Ion Movements in Skeletal Muscle in Relation to the Activation of Contraction

  • Hans Christoph Lüttgau
  • George Dimitrie Stephenson


The dramatic event by which skeletal muscle, when stimulated, converts chemical energy into mechanical work has fascinated and puzzled physiologists for a long time(1) The interest with which the process of muscular activation has been studied was probably also aroused by the possibility of measuring accurately both the electrical activity associated with the outer membranous system and the mechanical output. The whole sequence of events which bridges these two processes has been intuitively called excitation-contraction coupling(2) Most of the current knowledge concerning this coupling is based on experiments performed in recent years, particularly on single amphibian and crustacean muscle fibers, a point to be borne in mind in any discussion on this subject.


Skeletal Muscle Sarcoplasmic Reticulum Skeletal Muscle Fiber Charge Movement Frog Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hill, A. V. 1965. Trails and Trials in Physiology. Arnold, London, p. 374.Google Scholar
  2. 2.
    Sandow, A. 1952. Excitation-contraction coupling in muscular response. Yale J. Biol. Med. 25:176–201.PubMedGoogle Scholar
  3. 3.
    Huxley, A. F. 1971. The activation of striated muscle and its mechanical response. Proc. R. Soc. London Ser. B 178:1–27.CrossRefGoogle Scholar
  4. 4.
    Costantin, L. L. 1971. Inward spread of activation in frog skeletal muscle. In: Contractility of Muscle Cells and Related Processes. R. J. Podolsky, ed. Prentice-Hall, Englewood Cliffs, N.J. pp. 89–98.Google Scholar
  5. 5.
    Page, S. G. 1965. A comparison of the fine structures of frog slow and twitch muscle fibers. J. Cell Biol. 26:477–497.PubMedCrossRefGoogle Scholar
  6. 6.
    Peachey, L. D. 1965. The sarcoplasmic reticulum and transverse tubules of the frog’s sartorius. J. Cell Biol. 25:209–231.PubMedCrossRefGoogle Scholar
  7. 7.
    Peachey, L. D., and R. F. Schild. 1968. The distribution of the T-system along the sarcomeres of frog and toad sartorius muscles. J. Physiol. (London) 194:249–258.Google Scholar
  8. 8.
    Franzini-Armstrong, C., and L. D. Peachey. 1981. Striated muscle—Contractile and control mechanism. J. Cell Biol. 91:166s-186s.Google Scholar
  9. 9.
    Page, S. G. 1964. The organization of the sarcoplasmic reticulum in frog muscle. J. Physiol. (London) 175:10P-11P.Google Scholar
  10. 10.
    Huxley, H. E. 1964. Evidence for continuity between the central elements of the triads and extracellular space in frog sartorius muscle. Nature (London) 202:1067–1071.CrossRefGoogle Scholar
  11. 11.
    Franzini-Armstrong, C., L. Landmesser, and G. Pilar. 1975. Size and shape of transverse tubule openings in frog twitch muscle fibers. J. Cell Biol. 64:493–497.PubMedCrossRefGoogle Scholar
  12. 12.
    Dulhunty, A. F., and C. Franzini-Armstrong. 1975. The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths. J. Physiol. (London) 250:513–539.Google Scholar
  13. 13.
    Zampighi, G., J. Vergara, and F. Ramon. 1975. On the connection between the transverse tubules and the plasma membrane in frog semitendinosus skeletal muscle: Are caveolae the mouths of the transverse tubule system? J. Cell Biol. 64:734–740.PubMedCrossRefGoogle Scholar
  14. 14.
    Mobley, B. A., and B. R. Eisenberg. 1975. Sizes of components in frog skeletal muscle measured by methods of stereology. J. Gen. Physiol. 66:31–45.PubMedCrossRefGoogle Scholar
  15. 15.
    Hodgkin, A. L., and S. Nakajima. 1972. Analysis of the membrane capacity in frog muscle. J. Physiol. (London) 221:121-136.Google Scholar
  16. 16.
    Franzini-Armstrong, C. 1970. Studies of the triad. I. Structure of the junction in frog twitch fibers. J. Cell Biol. 47:488–499.PubMedCrossRefGoogle Scholar
  17. 17.
    Franzini-Armstrong, C. 1975. Membrane particles and transmission at the triad. Fed. Proc. 34:1382–1389.PubMedGoogle Scholar
  18. 18.
    Franzini-Armstrong, C., and G. Nunzi. 1983. Junctional feet and particles in the triads of a fast-twitch muscle fibre. J. Musc. Res. Cell Motil. 4:233–252.CrossRefGoogle Scholar
  19. 19.
    Eisenberg, B. R., and A. Gilai. 1979. Structural changes in single muscle fibers after stimulation at a low frequency. J. Gen. Physiol. 74:1–16.PubMedCrossRefGoogle Scholar
  20. 20.
    Eisenberg, B. R., and R. S. Eisenberg. 1982. The T-SR junction in contracting single skeletal muscle fibers. J. Gen. Physiol. 79:1-19.CrossRefGoogle Scholar
  21. 21.
    Zachar, J. 1971. Electrogenesis and Contractility in Skeletal Muscle Cells. University Park Press, Baltimore, p. 638.Google Scholar
  22. 22.
    Baker, P. F., and H. Reuter. 1975. Calcium Movement in Excitable Cells. Pergamon Press, Elmsford, N.Y. p. 102.Google Scholar
  23. 23.
    Adrian, R. H. 1960. Potassium chloride movement and the membrane potential of frog muscle. J. Physiol. (London) 151:154–185.Google Scholar
  24. 24.
    Adrian, R. H. 1961. Internal chloride concentration and chloride efflux of frog muscle. J. Physiol. (London) 156:623–632.Google Scholar
  25. 25.
    Hodgkin, A. L., and P. Horowicz. 1959. Movements of Na and K in single muscle fibres. J. Physiol. (London) 145:405–432.Google Scholar
  26. 26.
    Hodgkin, A. L., and P. Horowicz. 1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol. (London) 148:127–160.Google Scholar
  27. 27.
    Eisenberg, R. S., and P. W. Gage. 1969. Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers. J. Gen. Physiol. 53:279–297.PubMedCrossRefGoogle Scholar
  28. 28.
    Palade, P. T., and R. L. Barchi. 1977. On the inhibition of muscle membrane chloride conductance by aromatic carboxylic acids. J. Gen. Physiol. 69:879–896.PubMedCrossRefGoogle Scholar
  29. 29.
    Dulhunty, A. F. 1979. Distribution of potassium and chloride permeability over the surface and T-tubule membranes of mammalian skeletal muscle. J. Membr. Biol. 45:293–310.PubMedCrossRefGoogle Scholar
  30. 30.
    Hodgkin, A. L., and P. Horowicz. 1957. The differential action of hypertonic solutions on the twitch and action potential of a muscle fibre. J. Physiol. (London) 136:17P.Google Scholar
  31. 31.
    Nastuk, W. L., and A. L. Hodgkin. 1950. The electrical activity of single muscle fibers. J. Cell. Comp. Physiol. 35:39–74.CrossRefGoogle Scholar
  32. 32.
    Adrian, R. H., W. K. Chandler, and A. L. Hodgkin. 1970. Voltage clamp experiments in striated muscle fibres. J. Physiol. (London) 208:607–644.Google Scholar
  33. 33.
    Adrian, R. H., W. K. Chandler, and A. L. Hodgkin. 1970. Slow changes in potassium permeability in skeletal muscle. J. Physiol. (London) 208:645–668.Google Scholar
  34. 34.
    Ildefonse, M., and O. Rougier. 1972. Voltage clamp analysis of the early current in frog skeletal muscle fibre using the double sucrose-gap method. J. Physiol. (London) 222:373–395.Google Scholar
  35. 35.
    Ildefonse, M., and G. Roy. 1972. Kinetic properties of the sodium current in striated muscle fibres on the basis of the Hodgkin-Huxley theory. J. Physiol. (London) 227:419–431.Google Scholar
  36. 36.
    Freygang, W. H., Jr., D. A. Goldstein, and D. C. Hellam. 1964. The after-potential that follows trains of impulses in frog muscle fibers. J. Gen. Physiol. 47:929–952.PubMedCrossRefGoogle Scholar
  37. 37.
    Kirsch, G. C., R. A. Nichols, and S. Nakajima. 1978. Delayed rectification in the transverse tubule. J. Gen. Physiol. 70:1–12.CrossRefGoogle Scholar
  38. 38.
    Stanfield, P. R. 1975. The effect of zinc ions on the gating of the delayed potassium conductance of frog sartorius muscle. J. Physiol. (London) 251:711–735.Google Scholar
  39. 39.
    Sjodin, R. A. 1982. Transport of electrolytes in muscle. J. Membr.Biol. 68:161–178.PubMedCrossRefGoogle Scholar
  40. 40.
    Stefani, E., and D.J. Chiarandini. 1982. Ionic channels in skeletal muscle. Annu. Rev. Physiol. 44:357–372.PubMedCrossRefGoogle Scholar
  41. 41.
    Stanfield, P. R. 1977. A calcium dependent inward current in frog skeletal muscle fibres. Pfluegers Arch. 368:267–270.CrossRefGoogle Scholar
  42. 42.
    Sánchez, J. A., and E. Stefani. 1978. Inward calcium current in twitch muscle fibres of the frog. J. Physiol. (London) 283:197–209.Google Scholar
  43. 43.
    Nicola-Siri, L., J. A. Sanchez, and E. Stefani. 1980. Effect of glycerol treatment on the calcium current of frog skeletal muscle. J. Physiol. (London) 305:87–96.Google Scholar
  44. 44.
    Aimers, W., and P. T. Palade. 1981. Slow calcium and potassium currents across frog muscle membrane: Measurements with a Vaseline-gap technique. J. Physiol. (London) 312:159–176.Google Scholar
  45. 44a.
    Takeda, K. 1977. Prolonged sarcotubular regenerative response in frog sartorius muscle. Jap. J. Physiol. 27:379–389.CrossRefGoogle Scholar
  46. 44b.
    Potreau, D., and G. Raymond. 1982. Existence of a sodium-induced calcium release mechanism in frog skeletal muscle fibres. J. Physiol. (London) 333:463–480.Google Scholar
  47. 44c.
    Aimers, W., E. W. McCleskey, and P. T. Palade. 1984. A nonselective cation conductance in frog muscle membrane blocked by micromolar external calcium ions. J. Physiol. (London) 353:565–583.Google Scholar
  48. 44d.
    Aimers, W., and E. W. McCleskey. 1984. Non-selective conductance in calcium channels of frog muscle: Calcium selectivity in a single-file pore. J. Physiol. (London) 353:585–608.Google Scholar
  49. 45.
    Stimmer, W., and W. Aimers. 1982. Photobleaching through glass micropipettes: Sodium channels without lateral mobility in the sarcolemma of frog skeletal muscle. Proc. Natl. Acad. Sci. USA 79:946–950.CrossRefGoogle Scholar
  50. 46.
    Aimers, W., R. Fink, and N. Shepherd. 1982. Lateral distribution of ionic channels in the cell membrane of skeletal muscle. In: Disorders of the Motor Unit. D. L. Scotland, ed. Wiley, New York. pp. 349–366.Google Scholar
  51. 47.
    Aimers, W., P. R. Stanfield, and W. Stühmer. 1983. Lateral distribution of sodium and potassium channels in frog skeletal muscle: Measurements with a patch-clamp technique. J. Physiol. (London) 336:261–284.Google Scholar
  52. 48.
    Stanfield, P. R., N. B. Standen, C. A. Leech, and F. M. Ashcroft. 1981. Inward rectification in skeletal muscle fibres. Adv. Physiol. Sci. 5:247–262.Google Scholar
  53. 49.
    Lüttgau, H. C. 1965. The effect of metabolic inhibitors on the fatigue of the action potential in single muscle fibres. J. Physiol. (London) 178:45–67.Google Scholar
  54. 50.
    Fink, R., S. Hase, H. C. Lüttgau, and E. Wettwer. 1983. The effect of cellular energy reserves and internal Ca2+ on the potassium conductance in skeletal muscle of the frog. J. Physiol. (London) 336:211–228.Google Scholar
  55. 51.
    Barrett, J. N., K. L. Magleby, and B. S. Pallotta. 1982. Properties of single calcium-activated potassium channels in cultured rat muscle. J. Physiol. (London) 331:211–230.Google Scholar
  56. 52.
    Methfessel, C., and G. Boheim. 1982. The gating of single calcium-dependent potassium channels is described by an activation/blockade mechanism. Biophys. Struct. Mech. 9:35–60.PubMedCrossRefGoogle Scholar
  57. 53.
    Lüttgau, H. C., and E. Wettwer. 1983. Ca2+-activated potassium conductance in metabolically exhausted skeletal muscle fibres. Cell Calcium 4:331–341.PubMedCrossRefGoogle Scholar
  58. 54.
    Bezanilla, F., C. Caputo, H. Gonzales-Serratos, and R. A. Venosa. 1972. Sodium dependence of the inward spread of activation in isolated twitch muscle fibres of the frog. J. Physiol. (London) 223:507–523.Google Scholar
  59. 55.
    Aimers, W., R. Fink, and P. T. Palade. 1981. Calcium depletion in frog muscle tubules: The decline of calcium current under maintained depolarization. J. Physiol. (London) 312:177–207.Google Scholar
  60. 56.
    Adrian, R. H., and S. H. Bryant. 1974. On the repetitive discharge in myotonic muscle fibres. J. Physiol. (London) 240:505–515.Google Scholar
  61. 57.
    Huxley, A. F., and R. E. Taylor. 1955. Function of Krause’s membrane. Nature (London) 176:1068.CrossRefGoogle Scholar
  62. 58.
    Costantin, L. L. 1970. The role of sodium current in the radial spread of contraction in frog muscle fibers. J. Gen. Physiol. 55:703–715.PubMedCrossRefGoogle Scholar
  63. 59.
    Huxley, A. F. 1974. Review lecture: Muscular contraction. J. Physiol. (London) 243:1–43.Google Scholar
  64. 60.
    Costantin, L. L. 1975. Contractile activation in skeletal muscle. Prog. Biophys. Mol. Biol. 29:197–224.PubMedCrossRefGoogle Scholar
  65. 61.
    Lüttgau, H. C., and H. G. Glitsch. 1976. Membrane physiology of nerve and muscle fibres. Fortschr. Zool. 24:1–132.PubMedCrossRefGoogle Scholar
  66. 62.
    Huxley, A. F., and R. E. Taylor. 1958. Local activation of striated muscle fibres. J. Physiol. (London) 144:426–441.Google Scholar
  67. 63.
    Adrian, R. H., L. L. Costantin, and L. D. Peachey. 1969. Radial spread of contraction in frog muscle fibres. J. Physiol. (London) 204:231–257.Google Scholar
  68. 64.
    Nakajima, S., and A. Gilai. 1980. Radial propagation of muscle action potential along the tubular system examined by potential-sensitive dyes. J. Gen. Physiol. 76:751–762.PubMedCrossRefGoogle Scholar
  69. 65.
    Jaimovich, E., R. A. Venosa, P. Shrager, and P. Horowicz. 1975. Tetrodotoxin (TTX) binding in normal and “detubulated” frog sartorius muscle. Biophys. J. 15:255a.Google Scholar
  70. 66.
    Frank, G. B. 1982. Roles of extracellular and “trigger” calcium ions in excitation-contraction coupling in skeletal muscle. Can. J. Physiol. Pharmacol. 60:427–439.PubMedCrossRefGoogle Scholar
  71. 67.
    Schneider, M. F., and W. K. Chandler. 1973. Voltage dependent charge movement in skeletal muscle: A possible step in excitation-contraction coupling. Nature (London) 242:244–246.CrossRefGoogle Scholar
  72. 68.
    Mathias, R. T., R. A. Levis, and R. S. Eisenberg. 1980. Electrical models of excitation contraction coupling and charge movement in skeletal muscle. J. Gen. Physiol. 76:1–31.PubMedCrossRefGoogle Scholar
  73. 69.
    Hodgkin, A. L., and P. Horowicz. 1960. Potassium contractures in single muscle fibres. J. Physiol. (London) 153:386–403.Google Scholar
  74. 70.
    Caputo, C., and P. Fernandez de Bolanös. 1979. Membrane potential, contractile activation and relaxation rates in voltage clamped short muscle fibres of the frog. J. Physiol. (London) 289:175–189.Google Scholar
  75. 71.
    Lüttgau, H. C., and H. Oetliker. 1968. The action of caffeine on the activation of the contractile mechanism in striated muscle fibres. J. Physiol. (London) 194:51–74.Google Scholar
  76. 72.
    Nagai, T., M. Takauji, I. Kosaka, and M. Tsutsu-Ura. 1979. Biphasic time course of inactivation of potassium contractures in single twitch muscle fibers of the frog. Jpn. J. Physiol. 29:539–549.PubMedCrossRefGoogle Scholar
  77. 73.
    Ford, L. E., and R. J. Podolsky. 1970. Regenerative calcium release within muscle cells. Science 167:58–59.PubMedCrossRefGoogle Scholar
  78. 74.
    Endo, M., M. Tanaka, and Y. Ogawa. 1970. Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature (London) 228:34–36.CrossRefGoogle Scholar
  79. 75.
    Sandow, A. 1965. Excitation-contraction coupling in skeletal muscle. Pharmacol. Rev. 17:265–320.PubMedGoogle Scholar
  80. 76.
    Lüttgau, H. C., and W. Spiecker. 1979. The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibres of the frog. J. Physiol. (London) 296:411–429.Google Scholar
  81. 77.
    Cota, G., and E. Stefani. 1981. Effects of external calcium reduction on the kinetics of potassium contractures in frog twitch muscle fibres. J. Physiol. (London) 317:303–316.Google Scholar
  82. 78.
    Gonzalez-Serratos, H., R. Valle-Aguilera, D. A. Lathrop, and M. del Carmen Garcia. 1982. Slow inward calcium currents have no obvious role in muscle excitation-contraction coupling. Nature (London) 298:292–294.CrossRefGoogle Scholar
  83. 79.
    Lüttgau, H. C., W. Melzer, and W. Spiecker. 1981. The role of external Ca2+ in excitation contraction coupling. Adv. Physiol. Sci. 5:375–388.Google Scholar
  84. 80.
    Blinks, J. R., R. Rüdel, and S. R. Taylor. 1978. Calcium transients in isolated amphibian skeletal muscle fibres: Detection with aequorin. J. Physiol (London) 277:291–323.Google Scholar
  85. 81.
    Kumbaraci, N.M., and W. L. Nastuk. 1982. Action of caffeine in excitation-contraction coupling of frog skeletal muscle fibres. J. Physiol (London) 325:195–211.Google Scholar
  86. 82.
    Endo, M. 1975. Conditions required for calcium-induced release of calcium from the sarcoplasmic reticulum. Proc. Jpn. Acad. 51:467–472.Google Scholar
  87. 83.
    Thorens, S., and M. Endo. 1975. Calcium-induced calcium release and “depolarization”-induced calcium release: Their physiological significance. Proc. Jpn. Acad. 51:473–478.Google Scholar
  88. 84.
    Moisescu, D. G., and R. Thieleczek. 1978. Calcium and strontium concentration changes within skinned muscle preparations following a change in the external bathing solution. J. Physiol. (London) 275:241–262.Google Scholar
  89. 85.
    Stephenson, D. G., and D. A. Williams. 1980. Activation of skinned arthropod muscle fibres by Ca2+ and Sr2+. J. Musc. Res. Cell Motil. 1:73–87.CrossRefGoogle Scholar
  90. 86.
    Eisenberg, R. S., R. T. McCarthy, and R. L. Milton. 1983. Paralysis of frog skeletal muscle fibres by the calcium antagonist D-600. J. Physiol. (London) 341:495–505.Google Scholar
  91. 87.
    Hui, C. S., R. L. Milton, and R. S. Eisenberg. 1983. Elimination of charge movement in skeletal muscle by a calcium antagonist. Biophys. J. 41:178a.Google Scholar
  92. 88.
    Chandler, W. K., R. F. Rakowski, and M. F. Schneider. 1976. A non-linear voltage dependent charge movement in frog skeletal muscle. J. Physiol (London) 254:245–283.Google Scholar
  93. 89.
    Chandler, W. K., R. F. Rakowski, and M. F. Schneider. 1976. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. J. Physiol. (London) 254:285–316.Google Scholar
  94. 90.
    Adrian, R. H., and W. Aimers. 1976. Charge movement in the membrane of striated muscle. J. Physiol. (London) 254:339–360.Google Scholar
  95. 91.
    Adrian, R. H., W. K. Chandler, and R. F. Rakowski. 1976. Charge movement and mechanical repriming in skeletal muscle. J. Physiol. (London) 254:361–388.Google Scholar
  96. 92.
    Hodgkin, A. L., and A. F. Huxley. 1952. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (London) 116:497–506.Google Scholar
  97. 93.
    Rakowski, R. F. 1981. Immobilization of membrane charge in frog skeletal muscle by prolonged depolarization. J. Physiol (London) 317:129–148.Google Scholar
  98. 94.
    Rakowski, R. F. 1981. Inactivation and recovery of membrane charge movement in skeletal muscle. In: The Regulation of Muscle Contraction. A. D. Grinell and M. A. B. Brazier, eds. Academic Press, New York. pp. 23–37.Google Scholar
  99. 95.
    Almers, W. 1975. Observations on intramembrane charge movements in skeletal muscle. Philos. Trans. R. Soc. London Ser. B. 270:507–513.CrossRefGoogle Scholar
  100. 96.
    Almers, W. 1978. Gating currents and charge movements in excitable membranes. Rev. Physiol. Biochem. Pharmacol. 82:96–190.PubMedCrossRefGoogle Scholar
  101. 97.
    Adrian, R. H. 1978. Charge movement in the membrane of striated muscle. Annu. Rev. Biophys. Bioeng. 7:85–112.PubMedCrossRefGoogle Scholar
  102. 98.
    Schneider, M. F. 1981. Membrane charge movement and depolarization-contraction coupling. Annu. Rev. Physiol. 43:507–517.PubMedCrossRefGoogle Scholar
  103. 99.
    Gilly, W. F. 1981. Intramembrane charge movements and excitation-contraction (E-C) coupling. In: The Regulation of Muscle Contraction. A. D. Grinell and M. A. B. Brazier, eds. Academic Press, New York. pp. 3–22.Google Scholar
  104. 100.
    Horowicz, P., and M. F. Schneider. 1981. Membrane charge moved at contraction thresholds in skeletal muscle fibres. J. Physiol (London) 314:595–633.Google Scholar
  105. 101.
    Caputo, C., G. Gottschalk, and H. C. Lüttgau. 1981. The control of contraction activation by the membrane potential. Experientia 37:580–581.PubMedCrossRefGoogle Scholar
  106. 102.
    Kovacs, L., and G. Szücs. 1983. Effect of caffeine on intramembrane charge movement and calcium transients in cut skeletal muscle fibres of the frog. J. Physiol. (London) 341:559–578.Google Scholar
  107. 103.
    Weber, A., R. Herz, and I. Reiss. 1964. The regulation of myofibrillar activity by calcium. Proc. R. Soc. London Ser. B 160:489–501.CrossRefGoogle Scholar
  108. 104.
    Desmedt, I. E., and K. Hainaut. 1977. Inhibition of the intracellular release of calcium by dantrolene in barnacle giant muscle fibres. J. Physiol (London) 265:565–585.Google Scholar
  109. 105.
    Hui, C. S. 1983. Pharmacological studies of charge movement in frog skeletal muscle. J. Physiol. (London) 337:509–529.Google Scholar
  110. 106.
    Hui, C. S. 1983. Differential properties of two charge components in frog skeletal muscle. J. Physiol (London) 337:531–552.Google Scholar
  111. 107.
    Huang, C. L. H. 1982. Pharmacological separation of charge movement components in frog skeletal muscle. J. Physiol (London) 324:375–387.Google Scholar
  112. 108.
    Vergara, J., and C. Caputo. 1983. Effects of tetracaine on charge movements and calcium signals in frog skeletal muscle fibers. Proc. Natl. Acad. Sci. USA 80:1477–1481.PubMedCrossRefGoogle Scholar
  113. 109.
    Foulks, J. G., J. A. D. Miller, and F. A. Perry. 1973. Repolariza-tion-induced reactivation of contracture tension in frog skeletal muscle. Can. J. Physiol. Pharmacol. 51:324–334.PubMedCrossRefGoogle Scholar
  114. 110.
    Gomolla, M., G. Gottschalk, and H. C. Lüttgau. 1983. Perchlorate-induced alterations in electrical and mechanical parameters of frog skeletal muscle fibres. J. Physiol. (London) 343:197–214.Google Scholar
  115. 111.
    Lüttgau, H. C., G. Gottschalk, L. Kovács, and M. Fuxreiter. 1983. How Perchlorate improves excitation-contraction coupling in skeletal muscle fibers. Biophys. J. 43:247–249.PubMedCrossRefGoogle Scholar
  116. 112.
    Dulhunty, A. F., and P. W. Gage. 1983. Asymmetrical charge movement in slow-and fast-twitch mammalian muscle fibres in normal and paraplegic rats. J. Physiol (London) 341:213–231.Google Scholar
  117. 113.
    Mathias, R. T., R. A. Levis, and R. S. Eisenberg. 1981. An alternative interpretation of charge movement in muscle. In: The Regulation of Muscle Contraction. A. D. Grinell and M. A. B. Brazier, eds. Academic Press, New York. pp. 39–52.Google Scholar
  118. 114.
    Huang, C. L. H. 1983. Experimental analysis of alternative models of charge movement in frog skeletal muscle. J. Physiol. (London) 336:527–543.Google Scholar
  119. 115.
    Stephenson, E. W. 1981. Activation of fast skeletal muscle: Contributions of studies on skinned fibers. Am. J. Physiol. 240:C1–C19.PubMedGoogle Scholar
  120. 116.
    Baylor, S. M., W. K. Chandler, and M. W. Marshall. 1981. Optical studies in skeletal muscle using probes of membrane potential. In: The Regulation of Muscle Contraction. A.D. Grinell and M. A. B. Brazier, eds. Academic Press, New York. pp. 97–130.Google Scholar
  121. 117.
    Oetliker, H. 1982. An appraisal of the evidence for a sarcoplasmic reticulum membrane potential and its relation to calcium release in skeletal muscle. J. Musc. Res. Cell Motil. 3:247–272.CrossRefGoogle Scholar
  122. 118.
    Somlyo, A. V., H. Shuman, and A. P. Somlyo. 1977. Elemental distribution in striated muscle and the effects of hypertonicity: Electron probe analysis of cryo sections. J. Cell Biol 74:828–857.PubMedCrossRefGoogle Scholar
  123. 119.
    Somlyo, A. V., H. Gonzalez-Serratos, H. Shuman, G. Mc-Clellan, and A. P. Somlyo. 1981. Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: An electron-probe study. J. Cell Biol. 90:577–594.PubMedCrossRefGoogle Scholar
  124. 120.
    Kasai, M., T. Kanemasa, and S. Fukumoto. 1979. Determination of reflection coefficients for various ions and neutral molecules in sarcoplasmic reticulum vesicles through osmotic volume change studied by stopped flow technique. J. Membr. Biol. 51:311–324.PubMedCrossRefGoogle Scholar
  125. 121.
    Miller, C., and E. Racker. 1976. Ca2+-induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers. J. Membr. Biol. 30:283–300.PubMedCrossRefGoogle Scholar
  126. 122.
    Miller, C. 1978. Voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum: Steady-state electrical properties. J. Membr. Biol. 40:1–23.PubMedGoogle Scholar
  127. 123.
    Ebashi, S., M. Endo, and I. Ohtsuki. 1969. Control of muscle contraction. Q. Rev. Biophys. 2:351–384.PubMedCrossRefGoogle Scholar
  128. 124.
    Weber, A., and J. M. Murray. 1973. Molecular control mechanisms in muscle contraction. Physiol. Rev. 53:612–673.PubMedGoogle Scholar
  129. 125.
    Lehmann, W., and A. G. Szent-Györgyi. 1975. Regulation of muscular contraction. J. Gen. Physiol 65:1–30.CrossRefGoogle Scholar
  130. 126.
    Potter, J. D., and J. Gergely. 1974. Troponin, tropomyosin, and actin interactions in the Ca2+ regulation of muscle contraction. Biochemistry 13:2697–2703.PubMedCrossRefGoogle Scholar
  131. 127.
    Chantier, P. D., and A. G. Szent-Györgyi. 1980. Regulatory light chains and scallop myosin: Full dissociation, reversibility and cooperative effects. J. Mol. Biol. 138:473–492.CrossRefGoogle Scholar
  132. 128.
    Huxley, H. E. 1969. The mechanism of muscular contraction. Science 164:1356–1366.PubMedCrossRefGoogle Scholar
  133. 129.
    Huxley, H. E., and W. Brown. 1967. The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J. Mol. Biol. 30:383–434.PubMedGoogle Scholar
  134. 130.
    Squire, J. M. 1974. Symmetry and three-dimensional arrangement of filaments in vertebrate skeletal muscle. J. Mol. Biol. 90:153–160.PubMedCrossRefGoogle Scholar
  135. 131.
    Gordon, A. M., A. F. Huxley, and F. J. Julian. 1966. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. (London) 184:170–192.Google Scholar
  136. 132.
    Elliott, G. F., J. Lowy, and C. R. Worthington. 1963. An X-ray and light diffraction study of the filament lattice of striated muscle in the living state and rigor. J. Mol. Biol. 6:295–305.CrossRefGoogle Scholar
  137. 133.
    Hanson, J., and J. Lowy. 1963. The structure of F-actin and of actin filaments isolated from muscle. J. Mol. Biol. 6:46–60.CrossRefGoogle Scholar
  138. 134.
    Haselgrove, J. C. 1972. X-ray evidence for a conformational change in the actin-containing filaments of vertebrate striated muscle. Cold Spring Harbor Symp. Quant. Biol. 37:341–359.CrossRefGoogle Scholar
  139. 135.
    Adelstein, R. S., M. A. Conti, D. R. Hathaway, and C. B. Klee. 1978. Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3′:5′ monophosphate-dependent protein kinase. J. Biol. Chem. 253:8347–8350.PubMedGoogle Scholar
  140. 136.
    Morgan, M., S. V. Perry, and J. Ottaway. 1976. Myosin light-chain phosphatase. Biochem. J. 157:687–697.PubMedGoogle Scholar
  141. 137.
    Stull, J. T., and C. W. High. 1977. Phosphorylation of skeletal muscle contractile proteins in vivo. Biochem. Biophys. Res. Commun. 77:1078–1083.PubMedCrossRefGoogle Scholar
  142. 138.
    Moisescu, D. G. 1976. Kinetics of reaction in Ca-activated skinned muscle fibres. Nature (London) 262:610–613.CrossRefGoogle Scholar
  143. 139.
    Stephenson, D. G., and D. A. Williams. 1981. Calcium-activation force responses in fast-and slow-twitch skinned muscle fibres of the rat at different temperatures. J. Physiol. (London) 317:281–302.Google Scholar
  144. 140.
    Lehmann, W. 1978. Thick-filament-linked calcium regulation in vertebrate striated muscle. Nature (London) 274:80–81.CrossRefGoogle Scholar
  145. 141.
    Chin, T. K., and A. J. Rowe. 1982. Biochemical properties of native myosin filaments. J. Musc. Res. Cell Motil. 3:118.Google Scholar
  146. 142.
    Jöbsis, F. F., and M. J. O’Connor. 1966. Calcium release and reabsorption in the sartorius muscle of the toad. Biochem. Biophys. Res. Commun. 25:246–252.PubMedCrossRefGoogle Scholar
  147. 143.
    Miledi, R., I. Parker, and G. Schalow. 1977. Measurement of calcium transients in frog muscle by the use of arsenazo III. Proc. R. Soc. London Ser. B 198:201–210.CrossRefGoogle Scholar
  148. 144.
    Kovács, L., E. Rfos, and M. F. Schneider. 1979. Calcium transients and intramembrane charge movement in skeletal muscle fibres. Nature (London) 279:391–396.CrossRefGoogle Scholar
  149. 145.
    Palade, P., and J. Vergara. 1982. Arsenazo III and antipyrylazo III calcium transients in single skeletal muscle fibers. J. Gen. Physiol. 79:679–707.PubMedCrossRefGoogle Scholar
  150. 146.
    Dubyak, G. R., and A. Scarpa. 1982. Sarcoplasmic Ca2+ transients during the contractile cycle of single barnacle muscle fibres: Measurements with arsenazo Ill-injected fibres. J. Musc. Res. Cell Motil. 3:87–112.CrossRefGoogle Scholar
  151. 147.
    Baylor, S. M., W. K. Chandler, and M. W. Marshall. 1982. Use of metallochromic dyes to measure changes in myoplasmic calcium during activity in frog skeletal muscle fibres. J. Physiol. (London) 331:139–177.Google Scholar
  152. 148.
    Ashley, C. C., and E. B. Ridgway. 1970. On the relationship between membrane potential, calcium transient and tension in single barnacle muscle fibres. J. Physiol. (London) 209:105–130.Google Scholar
  153. 149.
    Ashley, C. C., P. C. Caldwell, A. K. Campbell, T. J. Lea, and D. G. Moisescu. 1976. Calcium movements in muscle. Symp. Soc. Exp. Biol. 30:397–422.Google Scholar
  154. 150.
    Ashley, C. C., and A. K. Campbell. 1979. Detection and measurement of free calcium ions in cells. Elsevier, Amsterdam.Google Scholar
  155. 151.
    Eusebi, F., R. Miledi, and T. Takahashi. 1980. Calcium transients in mammalian muscles. Nature (London) 284:560–561.CrossRefGoogle Scholar
  156. 152.
    Natori, R. 1954. The property and contraction process of isolated myofibrils. Jikeikai Med. J. 1:119–126.Google Scholar
  157. 153.
    Hellam, D. C., and R. J. Podolsky. 1969. Force measurements in skinned muscle fibres. J. Physiol. (London) 200:807–819.Google Scholar
  158. 154.
    Julian, F. J. 1971. The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres. J. Physiol. (London) 218:117–145.Google Scholar
  159. 155.
    Godt, R. E., and B. D. Lindley. 1982. Influence of temperature upon contractile activation and isometric force production in mechanically skinned muscle fibers of the frog. J. Gen. Physiol. 80:279–297.PubMedCrossRefGoogle Scholar
  160. 156.
    Brandt, P. W., R. N. Cox, and M. Kawai. 1980. Can the binding of Ca2+ to two regulatory sites on troponin C determine the steep pCa/tension relationship of skeletal muscle? Proc. Natl. Acad. Sci. USA 77:4717–4720.PubMedCrossRefGoogle Scholar
  161. 157.
    Ashley, C. C., and D. G. Moisescu. 1977. The effect of changing the composition of the bathing solutions upon the isometric ten-sion-pCa relationship in bundles of myofibrils isolated from single crustacean muscle fibres. J. Physiol. (London) 270:627–652.Google Scholar
  162. 158.
    Simmons, R. M., and A. G. Szent-Györgyi. 1980. Control of tension development in scallop muscle fibers with foreign regulatory light chains. Nature (London) 286:626–628.CrossRefGoogle Scholar
  163. 159.
    Ashley, C. C., and D. G. Moisescu. 1974. The influence of [Mg2+] and pH upon the isometric steady state tension-Ca2+ relationship in isolated bundles of myofibrils. J. Physiol. (London) 239:112P-114P.Google Scholar
  164. 160.
    Donaldson, S. K. B., and W. G. L. Kerrick. 1975. Characterization of the effects of Mg2+ on Ca2+-and Sr2+-activated tension generation of skinned skeletal muscle fibers. J. Gen. Physiol. 66:427–444.PubMedCrossRefGoogle Scholar
  165. 161.
    Moisescu, D.G.1975. The effect of [K+ ] on the calcium-induced development of tension in isolated bundles of myofibrils. Pfluegers Arch. 355:R62.Google Scholar
  166. 162.
    Fabiato, A., and F. Fabiato. 1978. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J. Physiol. (London) 276:233–255.Google Scholar
  167. 163.
    Stephenson, D. G., and I. R. Wendt. 1984. Length dependence of changes in sarcoplasmic calcium concentration and myofibrillar calcium sensitivity in striated muscle fibres. J. Musc. Res. Cell Motil. 5:243–272.CrossRefGoogle Scholar
  168. 164.
    Wendt, I. R., and D. G. Stephenson. 1983. Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat. Pfluegers Arch. 398:210–216.CrossRefGoogle Scholar
  169. 165.
    Potter, J. D., and J. Gergely. 1975. The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar ATPase. J. Biol. Chem. 250:4628–4633.PubMedGoogle Scholar
  170. 166.
    Fuchs, F., and C. Fox. 1982. Parallel measurements of bound calcium and force in glycerinated rabbit psoas muscle fibers. Biochim. Biophys. Acta 679:110–115.PubMedCrossRefGoogle Scholar
  171. 167.
    Ashley, C. C., and D. G. Moisescu. 1972. Model for the action of calcium in muscle. Nature New Biol. 237:208–211.PubMedGoogle Scholar
  172. 168.
    Pechère, J. F., J. Demaille, J. P. Capony, E. Dutruge, G. Baron, and C. Pina. 1975. Muscular paralbumins: Some explorations into their possible biological significance. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drab-ikowski, and A. Margreth, eds. North-Holland, Amsterdam, pp. 459–468.Google Scholar
  173. 169.
    Lehky, P., H. E. Blum, E. A. Stein, and E. H. Fischer. 1974. Isolation and characterization of paralbumins from the skeletal muscle of higher vertebrates. J. Biol. Chem. 249:4332–4334.PubMedGoogle Scholar
  174. 170.
    Cox, J. A., D. R. Winge, and E. Stein. 1979. Calcium, magnesium and the conformation of paralbumin during muscular activity. Biochimie 61:501–605.CrossRefGoogle Scholar
  175. 171.
    Robertson, S. P., J. D. Johnson, and J. D. Potter. 1981. The time course of Ca2+ exchange with calmodulin, troponin, paralbumin and myosin in response to transient increases in Ca2+. Biophys J. 34:559–569.PubMedCrossRefGoogle Scholar
  176. 172.
    Gillis, J. M., D. Thomason, J. Lefèvre, and R. H. Kretsinger. 1982. Parvalbumins and muscle relaxation: A computer simulation study. J. Musc. Res. Cell Motil. 3:377–398.CrossRefGoogle Scholar
  177. 173.
    Cheung, W. Y. 1980. Calmodulin plays a pivotal role in cellular regulation. Science 207:19–27.PubMedCrossRefGoogle Scholar
  178. 174.
    Carafoli, E., K. Malmstrom, H. Capano, E. Sigel, and M. Crompton. 1975. Mitochondria and the regulation of cell calcium. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland, Amsterdam, pp. 53–64.Google Scholar
  179. 175.
    Scarpa, A. 1975. Kinetics and energy-coupling of Ca2+ transport in mitochondria. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland, Amsterdam, pp. 65–76.Google Scholar
  180. 176.
    Bygrave, F. L. 1978. Mitochondria and the control of intracellular calcium. Biol. Rev. 53:43–79.PubMedCrossRefGoogle Scholar
  181. 177.
    Portzehl, H., P. C. Caldwell, and J. C. Rüegg. 1964. The dependence of contraction and relaxation of muscle fibres from the crab Maia squinado on the internal concentration of free calcium ions. Biochim. Biophys. Acta 79:581–591.PubMedGoogle Scholar
  182. 178.
    Hagiwara, S., and S. Nakajima. 1966. Effects of the intracellular [Ca2+ ] upon the excitability of the muscle fiber membrane of a barnacle. J. Gen. Physiol. 49:807–817.PubMedCrossRefGoogle Scholar
  183. 179.
    Keynes, R. D., E. Rojas, R. E. Taylor, and J. Vergara. 1973. Calcium and potassium systems of a giant barnacle muscle fibre under membrane potential control. J. Physiol. (London) 229:409–455.Google Scholar
  184. 180.
    Coray, A., C. H. Fry, P. Hess, Y. A. S. McGuigan, and R. Weingart. 1980. Resting calcium in sheep cardiac tissue and in frog skeletal muscle measured with ion-selective micro-electrodes. J. Physiol. (London) 305:60P-61P.Google Scholar
  185. 181.
    Cosmos, E., and E.J. Harris. 1961. In vitro studies of the gain and exchange of calcium in frog skeletal muscle. J. Gen. Physiol. 44.1121–1130.Google Scholar
  186. 182.
    DiPolo, R. 1973. Sodium-dependent calcium influx in dia-lysed barnacle muscle fibres. Biochim. Biophys. Acta 298:279–283.CrossRefGoogle Scholar
  187. 183.
    Ashley, C. C., J. C. Ellory, and K. Hainaut. 1974. Calcium movements in single crustacean muscle fibres. J. Physiol. (London) 242:255–272.Google Scholar
  188. 184.
    Barritt, G. J. 1981. Calcium transport across cell membranes: Progress toward molecular mechanisms. Trends Biochem. Sci. 6:322–325.CrossRefGoogle Scholar
  189. 185.
    DiPolo, R., and L. Beauge. 1980. Mechanisms of calcium transport in the giant axon of the squid and their physiological role. Cell Calcium 1:147–169.CrossRefGoogle Scholar
  190. 186.
    Bianchi, C. P., and A. M. Shanes. 1959. Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture. J. Gen. Physiol. 42:803–815.PubMedCrossRefGoogle Scholar
  191. 187.
    Curtis, B. A. 1966. Ca fluxes in single twitch muscle fibers. J. Gen. Physiol. 50:255–267.PubMedCrossRefGoogle Scholar
  192. 188.
    Ashley, C. C., P. J. Griffiths, D. G. Moisescu, and R. M. Rose. 1975. The use of aequorin and the isolated myofibrillar bundle preparation to investigate the, effect of SR calcium releasing agents. J. Physiol. (London) 245:12P-14P.Google Scholar
  193. 189.
    Hill, A. V. 1949. The abrupt transition from rest to activity in muscle. Proc. R. Soc. London Ser. B 136:399–420.CrossRefGoogle Scholar
  194. 190.
    Winegrad, S. 1968. Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J. Gen. Physiol. 51:65–83.PubMedCrossRefGoogle Scholar
  195. 191.
    Curtis, B. 1970. Calcium efflux from frog twitch muscle fibers. J. Gen. Physiol. 55:243–253.CrossRefGoogle Scholar
  196. 192.
    Ford, L. E., and R. J. Podolsky. 1972. Calcium uptake and force development by skinned muscle fibres in EGTA buffered solutions. J. Physiol. (London) 233:1–19.Google Scholar
  197. 193.
    Ashley, C. C., P. C. Caldwell, and A. G. Lowe. 1972. The efflux of calcium from single crab and barnacle muscle fibres. J. Physiol. (landon) 223:735-755Google Scholar
  198. 194.
    Winegrad, S. 1965. Autoradiographic studies of intracellular calcium in frog skeletal muscle. J. Gen. Physiol. 48:455–479.PubMedCrossRefGoogle Scholar
  199. 195.
    Costantin, L. L., C. Franzini-Armstrong, and R. J. Podolsky. 1965. Localization of calcium-accumulating structures in striated muscle fibers. Science 147:158–160.PubMedCrossRefGoogle Scholar
  200. 196.
    Pease, D. C., D. J. Jenden, and J. N. Howell. 1965. Calcium uptake in glycerol-extracted rabbit psoas muscle fibres. II. Electron microscopic localization of uptake sites. J. Cell. Comp. Physiol. 65:141–154.CrossRefGoogle Scholar
  201. 197.
    Campbell, K. P., C. Franzini-Armstrong, and A. E. Shamoo. 1980. Further characterization of light and heavy sarcoplasmic reticulum vesicles: Identification of the “sarcoplasmic feet” associated with heavy sarcoplasmic reticulum vesicles. Biochim. Biophys. Acta 602:97–116.PubMedCrossRefGoogle Scholar
  202. 198.
    MacLennan, D. H., and P. G. Wong. 1971. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc. Natl. Acad. Sci. USA 68:1231–1235.PubMedCrossRefGoogle Scholar
  203. 199.
    Jorgensen, A. O., V. Kalnins, and D. H. MacLennan. 1979. Localization of sarcoplasmic reticulum proteins in rat skeletal muscle by immunofluorescence. J. Cell Biol. 80:372–384.PubMedCrossRefGoogle Scholar
  204. 200.
    Hasselbach, W. 1964. Relaxing factor and the relaxation of muscle. Prog. Biophys. Mol. Biol. 14:167–222.CrossRefGoogle Scholar
  205. 201.
    Hasselbach, W. 1979. The sarcoplasmic calcium pump: A model of energy transduction in biological membranes. Fortschr. Chem. Forsch. 78:1–56.Google Scholar
  206. 202.
    Weber, A., R. Herz, and I. Reiss. 1966. Study of the kinetics of calcium transport by isolated fragmented sarcoplasmic reticulum. Biochem. Z. 345:329–369.Google Scholar
  207. 203.
    Martonosi, A. 1972. Biochemical and clinical aspects of sarcoplasmic reticulum function. Curr. Top. Membr. Transp. 3:83–197.CrossRefGoogle Scholar
  208. 204.
    de Meis, L., and A. L. Vianna. 1979. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu. Rev. Biochem. 48:275–292.PubMedCrossRefGoogle Scholar
  209. 205.
    Tada, M., T. Yamamoto, and Y. Tonomura. 1978. Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol. Rev. 58:1–72.PubMedGoogle Scholar
  210. 206.
    Hasselbach, W., and M. Makinose. 1963. Über den Mechanismus des Calciumtransportes durch die Membranen des sarko-plasmatischen Retikulums. Biochem. Z. 339:94–111.PubMedGoogle Scholar
  211. 207.
    Martonosi, A. N. 1975. The mechanism of Ca transport in sarcoplasmic reticulum. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland, Amsterdam, pp. 313–327.Google Scholar
  212. 208.
    Chiesi, M., and G. Inesi. 1980. Adenosine 5′-triphosphate dependent fluxes of manganese and hydrogen ions in sarcoplasmic reticulum vesicles. Biochemistry 19:2912–2918.PubMedCrossRefGoogle Scholar
  213. 209.
    Beeler, T. J., R. H. Farmen, and A. N. Martonosi. 1981. The mechanism of voltage-sensitive dye responses on sarcoplasmic reticulum. J. Membr. Biol. 62:113–137.PubMedCrossRefGoogle Scholar
  214. 210.
    Makinose, M., and W. Hasselbach. 1971. ATP synthesis by the reversal of the sarcoplasmic calcium pump. FEBS Lett. 12:271–272.PubMedCrossRefGoogle Scholar
  215. 211.
    Carvalho, A. P., M. G. P. Vale, and V. R. O. Castro. 1975. Utilization of X-537A to differentiate between intravesicular and membrane bound Ca2+ in sarcoplasmic reticulum. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland, Amsterdam, pp. 349–358.Google Scholar
  216. 212.
    Ogawa, Y. 1970. Some properties of fragmented frog sarcoplasmic reticulum with particular reference to its response to caffeine. J. Biochem. (Tokyo) 67:667–683.Google Scholar
  217. 213.
    Ashley, C. C., and D. G. Moisescu. 1973. The mechanism of the free calcium change in single muscle fibres during contraction. J. Physiol. (London) 231:23P-25P.Google Scholar
  218. 214.
    Moisescu, D. G. 1973. The intracellular control and action of calcium in striated muscle and the forces responsible for the stability of the myofilament lattice. Ph.D. thesis. University of Bristol.Google Scholar
  219. 215.
    Ashley, C. C., D. G. Moisescu, and R. M. Rose. 1974. Kinetics of calcium during contraction: Myofibrillar and SR fluxes during a single response of a skeletal muscle fibre. In: Calcium Binding Proteins. W. Drabikowski, H. Strzelecka-Golaszewska, and E. Carafoli, eds. North-Holland, Amsterdam, pp. 609–642.Google Scholar
  220. 216.
    Lüttgau, H. C., and D. G. Moisescu. 1978. Ion movements in skeletal muscle in relation to the activation of contraction. In: Physiology of Membrane Disorders. T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil, eds. Plenum Press, New York. pp. 493–515.CrossRefGoogle Scholar
  221. 217.
    Beeler, T. J., A. Schibeci, and A. Martonosi. 1980. The binding of arsenazo III to cell components. Biochim. Biophys. Acta 629:317–327.PubMedCrossRefGoogle Scholar
  222. 218.
    Rios, E., and M. F. Schneider. 1979. Stoichiometry of the reactions of calcium with the metallochromic indicator dyes anti-pyrylazo III and arsenazo III. Biophys. J. 36:607–621.CrossRefGoogle Scholar
  223. 219.
    Thomas, M. V. 1979. Arsenazo IQ forms 2:1 complexes with Ca2+ and 1:1 complexes with Mg under physiological conditions. Biophys. J. 25:541–548.CrossRefGoogle Scholar
  224. 220.
    Blinks, J. R., F. G. Prendergast, and D. G. Allen. 1976. Pho-toproteins as biological calcium indicators. Pharmacol. Rev. 28:l-93.Google Scholar
  225. 221.
    Stephenson, D. G., and P. J. Sutherland. 1981. Studies on the luminescent response of the Ca-activated photoprotein obelin. Biochim. Biophys. Acta 678:65–75.PubMedCrossRefGoogle Scholar
  226. 222.
    Stephenson, D. G., I. R. Wendt, and Q. G. Forrest. 1981. Nonuniform ion distributions and electrical potentials in sarcoplasmic regions of skeletal muscle fibres. Nature (London) 289:690–692.CrossRefGoogle Scholar
  227. 223.
    Elliott, G. F., and E. M. Bartels. 1982. Donnan potential measurements in extended hexagonal polyelectrolyte gels such as muscle. Biophys J. 38:195–199.PubMedCrossRefGoogle Scholar
  228. 224.
    Naylor, G. R. S. 1982. Average electrostatic potential between the filaments in striated muscle and its relation to a simple Donnan potential. Biophys. J. 38:201–204.PubMedCrossRefGoogle Scholar
  229. 225.
    Close, R. I. 1981. Activation delays in frog twitch muscle fibres. J. Physiol. (London) 313:81–100.Google Scholar
  230. 226.
    Stephenson, E. W. 1981. Ca dependence of stimulated 45Ca efflux in skinned muscle fibres. J. Gen. Physiol. 77:419–443.PubMedCrossRefGoogle Scholar
  231. 227.
    Goldman, Y. E., M. G. Hibberd, J. A. McCray, and D. R. Trentham. 1982. Relaxation of muscle fibres by photolysis of caged ATP. Nature (London) 300:701–705.CrossRefGoogle Scholar
  232. 228.
    Johnson, J. D., S. C. Charlton, and J. D. Potter. 1979. A fluorescence stopped flow analysis of Ca2+ exchange with troponin C. J. Biol. Chem. 254:3497–3502.PubMedGoogle Scholar
  233. 228a.
    Rosenfeld, S. S., and E. W. Taylor. 1985. Kinetic studies of calcium and magnesium binding to troponin C. J. Biol. Chem. 260:242–251.PubMedGoogle Scholar
  234. 228b.
    Rosenfeld, S. S., and E. W. Taylor. 1985. Kinetic studies of calcium binding to regulatory complexes from skeletal muscle. J. Biol. Chem. 260:251–261.Google Scholar
  235. 229.
    Hellam, D. C., and R. J. Podolsky. 1969. Force measurements in skinned muscle fibres. J. Physiol. (London) 200:807–819.Google Scholar
  236. 230.
    Harafuji, H., and Y. Ogawa. 1980. Re-examination of the apparent binding constant of ethylene glycol bis (β-amino-ethyl ether)-N, N, N′, N′-tetracetic acid with calcium around neutral pH. J. Biochem. (Tokyo) 87:B05–1312.Google Scholar
  237. 231.
    Stephenson, D. G. 1985. The role of calcium in contractile activation of skeletal muscle. Prog. Biophys. Mol. Biol. in press.Google Scholar
  238. 231a.
    Lio, T., and H. Kondo. 1981. Fluorescence titration and fluorescence stopped—flow studies of troponin C labeled with fluorescent maleimide reagent or dansylaziridine. J. Biochem. (Tokyo) 90:163–173.Google Scholar
  239. 232.
    Baylor, S. M., W. K. Chandler, and M. W. Marshall. 1984. Sarcoplasmic reticulum calcium release in frog skeletal muscle fibres estimated from arsenazo III calcium transients. J. Physiol. (London) 344:625–666.Google Scholar
  240. 233.
    Melzer, W., E. Rios, and M. F. Schneider. 1984. Time course of calcium release and removal in skeletal muscle fibers. Biophys. J. 45:637–641.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Hans Christoph Lüttgau
    • 1
  • George Dimitrie Stephenson
    • 2
  1. 1.Department of Cell PhysiologyRuhr UniversityBochumWest Germany
  2. 2.Department of ZoologyLa Trobe UniversityMelbourneAustralia

Personalised recommendations