Yamamoto H, Aikawa T, Matsutaka H, Okuda T, Ishikawa E (1974) Interorganal relationships of amino acid metabolism in fed rats. Am J Physiol 226: 1428–1433

    PubMed  CAS  Google Scholar 

  32. Lund P, Brosnan JT, Eggleston LV (1970) The regulation of ammonia metabolism in mammalian tissues. In: Bartley W, Kornberg HA, Quayle JR (eds) Essays in cell metabolism. Wiley, New York London, pp 167–188

    Google Scholar 

  33. Deuel TF, Louie M, Lerner A (1978) Glutamine synthetase from rat liver. J Biol Chem 253: 6111–6118

    PubMed  CAS  Google Scholar 

  34. Lacey JH, Bradford NM, Joseph SK, McGivan JD (1981) Increased activity of phosphate-de- pendent glutaminase in liver mitochondria as a result of glucagon treatment of rats. Biochem J 194: 29–33

    PubMed  CAS  Google Scholar 

  35. Baverel G, Lund P (1979) A role for bicarbonate in the regulation of mammalian glutamine metabolism. Biochem J 184: 599–606

    PubMed  CAS  Google Scholar 

  36. Joseph SK, Verhoeven AJ, Meijer AJ (1981) Effect of trifluoperazine on the stimulation by Ca2+-dependent hormones of gluconeogenesis from glutamine in isolated hepatocytes. Biochim Biophys Acta 677: 506–511

    Article  PubMed  CAS  Google Scholar 

  37. Corvera S, Garcia-Sainz JA (1983) Hormonal stimulation of mitochondrial glutaminase. Biochem J 210: 957–960

    PubMed  CAS  Google Scholar 

  38. Blackmore PF, Dehaye JP, Exton JH (1979) Studies on a-adrenergic activation of hepatic glucose output. J Biol Chem 254: 6945–6950

    PubMed  CAS  Google Scholar 

  39. Siess EA, Wieland OH (1980) Early kinetics of glucagon action in isolated hepatocytes at the mitochondrial level. Eur J Biochem 110: 203–210

    Article  PubMed  CAS  Google Scholar 

  40. Schrock H, Goldstein L (1981) Interorgan relationships for glut amine metabolism in normal and acidotic rats. Am J Physiol 240: E519–E525

    PubMed  CAS  Google Scholar 

  41. Aikawa T, Matsutaka H, Yamamoto H, Okuda T, Ishikawa E, Kawano T, Matsumara E (1973) Gluconeogenesis and amino acid metabolism. Inter-organal relations and roles of glutamine and alanine in the amino acid metabolism of fasted rats. J Biochem 74: 1003–1017

    PubMed  CAS  Google Scholar 

  42. Remesy C, Demigne C, Aufrere J (1978) Interorgan relationships between glucose, lactate and amino acids in rats fed on high-carbohydrate or high-protein diets. Biochem J 170: 321–329

    CAS  Google Scholar 

  43. Lueck JD, Miller LL (1970) The effect of perfusate pH on glutamine metabolism in the isolated perfused rat liver. J Biol Chem 245: 5491–5497

    PubMed  CAS  Google Scholar 

  44. Joseph SK, McGivan JD (1978) The effects of ammonium chloride and bicarbonate on the activity of glutaminase in isolated liver mitochondria. Biochem J 176: 837–844

    PubMed  CAS  Google Scholar 

  45. McGivan JD, Bradford NM (1983) Properties of rat liver glutaminase at the submitochondrial level. Hoppe-Seyler’s Z Physiol Chem 364: 1240

    Google Scholar 

  46. Rappaport AM (1976) The microcirculatory acinar concept of normal and pathological hepatic structure. Beitr Pathol 157: 215–243

    Article  PubMed  CAS  Google Scholar 

  47. Jungermann K, Katz N (1982) Metabolic heterogeneity of liver parenchyma. In: Sies H (ed) Metabolic compartmentation. Academic Press, London New York, pp 411–435

    Google Scholar 

  48. Ji S, Lemasters JJ, Thurman RG (1980) A non-invasive method to study metabolic events within sublobular regions of hemoglobin-free perfused liver. Febs Lett 113: 37–41

    Article  PubMed  CAS  Google Scholar 

  49. Gaasbeek Janzen JW, Moorman AFM, Lamers WH, Los JA, Charles R (1981) The localization of carbamoyl-phosphate synthase in adult rat liver. Biochem Soc Trans 9: 279 P

    Google Scholar 

  50. Welsh FA (1972) Changes in distribution of enzymes within the liver lobule during adaptive increases. J Histochem Cytochem 20: 107–111

    Article  PubMed  CAS  Google Scholar 

  51. Morrison GR, Brock FE, Karl I, Shank RE (1965) Quantitative analysis of regenerating and degenerating areas within the lobule of the carbon tetrachloride-injured liver. Arch Biochem Biophys 111: 448–464

    Article  PubMed  CAS  Google Scholar 

  52. Lusty CJ (1978) Carbamylphosphate synthetase I of rat liver mitochondria. Eur J Biochem 85: 373–383

    Article  PubMed  CAS  Google Scholar 

  53. Soboll S, Elbers R, Scholz R, Heldt HW (1980) Subcellular distribution of di- and tricarboxylates and pH gradients in perfused rat liver. Hoppe-Seyler’s Z Physiol Chem 361: 69–76

    Article  PubMed  CAS  Google Scholar 

  54. Slater TF (1966) Necrogenic action of carbon tetrachloride in the rat: a speculative mechanism based on activation. Nature (London) 209: 36–40

    Article  CAS  Google Scholar 

  55. Haussinger D, Gerok W (1984) Hepatocyte heterogeneity in ammonia metabolism: impairment of glutamine synthesis in carbon tetrachloride-induced liver cell necrosis with no effect on urea synthesis. Chem Biol Interact 48: 191–194

    Article  PubMed  CAS  Google Scholar 

  56. Kalra J, Brosnan JT (1973) Localization of glutaminase in rat liver. Febs Lett 37: 325–328

    Article  PubMed  CAS  Google Scholar 

  57. Soboll S, Keim M, Haussinger D (1983) Subcellular distribution of glutamine in liver. Hoppe-Seyler’s Z Physiol Chem 364: 1242

    Google Scholar 

  58. Kilberg MS, Handlogten ME, Christensen HN (1980) Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine and closely related analogs. J Biol Chem 225: 4011–4019

    Google Scholar 

  59. Haussinger D, Gerok W (1983) Hepatocyte heterogeneity in glutamate uptake by isolated perfused rat liver. Eur J Biochem 136: 421–425

    Article  PubMed  CAS  Google Scholar 

  60. Sips HJ, De Graaf PA, Van Dam K (1982) Transport of L-aspartate and L-glutamate in plasma-membrane vesicles from rat liver. Eur J Biochem 122: 259–264

    Article  PubMed  CAS  Google Scholar 

  61. Sips HJ, Groen AK, Tager JM (1980) Plasma-membrane transport of alanine is rate-limiting for its metabolism in rat-liver parenchymal cells. Febs Lett 119: 271–274

    Article  PubMed  CAS  Google Scholar 

  62. Shank RE, Morrison G, Cheng CH, Karl I, Schwartz R (1959) Cell heterogeneity within the liver lobule (quantitative histochemistry). J Histochem Cytochem 7: 237–239

    Article  PubMed  CAS  Google Scholar 

  63. Wimmer M, Pette D (1979) Microphotometric studies on intraacinar enzyme distribution in rat liver. Histochemistry 64: 23–33

    Article  PubMed  CAS  Google Scholar 

  64. Ui M, Exton JH, Park CR (1973) Effects of glucagon on glutamate metabolism in the perfused rat liver. J Biol Chem 248: 5350–5359

    PubMed  CAS  Google Scholar 

  65. Newsholme EA, Start C (1973) Regulation in metabolism. Wiley, New York London

    Google Scholar 

  66. Hue L (1982) Futile cycles and regulation of metabolism. In: Sies H (ed) Metabolic compartmentation. Academic Press, London New York

    Google Scholar 

  67. Hâussinger D, Gerok W, Sies H (1984) Hepatic role in pH regulation. Role of the intercellular glutamine cycle. Trends Biochem Sci (in press)

    Google Scholar 

  68. LaNoue KF, Schoolwerth AC (1979) Metabolite transport in mitochondria. Annu Rev Biochem 48: 871–922

    Article  PubMed  CAS  Google Scholar 

  69. Oliver J, Koelz AM, Costello J, Bourke E (1977) Acid-base induced alterations in glutamine metabolism and ureogenesis in perfused muscle and liver of the rat. Eur J Clin Invest 7: 445–449

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer- Verlag Berlin Heidelberg

About this paper

Cite this paper

Sies, H., Häussinger, D. (1984). Hepatic Glutamine and Ammonia Metabolism. In: Häussinger, D., Sies, H. (eds) Glutamine Metabolism in Mammalian Tissues. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69754-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69754-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69756-2

  • Online ISBN: 978-3-642-69754-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics