Skip to main content

Ion Movements in Skeletal Muscle in Relation to the Activation of Contraction

  • Chapter
Physiology of Membrane Disorders

Abstract

The dramatic event by which skeletal muscle, when stimulated, converts chemical energy into mechanical work has fascinated and puzzled physiologists for a long time.(1) The interest with which the process of muscular activation has been studied was probably also aroused by the possibility of measuring accurately both the electrical activity associated with the outer membranous system and the mechanical output. The whole sequence of events which bridges these two processes has been intuitively called excitation-contraction coupling.(2) Most of the current knowledge concerning this coupling is based on experiments performed in recent years, particularly on single frog and crustacean muscle fibers, a point to be borne in mind in any discussion on this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hill, A. V. 1965. Trails and Trials in Physiology. Arnold, London, p. 374.

    Google Scholar 

  2. Sandow, A. 1952. Excitation-contraction coupling in muscular response. Yale J. Biol. Med. 25: 176–201.

    PubMed  CAS  Google Scholar 

  3. Huxley, A. F. 1971. The activation of striated muscle and its mechanical response. Proc. R. Soc. Lond. B 178: 1–27.

    PubMed  CAS  Google Scholar 

  4. Costantin, L. L. 1971. Inward spread of activation in frog skeletal muscle. In: Contractility of Muscle Cells and Related Processes. R. J. Podolsky, ed. Prentice- Hall, Englewood Cliffs, New Jersey, pp. 89–98.

    Google Scholar 

  5. Page, S. G. 1965. A comparison of the fine structures of frog slow and twitch muscle fibers. J. Cell Biol. 26: 477–497.

    PubMed  CAS  Google Scholar 

  6. Peachey, L. D. 1965. The sarcoplasmic reticulum and transverse tubules of the frog’s sartorius. J. Cell Biol. 25: 209–231.

    PubMed  Google Scholar 

  7. Peachey, L. D., and R. F. Schild. 1968. The distribution of the T-system along the sarcomeres of frog and toad sartorius muscles. J. Physiol. 194: 249–258.

    PubMed  CAS  Google Scholar 

  8. Franzini-Armstrong, C. 1973. Membranous systems in muscle fibres. In: The Structure and Function of Muscle, 2nd ed., Vol. II, Pt. 2. G. H. Bourne, ed. Academic Press, New York. pp. 531–619.

    Google Scholar 

  9. Page, S. G. 1964. The organization of the sarcoplasmic reticulum in frog muscle. J. Physiol. 175: 10–11 P.

    Google Scholar 

  10. Huxley, H. E. 1964. Evidence for continuity between the central elements of the triads and extracellular space in frog sartorius muscle. Nature 202: 1067–1071.

    PubMed  CAS  Google Scholar 

  11. Franzini-Armstrong, C., L. Landmesser, and G. Pilar. 1975. Size and shape of transverse tubule openings in frog twitch muscle fibers. J. Cell Biol. 64: 493–497.

    PubMed  CAS  Google Scholar 

  12. Dulhunty, A. F., and C. Franzini-Armstrong. 1975. The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths. J. Physiol. 250: 513–539.

    PubMed  CAS  Google Scholar 

  13. Zampighi, G., J. Vergara, and F. Ramon. 1975. On the connection between the transverse tubules and the plasma membrane in frog semitendinosus skeletal muscle. Are caveolae the mouths of the transverse tubule system? J. Cell Biol. 64: 734–740.

    PubMed  CAS  Google Scholar 

  14. Mobley, B. A., and B. R. Eisenberg. 1975. Quantitative morphological analysis of frog skeletal muscle using methods of stereology. Biophys. J. 15: 254a.

    Google Scholar 

  15. Hodgkin, A. L., and S. Nakajima. 1972. Analysis of the membrane capacity in frog muscle. J. Physiol. 221: 121–136.

    PubMed  CAS  Google Scholar 

  16. Franzini-Armstrong, C. 1970. Studies of the triad. I. Structure of the junction in frog twitch fibers. J. Cell Biol. 47: 488–499.

    PubMed  CAS  Google Scholar 

  17. Franzini-Armstrong, C. 1975. Membrane particles and transmission at the triad. Fed. Proc. 34: 1382–1389.

    PubMed  CAS  Google Scholar 

  18. Zachar, J. 1971. Electrogenesis and Contractility in Skeletal Muscle Cells. Univ. Park Press, Baltimore, p. 638.

    Google Scholar 

  19. Baker, P. F., and H. Reuter. 1975. Calcium Movement in Excitable Cells. Pergamon, Oxford, p. 102.

    Google Scholar 

  20. Adrian, R. H. 1960. Potassium chloride movement and the membrane potential of frog muscle. J. Physiol. 151: 154–185.

    PubMed  CAS  Google Scholar 

  21. Adrian, R. H. 1961. Internal chloride concentration and chloride efflux of frog muscle. J. Physiol. 156: 623–632.

    PubMed  CAS  Google Scholar 

  22. Hodgkin, A. L., and P. Horowicz. 1959. Movements of Na and K in single muscle fibres. J. Physiol. 145: 405–432.

    PubMed  CAS  Google Scholar 

  23. Hodgkin, A. L., and P. Horowicz. 1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol. 148: 127–160.

    PubMed  CAS  Google Scholar 

  24. Eisenberg, R. S., and P. W. Gage. 1969. Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers. J. Gen. Physiol. 53: 279–297.

    PubMed  CAS  Google Scholar 

  25. Nastuk, W. L., and A. L. Hodgkin. 1950. The electrical activity of single muscle fibers. J. Cell Comp. Physiol. 35: 39–74.

    CAS  Google Scholar 

  26. Adrian, R. H., W. K. Chandler, and A. L. Hodgkin. 1970. Voltage clamp experiments in striated muscle fibres. J. Physiol. 208: 607–644.

    PubMed  CAS  Google Scholar 

  27. Adrian, R. H., W. K. Chandler, and A. L. Hodgkin. 1970. Slow changes in potassium permeability in skeletal muscle. J. Physiol. 208: 645–668.

    PubMed  CAS  Google Scholar 

  28. Stanfield, P. R. 1975. The effect of zinc ions on the gating of the delayed potassium conductance of frog sartorius muscle. J. Physiol. 251: 711–735.

    PubMed  CAS  Google Scholar 

  29. Ildefonse, M., and O. Rougier. 1972. Voltage clamp analysis of the early current in frog skeletal muscle fibre using the double sucrose-gap method. J. Physiol. 222: 373–395.

    PubMed  CAS  Google Scholar 

  30. Ildefonse, M., and G. Roy. 1972. Kinetic properties of the sodium current in striated muscle fibres on the basis of the Hodgkin-Huxley theory. J. Physiol. 227: 419–431.

    PubMed  CAS  Google Scholar 

  31. Hodgkin, A. L., and P. Horowicz. 1957. The differential action of hypertonic solutions on the twitch and action potential of a muscle fibre. J. Physiol. 136: 17 P.

    Google Scholar 

  32. Freygang, W. H., Jr., D. A. Goldstein, and D. C. Hellam. 1964. The after-potential that follows trains of impulses in frog muscle fibers. J. Gen. Physiol. 47: 929–952.

    PubMed  Google Scholar 

  33. Lüttgau, H. C. 1965. The effect of metabolic inhibitors on the fatigue of the action potential in single muscle fibres. J. Physiol. 178: 45–67.

    Google Scholar 

  34. Huxley, A. F., and R. E. Taylor. 1955. Function of Krause’s membrane. Nature 176: 1068.

    PubMed  CAS  Google Scholar 

  35. Costantin, L. L. 1970. The role of sodium current in the radial spread of contraction in frog muscle fibers. J. Gen. Physiol 55: 703–715.

    PubMed  CAS  Google Scholar 

  36. Huxley, A. F. 1974. Review lecture: Muscular con-traction. J. Physiol 243: 1–43.

    PubMed  CAS  Google Scholar 

  37. Lüttgau, H. C., and H. G. Glitsch. 1976. Membrane physiology of nerve and muscle fibres. Fortschr. Zool 24: 1–132.

    PubMed  Google Scholar 

  38. Huxley, A. F., and R. E. Taylor. 1958. Local activation of striated muscle fibres. J. Physiol 144: 426–441.

    PubMed  CAS  Google Scholar 

  39. Adrian, R. H., L. L. Costantin, and L. D. Peachey. 1969. Radial spread of contraction in frog muscle fibres. J. Physiol 204: 231–257.

    PubMed  CAS  Google Scholar 

  40. Jaimovich, E., R. A. Venosa, P. Shrager, and P. Horowicz. 1975. Tetrodotoxin (TTX) binding in normal and “detubulated” frog sartorius muscle. Biophys. J. 15: 255a.

    Google Scholar 

  41. Hodgkin, A. L., and P. Horowicz. 1960. Potassium contractures in single muscle fibres. J. Physiol 153: 386–403.

    PubMed  CAS  Google Scholar 

  42. Lüttgau, H. C., and H. Oetüker. 1968. The action of caffeine on the activation of the contractile mechanism in striated muscle fibres. J. Physiol 194: 51–74.

    PubMed  Google Scholar 

  43. Ford, L. E., and R. J. Podolsky. 1970. Regenerative calcium release within muscle cells. Science 167: 58–59.

    PubMed  CAS  Google Scholar 

  44. Endo, M., M. Tanaka, and Y. Ogawa. 1970. Calcium- induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature 228: 34–36.

    PubMed  CAS  Google Scholar 

  45. Ford, L. E., and R. J. Podolsky. 1972. Intracellular calcium movements in skinned muscle fibres. J. Physiol 223: 21–33.

    PubMed  CAS  Google Scholar 

  46. Armstrong, C. M., F. M. Bezanilla, and P. Horowicz. 1972. Twitches in the presence of ethylene glycol bis(β-aminoethyl ether)-N, N′-tetraacetic acid. Biochim. Biophys. Acta 267: 605–608.

    PubMed  CAS  Google Scholar 

  47. Stefani, E., and D. J. Chiarandini. 1973. Skeletal muscle: Dependence of potassium contractures on extracellular calcium. Pflügers Arch. 343: 143–150.

    PubMed  CAS  Google Scholar 

  48. Costantin, L. L., and S. R. Taylor. 1973. Graded activation in frog muscle fibers. J. Gen. Physiol 61: 424–443.

    PubMed  CAS  Google Scholar 

  49. Endo, M. 1975. Conditions required for calcium-induced release of calcium from the sarcoplasmic reticulum. Proc. Jap. Acad. 51: 467–472.

    CAS  Google Scholar 

  50. Endo, M. 1975. Mechanism of action of caffeine on the sarcoplasmic reticulum of skeletal muscle. Proc. Jap. Acad. 51: 479–484.

    CAS  Google Scholar 

  51. Endo, M., and S. Thorens. 1975. Mechanism of release of calcium from the sarcoplasmic reticulum. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland Publ. Amsterdam, pp. 359–366.

    Google Scholar 

  52. Thorens, S., and M. Endo. 1975. Calcium-induced calcium release and “depolarization”-induced calcium release: Their physiological significance. Proc. Jap. Acad. 51: 473–478.

    CAS  Google Scholar 

  53. Endo, M. 1977. Calcium release from sarcoplasmic reticulum. Physiol Rev. 57: 71–108.

    PubMed  CAS  Google Scholar 

  54. Lüttgau, H. Ch. 1977. New trends in membrane physiology of nerve and muscle fibres. J. Comp. Physiol A120: 51–70.

    Google Scholar 

  55. Fabiato, A., and F. Fabiato, 1977. Calcium release from the sarcoplasmic reticulum. Circ. Research. 40: 119–129.

    CAS  Google Scholar 

  56. Schneider, M. F., and W. K. Chandler. 1973. Voltage dependent charge movement in skeletal muscle: A possible step in excitation-contraction coupling. Nature 242: 244–246.

    PubMed  CAS  Google Scholar 

  57. Aimers, W. 1975. Observations on intramembrane charge movements in skeletal muscle. Philos. Trans. R. Soc. B 270: 507–513.

    Google Scholar 

  58. Adrian, R. H., and W. Aimers. 1976. Charge movement in the membrane of striated muscle. J. Physiol 254: 339–360.

    PubMed  CAS  Google Scholar 

  59. Adrian, R. H., W. K. Chandler, and R. F. Rakowski. 1976. Charge movement and mechanical repriming in skeletal muscle. J. Physiol 254: 361–388.

    PubMed  CAS  Google Scholar 

  60. Chandler, W. K., R. F. Rakowski, and M. F. Schneider. 1976. A non-linear voltage dependent charge movement in frog skeletal muscle. J. Physiol. 254: 245–283.

    PubMed  CAS  Google Scholar 

  61. Chandler, W. K., R. F. Rakowski, and M. F. Schneider. 1976. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. J. Physiol 254: 285–316.

    PubMed  CAS  Google Scholar 

  62. Hodgkin, A. L., and A. F. Huxley. 1952. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol 116: 497–506.

    PubMed  CAS  Google Scholar 

  63. Chandler, W. K., M. F. Schneider, R. F. Rakowski, and R. H. Adrian. 1975. Charge movements in skeletal muscle. Philos. Trans. R. Soc. B 270: 501–505.

    CAS  Google Scholar 

  64. Aimers, W., R. H. Adrian, and S. R. Levinson. 1976. Some dielectric properties of muscle membrane and their possible importance for excitation-contraction coupling. Ann. N.Y. Acad. Sci. 264: 278–292.

    Google Scholar 

  65. Bezanilla, F., and P. Horowicz. 1975. Fluorescence intensity changes associated with contractile activation in frog muscle stained with Nile Blue A. J. Physiol 246: 709–735.

    PubMed  CAS  Google Scholar 

  66. Baylor, S. M., and H. Oetüker. 1975. Birefringence experiments on isolated skeletal muscle fibres suggest a possible signal from the sarcoplasmic reticulum. Nature 253: 97–101.

    PubMed  CAS  Google Scholar 

  67. Oetüker, H., S. M. Baylor, and W. K. Chandler. 1975. Simultaneous changes in fluorescence and optical retardation in single muscle fibres during activity. Nature 257: 693–696.

    Google Scholar 

  68. Baylor S. M., and H. Oetüker. 1977. Birefringence signals from surface T-system membranes of frog single muscle fibres. J. Physiol 264: 199–213.

    PubMed  CAS  Google Scholar 

  69. Cohen, L. B., B. Hille, R. D. Keynes, D. Landowne, and E. Rojas. 1971. Analysis of the potential-dependent changes in optical retardation in the squid giant axon. J. Physiol 218: 205–237.

    PubMed  CAS  Google Scholar 

  70. Cohen, L. B., B. M. Salzberg, H. V. Davila, W. N. Ross, D. Landowne, A. S. Waggoner, and C. H. Wang. 1974. Changes in axon fluorescence during activity: Molecular probes of membrane potential. J. Membr. Biol 19: 1–36.

    PubMed  CAS  Google Scholar 

  71. Ebashi, S., M. Endo, and I. Ohtsuki. 1969. Control of muscle contraction. Q. Rev. Biophys. 2: 351–384.

    PubMed  CAS  Google Scholar 

  72. Weber, A., and J. M. Murray. 1973. Molecular control mechanisms in muscle contraction. Physiol Rev. 53: 612–673.

    PubMed  CAS  Google Scholar 

  73. Lehman, W., and A. G. Szent-Gyorgyi. 1975. Regulation of muscular contraction. J. Gen. Physiol. 65: 1–30.

    Google Scholar 

  74. Morgan, M., S. V. Perry, and J. Ottaway. 1976. Myosin light-chain phosphatase. Biochem. J. 157: 687–697.

    PubMed  CAS  Google Scholar 

  75. Moisescu, D. G. 1976. Kinetics of reaction in Ca- activated skinned muscle fibres. Nature 262: 610–613.

    PubMed  CAS  Google Scholar 

  76. Potter, J. D., and J. Gergely. 1974. Troponin, tropomyosin, and actin interactions in the Ca2+ regulation of muscle contraction. Biochemistry 13: 2697–2703.

    PubMed  CAS  Google Scholar 

  77. Huxley, H. E. 1969. The mechanism of muscular contraction. Science 164: 1356–1366.

    PubMed  CAS  Google Scholar 

  78. Huxley, H. E., and W. Brown. 1967. The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J. Mol. Biol. 30: 383–434.

    PubMed  CAS  Google Scholar 

  79. Squire, J. M. 1974. Symmetry and three-dimensional arrangement of filaments in vertebrate skeletal muscle. J. Mol. Biol. 90: 153–160.

    PubMed  CAS  Google Scholar 

  80. Gordon, A. M., A. F. Huxley, and F. J. Julian. 1966. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 184: 170–192.

    PubMed  CAS  Google Scholar 

  81. Elliott, G. F., J. Lowy, and C. R. Worthington. 1963. An X-ray and light diffraction study of the filament lattice of striated muscle in the living state and rigor. J. Mol. Biol. 6: 295–305.

    Google Scholar 

  82. Hanson, J., and J. Lowy. 1963. The structure of F- actin and of actin filaments isolated from muscle. J. Mol. Biol. 6: 46–60.

    CAS  Google Scholar 

  83. Haselgrove, J. C. 1972. X-ray evidence for a conformational change in the actin-containing filaments of vertebrate striated muscle. Cold Spring Harbor Symp. Quant. Biol. 37: 341–359.

    Google Scholar 

  84. Jobsis, F. F., and M. J. O’Connor. 1966. Calcium release and reabsorption in the sartorius muscle of the toad. Biochem. Biophys. Res. Commun. 25: 246–252.

    PubMed  CAS  Google Scholar 

  85. Ashley, C. C., and E. B. Ridgway. 1970. On the relationship between membrane potential, calcium transient and tension in single barnacle muscle fibres. J. Physiol. 209: 105–130.

    PubMed  CAS  Google Scholar 

  86. Taylor, S. R., R. Rüdel, and J. R. Blinks. 1975. Calcium transients in amphibian muscle. Fed. Proc. 34: 1379–1381.

    PubMed  CAS  Google Scholar 

  87. Ashley, C. C., P. C. Caldwell, A. K. Campbell, T. J. Lea, and D. G. Moisescu. 1976. Calcium movements in muscle. Symp. Soc. Exp. Biol. 30: 397–422.

    CAS  Google Scholar 

  88. Natori, R. 1954. The property and contraction process of isolated myofibrils. Jikeikai Med. J. 1: 119–126.

    Google Scholar 

  89. Hellam, D. C., and R. J. Podolsky. 1969. Force measurements in skinned muscle fibres. J. Physiol. 200: 807–819.

    PubMed  CAS  Google Scholar 

  90. Ashley, C. C., and D. G. Moisescu. 1974. The influence of [Mg2+] and pH upon the isometric steady state tension-Ca2+ relationship in isolated bundles of myofibrils. J. Physiol. 239: 112–114 P.

    Google Scholar 

  91. Ashley, C. C., and D. G. Moisescu. 1977. The effect of changing the composition of the bathing solutions upon the isometric tension-pCa relationship in bundles of myofibrils isolated from single crustacean muscle fibres. J. Physiol. 270: 627–652.

    PubMed  CAS  Google Scholar 

  92. Moisescu, D. G. 1975. The effect of [K+] on the calcium-induced development of tension in isolated bundles of myofibrils. Pflugers Arch. 355: R62.

    Google Scholar 

  93. Weber, A., R. Herz, and I. Reiss. 1964. The regulation of myofibrillar activity by calcium. Proc. R. Soc. Lond. B 160: 489–501.

    PubMed  CAS  Google Scholar 

  94. Potter, J. D., and J. Gergely. 1975. The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar ATPase. J. Biol. Chem. 250: 4628–4633.

    PubMed  CAS  Google Scholar 

  95. Ashley, C. C., and D. G. Moisescu. 1972. Model for the action of calcium in muscle. Nature (London) New Biol. 237: 208–211.

    CAS  Google Scholar 

  96. Pechère, J. F., J. Démaillé, J. P. Capony, E. Dutruge, G. Baron, and C. Pina. 1975. Muscular paralbumins: Some explorations into their possible biological significance. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland Publ., Amsterdam. pp. 459–468.

    Google Scholar 

  97. Carafoli, E., K. Malmstrôm, H. Capano, E. Sigel, and M. Crompton. 1975. Mitochondria and the regulation of cell calcium. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Qementi, W. Drabikowski, and A. Margreth, eds. North-Holland Publ., Amsterdam, pp. 53–64.

    Google Scholar 

  98. Scarpa, A. 1975. Kinetics and energy-coupling of Ca2+ transport in mitochondria. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland Publ., Amsterdam, pp. 65–76.

    Google Scholar 

  99. Gillis, J. M. 1972. Le rôle du calcium dans le contrôle intracellulaire de la contraction musculaire. Thèse d’ Agrégation, Université Catholique de Louvain, Vander, Louvain.

    Google Scholar 

  100. Portzehl, H., P. C. Caldwell, and J. C. Ruegg. 1964. The dependence of contraction and relaxation of muscle fibres from the crab M ai a squinado on the internal concentration of free calcium ions. Biochim. Biophys. Acta 79: 581–591.

    PubMed  CAS  Google Scholar 

  101. Hagiwara, S., and S. Nakajima. 1966. Effects of the intracellular [Ca2+] upon the excitability of the muscle fiber membrane of a barnacle. J. Gen. Physiol. 49: 807–817.

    PubMed  CAS  Google Scholar 

  102. Keynes, R. D., E. Rojas, R. E. Taylor, and J. Vergara. 1973. Calcium and potassium systems of a giant barnacle muscle fibre under membrane potential control. J. Physiol. 229: 409–455.

    PubMed  CAS  Google Scholar 

  103. Cosmos, E., and E. J. Harris. 1961. In vitro studies of the gain and exchange of calcium in frog skeletal muscle. J. Gen. Physiol. 44: 1121–1130.

    PubMed  CAS  Google Scholar 

  104. DiPolo, R. 1973. Sodium-dependent calcium influx in dialysed barnacle muscle fibres. Biochim. Biophys. Acta 298: 279–283.

    PubMed  CAS  Google Scholar 

  105. Ashley, C. C., J. C. Ellory, and K. Hainaut. 1974. Calcium movements in single crustacean muscle fibres. J. Physiol. 242: 255–272.

    PubMed  CAS  Google Scholar 

  106. Bianchi, C. P., and A. M. Shanes. 1959. Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture. J. Gen. Physiol. 42: 803–815.

    PubMed  CAS  Google Scholar 

  107. Curtis, B. A. 1966. Ca fluxes in single twitch muscle fibers. J. Gen. Physiol. 50: 255–267.

    PubMed  CAS  Google Scholar 

  108. Ashley, C. C., P. J. Griffiths, D. G. Moisescu, and R. M. Rose. 1975. The use of aequorin and the isolated myofibrillar bundle preparation to investigate the effect of SR calcium releasing agents. J. Physiol 245: 12–14 P.

    Google Scholar 

  109. Hill, A. V. 1949. The abrupt transition from rest to activity in muscle. Proc. R. Soc. Lond. B 136: 399–420.

    PubMed  CAS  Google Scholar 

  110. Winegrad, S. 1968. Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J. Gen. Physiol. 51: 65–83.

    PubMed  CAS  Google Scholar 

  111. Curtis, B. 1970. Calcium efflux from frog twitch muscle fibers. J. Gen. Physiol. 55: 243–253.

    CAS  Google Scholar 

  112. Ford, L. E., and R. J. Podolsky. 1972. Calcium up-take and force development by skinned muscle fibres in EGTA buffered solutions. J. Physiol. 233: 1–19.

    Google Scholar 

  113. Ashley, C. C., P. C. Caldwell, and A. G. Lowe. 1972. The efflux of calcium from single crab and barnacle muscle fibres. J. Physiol. 223: 735–755.

    PubMed  CAS  Google Scholar 

  114. Carvalho, A. P. 1968. Calcium-binding properties of sarcoplasmic reticulum as influenced by ATP, caf-feine, quinine and local anesthetics. J. Gen. Physiol. 52: 622–642.

    CAS  Google Scholar 

  115. MacLennan, D. H., and P. G. Wong. 1971. Isolation of a calcium-sequestring protein from sarcoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 68: 1231–1235.

    PubMed  CAS  Google Scholar 

  116. Ebashi, S., and F. Lipmann. 1962. Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J. Cell Biol. 14: 389–400.

    PubMed  CAS  Google Scholar 

  117. Hasselbach, W. 1964. Relaxing factor and the relaxation of muscle. Prog. Biophys. Mol. Biol. 14: 167–222.

    CAS  Google Scholar 

  118. Weber, A., R. Herz, and I. Reiss. 1966. Study of the kinetics of calcium transport by isolated fragmented sarcoplasmic reticulum. Biochem. Z. 345: 329–369.

    CAS  Google Scholar 

  119. Martonosi, A. 1972. Biochemical and clinical aspects of sarcoplasmic reticulum function. In: Current Topics in Membranes and Transport, Vol. 3. F. Bronner and A. Kleinzeller, eds. Academic Press, New York, pp. 83–197.

    Google Scholar 

  120. Hasselbach, W., and M. Makinose. 1963. Über den Mechanismus des Calciumtransportes durch die Membranen des sarkoplasmatischen Retikulums. Biochem. Z. 339: 94–111.

    PubMed  CAS  Google Scholar 

  121. Martonosi, A. N. 1975. The mechanism of Ca transport in sarcoplasmic reticulum. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland Publ., Amsterdam, pp. 313–327.

    Google Scholar 

  122. Makinose, M., and W. Hasselbach. 1971. ATP synthesis by the reversal of the sarcoplasmic calcium pump. Fed. Eur. Biol. Soc. Lett. 12: 271–272.

    CAS  Google Scholar 

  123. Carvalho, A. P., M. G. P. Vale, and V. R. O. e Castro. 1975. Utilization of X-537A to differentiate between intravesicular and membrane bound Ca2+ in sarcoplasmic reticulum. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland Publ., Amsterdam, pp. 349–358.

    Google Scholar 

  124. Ogawa, Y. 1970. Some properties of fragmented frog sarcoplasmic reticulum with particular reference to its response to caffeine. J. Biochem. Tokyo 67: 667–683.

    PubMed  CAS  Google Scholar 

  125. Ashley, C. C., and D. G. Moisescu. 1973. The mechanism of the free calcium change in single muscle fibres during contraction. J. Physiol. 231: 23–25 P.

    Google Scholar 

  126. Moisescu, D. G. 1973. The intracellular control and action of calcium in striated muscle and the forces responsible for the stability of the myofilament lattice. Ph.D. thesis, University of Bristol.

    Google Scholar 

  127. Ashley, C. C., D. G. Moisescu, and R. M. Rose. 1974. Kinetics of calcium during contraction: Myofibrillar and SR fluxes during a single response of a skeletal muscle fibre. In: Calcium Binding Proteins. W. Drabikowski, H. Strzelecka-Golaszewska, and E. Carafoli, eds. North-Holland Publ., Amsterdam, pp. 609–642.

    Google Scholar 

  128. Winegrad, S. 1965. Autoradiographic studies of intracellular calcium in frog skeletal muscle. J. Gen. Physiol. 48: 455–479.

    PubMed  CAS  Google Scholar 

  129. Costantin, L. L., C. Franzini-Armstrong, and R. J. Podolsky. 1965. Localization of calcium-accumulating structures in striated muscle fibers. Science 147: 158–160.

    PubMed  CAS  Google Scholar 

  130. Pease, D. C., D. J. Jenden, and J. N. Howell. 1965. Calcium uptake in glycerol-extracted rabbit psoas muscle fibres. II. Electron microscopic localization of uptake sites. J. Cell. Comp. Physiol. 65: 141–154.

    CAS  Google Scholar 

  131. Shimomura, O., F. H. Johnson, and Y. Saiga. 1962. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan Aequorea. J. Cell. Comp. Physiol. 59: 223–239.

    PubMed  CAS  Google Scholar 

  132. Shimomura, O., F. H. Johnson, and Y. Saiga. 1963. Microdetermination of calcium by aequorin luminescence. Science 140: 1339–1340.

    PubMed  CAS  Google Scholar 

  133. Blinks, J. R, F. G. Prendergast, and D. G. Allen. 1976. Photoproteins as biological calcium indicators. Pharmacol. Rev. 28: 1–93.

    PubMed  CAS  Google Scholar 

  134. Izutsu, K. T., S. P. Felton, I. A. Siegel, W. T. Yode, and A. C. N. Chen. 1972. Aequorin: Its ionic specificity. Biochem. Biophys. Res. Commun. 49: 1034–1039.

    PubMed  CAS  Google Scholar 

  135. Ashley, C. C. 1970. An estimate of calcium concentra¬tion changes during the contraction of single muscle fibres. J. Physiol. 210: 133–134 P.

    Google Scholar 

  136. Moisescu, D. G., C. C. Ashley, and A. K. Campbell. 1975. Comparative aspects of the calcium-sensitive photoproteins aequorin and obelin. Biochim. Biophys. Acta 396: 133–140.

    PubMed  CAS  Google Scholar 

  137. Ashley, C. C., and D. G. Moisescu. 1975. The part played by Ca2+ in the contraction of isolated bundles of myofibrils. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland Publ., Amsterdam, pp. 517–525.

    Google Scholar 

  138. Hastings, J. W., G. Mitchell, P. H. Mattingly, J. R. Blinks, and M. van Leeuwen. 1969. Response of aequorin bioluminescence to rapid changes in calcium concentration. Nature 222: 1047–1050.

    PubMed  CAS  Google Scholar 

  139. van Leeuwen, M., and J. R. Blinks. 1969. Properties of aequorin relevant to its use as a calcium indicator in biological work. Fed. Proc. 28: Abstr. No. 571.

    Google Scholar 

  140. Huxley, A. F., and R. H. Simmons. 1972. Mechanical transients and the origin of muscle force. Cold Spring Harbor Symp. Quant. Biol. 37: 669–680.

    Google Scholar 

  141. Ashley, C. C., and P. C. Caldwell. 1974. Calcium movements in relation to contraction. Biochem. Soc. Symp. 39: 29–50.

    PubMed  CAS  Google Scholar 

  142. Inesi. G.. and A. Scarpa. 1972. Fast kinetics of adenosine triphosphate dependent Ca2+ uptake by fragmented sarcoplasmic reticulum. Biochemistry 11: 356–359.

    PubMed  CAS  Google Scholar 

  143. Suko, J., F. Winkler, B. Scharinger, and G. Hellmann. 1975. Effects of local anesthetics on ATP-ADP phosphate exchange and phosphoprotein formation by sarcoplasmic reticulum. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland Publ., Amsterdam, pp. 299–311.

    Google Scholar 

  144. Townsend, L. 1967. Ph.D. dissertation quoted in Ref. 137.

    Google Scholar 

  145. Scales, B., and D. A. D. Mcintosh. 1968. Effects of propranolol and its optical isomers on the radiocalcium uptake and the ATPases of skeletal and cardiac sarcoplasmic reticulum. J. Pharmacol. Exp. Ther. 160: 261–267.

    PubMed  CAS  Google Scholar 

  146. Temple, D. M., W. Hasselbach, and M. Makinose. 1974. The inhibition by β-adrenoreceptor blocking agents of calcium uptake into and efflux from isolated sarcoplasmic vesicles. Naunyn-Schmie deb ergs Arch. Pharmacol. 282: 187–194.

    CAS  Google Scholar 

  147. Feinstein, M. B., and M. Paimre. 1969. Pharmacological action of local anesthetics on E-C coupling in striated and smooth muscle. Fed. Proc. 28: 1643–1648.

    PubMed  CAS  Google Scholar 

  148. Baizer, H., M. Makinose, and W. Hasselbach. 1968. The inhibition of the sarcoplasmic calcium pump by prenylamine, reserpine, chlorpromasine and imipramine. Naunyn-Schmiedebergs Arch. Pharmacol. 260: 444–455.

    Google Scholar 

  149. Bianchi, C. P., and T. C. Bolton, 1967. Action of local anesthetics on coupling systems in muscle. J. Pharmacol. Exp. Ther. 157: 388–405.

    PubMed  CAS  Google Scholar 

  150. Thesleff, S. 1956. The effect of anesthetic agents on skeletal muscle membrane. Acta Physiol. Scand. 37: 335–349.

    PubMed  CAS  Google Scholar 

  151. Caputo, C., and R. DiPolo. 1975. Calcium and contractile activation in barnacle muscle fibres. In: Calcium Transport in Contraction and Secretion. E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth, eds. North-Holland Publ., Amsterdam, pp. 527–534.

    Google Scholar 

  152. Quastel, D. M. J., and J. T. Hackett. 1973. Effects of drugs on smooth and striated muscle. In: The Structure and Function of Muscle, 2nd ed., Vol. IV. G. H. Bourne, ed. Academic Press, New York. pp. 1–153.

    Google Scholar 

  153. Almers, W., and P. M. Best. 1976. Effects of tetracaine on displacement currents and contraction of frog skeletal muscle. J. Physiol. 262: 583–612.

    PubMed  CAS  Google Scholar 

  154. Hainaut, K., and J. E. Desmedt. 1974. Effect of dantrolene sodium on calcium movements in single muscle fibres. Nature 252: 728–730.

    PubMed  CAS  Google Scholar 

  155. Weber, A., and R. Herz. 1968. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J. Gen. Physiol. 52: 750–759.

    PubMed  CAS  Google Scholar 

  156. Axelsson, J., and S. Thesleff. 1968. Activation of the contractile mechanism in striated muscle. Acta Physiol. Scand. 44: 55–66.

    Google Scholar 

  157. Lüttgau, H. C. 1970. Caffeine, calcium and the activation of contraction. In: A Symposium on Calcium and Cellular Function. A. W. Cuthbert, ed. Macmillan, New York. pp. 241–248.

    Google Scholar 

  158. Feinstein, M. 1963. Inhibition of caffeine rigor and radiocalcium movements by local anesthetics in frog sartorius muscle. J. Gen. Physiol 47: 151–172.

    PubMed  CAS  Google Scholar 

  159. 1-9. Thorpe, W. R., and P. Seeman. 1971. The site of action of caffeine and procaine in skeletal muscle. J. Pharmacol. Exp. Ther. 179: 324–330.

    PubMed  CAS  Google Scholar 

  160. Strobel, G. E., and C. P. Bianchi. 1971. An in vitro model of anesthetic hypertonic hyperpyrexia, halothane-caffeine-induced muscle contractions: Preven-tion of contracture by procainamide. Anesthesiology 35: 465–473.

    PubMed  CAS  Google Scholar 

  161. Jenden, D. J., and A. S. Fairhurst. 1969. The pharmacology of ryanodine. Pharmacol. Rev. 21: 1–26.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Publishing Corporation

About this chapter

Cite this chapter

Lüttgau, H.C., Moisescu, G.D. (1978). Ion Movements in Skeletal Muscle in Relation to the Activation of Contraction. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D. (eds) Physiology of Membrane Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3958-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3958-8_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3960-1

  • Online ISBN: 978-1-4613-3958-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics