Skip to main content

Abstract

Previous chapters in this volume have dealt with substances whose roles as signal molecules are well established. Purines, on the other hand, are well known, not as signal molecules, but as elements of genetic material and molecules fundamental to the processes of energy metabolism. Only recently has it become generally acknowledged that purines could also function to carry out, or at least modulate, communication between excitable cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akasu, T., Hirai, K., and Koketsu, K., 1981, Increase of acetylcholine-receptor sensitivity by adenosine triphosphate: a novel action of ATP on ACh-sensitivity, Br. J. Pharmacol. 74: 505–507.

    PubMed  CAS  Google Scholar 

  • Akasu, T., Hirai, K., and Koketsu, K., 1983, Modulatory actions of ATP on membrane potentials of bullfrog sympathetic ganglion cells, Brain Res. 258: 313–317.

    Article  PubMed  CAS  Google Scholar 

  • Belardinelli, L., West, A., Crampton, R., and Berne, R. M., 1983, Chronotropic and dromotropic effects of adenosine, in: Regulatory Function of Adenosine ( R. M. Berne, T. W. Rall, and R. Rubio, eds.), Nijhoff, Boston, pp. 377–398.

    Chapter  Google Scholar 

  • Bennett, M. R., Burnstock, K. G., and Holman, M. E., 1963, The effect of potassium and chloride ions on the inhibitory potential recorded in the guinea pig taenia coli, J. Physiol. (Lond.) 169: 33–34.

    Google Scholar 

  • Berne, R. M., Winn, R. IL, Knabb, T. M., Ely, S. W., and Rubio, R., 1983, Blood flow regulation by adenosine in heart, brain and skeletal muscles, in: Regulatory Function of Adenosine ( R. M. Berne, T. W. Rall, and R. Rubio, eds.), Nijhoff, Boston, pp. 293–318.

    Chapter  Google Scholar 

  • Burnstock, G. 1972, Purinergic nerves, Pharmacol. Rev. 24: 509–572.

    CAS  Google Scholar 

  • Burnstock, G. 1978, A basis for distinguishing two types of purinergic receptors, in: Cell Membrane Receptors for Drugs and Hormones ( R. W. Straub and L. Bolis, eds.), Raven Press, New York, pp. 107–118.

    Google Scholar 

  • Burnstock, G., 1981, Neurotransmitters and trophic factors in the autonomic nervous system, J. Physiol. (Lond.) 313: 1–35.

    CAS  Google Scholar 

  • Burnstock, G., Campbell, G., Satchell, D., and Smythe, A., 1970, Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut, Br. J. Pharmacol. 40: 668–688.

    PubMed  CAS  Google Scholar 

  • Burnstock, G., Hökfelt, T., Gershon, M. D., Iversen, L. L., Kosterlitz, H. W., and Szurszewski, J. H., 1979, Non-adrenergic, non-cholinergic autonomic neurotransmission mechanisms, Neurosci. Res. Program Bull. 17: 3.

    Google Scholar 

  • Campbell, G., and Gibbons, J. L., 1979, Noradrenergic noncholinergic transmission in the autonomic nervous system: purinergic nerves, in: Trends in Autonomic Pharmacology, Vol. 1 ( S. Kalsner, ed.), Urban and Schwarzenberg, Baltimore, pp. 103–144.

    Google Scholar 

  • Daly, J. W., Butts-Lamb, P., and Padgett, W., 1983, Subclasses of adenosine receptors in the central nervous system: Interaction with caffeine and related methylxanthines, Cell Mol. Neurobiol. 3: 69–80.

    Article  PubMed  CAS  Google Scholar 

  • Den Hertog, A., and Jager, L. P., 1975, Ion fluxes during the inhibitory junction potential in the guinea pig taenia coli, J. Physiol. (Lond.) 250: 681–691.

    Google Scholar 

  • Dobson, J. G., and Fenton, R. A., 1983, Antiadrenergic effects of adenosine in the heart, in: Regulatory Function of Adenosine ( R. M. Berne, T. W. Rall, and R. Rubio, eds.) Nijhoff, Boston, pp. 363–376.

    Chapter  Google Scholar 

  • Drury, A. N., and Szent-Gyorgyi, A., 1929, The physiological activity of adenosine compounds with especial reference to their action upon the mammalian heart, J. Physiol. (Lond.) 68: 213–237.

    CAS  Google Scholar 

  • Edstrom, J. P., and Phillis, J. W., 1976, The effects of AMP on the potential of rat cerebral cortical neurones, Can. J. Physiol. Pharmacol. 54: 787–790.

    Article  PubMed  CAS  Google Scholar 

  • Fedan, J. S., Hogaboom, G. K., O’Donnell, J. P., Colby, J., and Westfall, D. P., 1981, Contribution by purines to the neurogeneic response of the vas deferens of the guinea pig, Eur. J. Pharmacol. 69: 41–53.

    Article  PubMed  CAS  Google Scholar 

  • Geiger, J. D., LaBella, F. S., and Nagy, J. I., 1984, Characterization and localization of adenosine receptors in rat spinal cord, J. Neurosci. 4: 2303–2310.

    PubMed  CAS  Google Scholar 

  • Goodman, R. R., Kuhar, M. J., Hester, L., and Snyder, S. H., 1983, Adenosine receptors: Autoradiographic evidence for their location on axon terminals of excitatory neurons, Science 222: 967–969.

    Article  Google Scholar 

  • Hartzell, H. C., 1979, Adenosine receptors in frog sinus venosus: Slow inhibitory potentials produced by adenine compounds and acetylcholine, J. Physiol. (Lond.) 293: 23–49.

    CAS  Google Scholar 

  • Henon, B. K., and McAfee, D. A., 1983a, The ionic basis of adenosine receptor actions on post-ganglionic neurones in the rat, J. Physiol. (Lond.) 336: 607–620.

    CAS  Google Scholar 

  • Henon, B. K., and McAfee, D. A., 1983b, Modulation of calcium currents by adenosine receptors on mammalian sympathetic neurons, in: Regulatory Function of Adenosine ( R. M. Berne, T. W. Rall, and R. Rubio, eds.), Nijhoff, Boston, pp. 455–466.

    Chapter  Google Scholar 

  • Henon, B. K., and McAfee, D. A., 1983c, Facilitation of repetitive synaptic activity in postganglionic neurons by adenosine and noradrenalin, Soc. Neurosci. Abst. 1: 1143.

    Google Scholar 

  • Hills, J. M., Collis, C. S., and Burnstock, G., 1983, The effects of vasoactive intestinal polypeptide on the electrical activity of guinea-pig intestinal smooth muscle, Eur. J. Pharmacol. 88: 371–376.

    Article  PubMed  CAS  Google Scholar 

  • Holton, F. A., and Holton, P., 1954, The capillary dilator substances in dry powders of spinal roots; a possible role of adenosine triphosphate in chemical transmission from nerve endings. J. Physiol. (Lond.) 126: 124–140.

    CAS  Google Scholar 

  • Jager, L. P., and Schevers, J. A. M., 1980, A comparison of effects evoked in guinea-pig taenia caecum by purine nucleotides and by ‘purinergic’ nerve stimulation, J. Physiol. (Lond.), 299: 75–83.

    CAS  Google Scholar 

  • Kuroda, Y., and Kobayashi, K., 1980, Post-tetanic potentiation can be mediated by adenosine-induced increase of cyclic AMP in the presynaptic terminal, Proc. Intn. Union Physiol. Soc. 14: 534.

    Google Scholar 

  • Londos, C., and Wolff, J., 1977, Two distinct adenosine-sensitive sites on adenylate cyclase, Proc. Natl. Acad. Sci. USA 74: 5482–5486.

    Article  PubMed  CAS  Google Scholar 

  • McAfee, D. A., 1982, Superior cervical ganglion: Physiological consideration, in: Cholinergic Biology: Model Cholinergic Synapses ( I. Hanin and M. Goldberg, eds.) Raven Press, New York, pp. 191–211.

    Google Scholar 

  • Phillis, J. W., and Wu, P. H., 1981, The role of adenosine and its nucleotides in central synaptic transmission, Prog. Neurobiol. 16: 187–239.

    Article  PubMed  CAS  Google Scholar 

  • Phillis, J. W., and Wu, P. H., 1983, The role of adenosine in central neuromodulation, in: Regulatory Function of Adenosine ( R. M. Berne, T. W. Rall, and R. Rubio, eds.), Nijhoff, Boston, pp. 419–439.

    Chapter  Google Scholar 

  • Phillis, J. W., Kostopoulos, G. K. and Limacher, J. J., 1974, Depression of corticospinal cells by various purines and pyrimidines, Can. J. Physiol. Pharmacol. 52: 1226–1229.

    Article  PubMed  CAS  Google Scholar 

  • Phillis, J. W., Edstrom, J. P., Kostopoulos, G. K., and Kirkpatrick, J. R., 1979a, Effects of adenosine and adenine nucleotides on synaptic transmission in the cerebral cortex, Can. J. Physiol. Pharmacol. 57: 1289–1312.

    Article  PubMed  CAS  Google Scholar 

  • Phillis, J. W., Kostopulos, G. K., Edstrom, J. P., and Ellis, S. W., 1979b, Role of adenosine and adenine nucleotides in central nervous function, in: Physiological and Regulatory Functions of Adenosine and Adénine Nucleotides ( H. P. Baer, and G. I. Drummond, eds.) Raven Press, New York, pp. 343–349.

    Google Scholar 

  • Potter, D. D., Furshpan, E. J., and Landis, S. C., 1983, Transmitter status in cultured rat sympathetic neurons: Plasticity and multiple function, Fed. Proc. 42: 1626–1632.

    PubMed  CAS  Google Scholar 

  • Proctor, W. R., and Dunwiddie, T., 1983, Adenosine inhibits calcium spikes in hippocampal pyramidal neurons in vitro, Neurosci. Lett. 35: 197–201.

    Article  PubMed  CAS  Google Scholar 

  • Reddington, M., and Schubert, P., 1979, Parallel investigations of the effects of adenosine on evoked potentials and cyclic AMP accumulation in hippocampus slices of the rat, Neurosci. Lett. 14: 37–42.

    Article  PubMed  CAS  Google Scholar 

  • Reddington, M., Lee, K. S., and Schubert, P., 1982, An A,-adenosine receptor of evoked potentials in a rat hippocampal slice preparation, Neurosci. Lett. 28: 275–279.

    Article  PubMed  CAS  Google Scholar 

  • Riberio, J. A., Sa-Almeida, A. M., and Namorado, J. M., 1979, Adenosine and adenosine triphosphate decrease Ca++ uptake by synaptosomes stimulated by potassium, Biochem. Pharmacol. 28: 1297–1300.

    Article  Google Scholar 

  • Roch, P., and Kalix, P., 1975, Adenosine 3′, 5′-monophosphate in bovine superior cervical ganglion: Effect of high extracellular potassium, Biochem. Pharmacol. 24: 1293–1296.

    Article  PubMed  CAS  Google Scholar 

  • Rubio, R., Knabb, M. T., Tsukada, T., and Berne, R. M., 1983, Mechanisms of action of adenosine on vascular smooth muscle and cardiac cells, in: Regulatory Function of Adenosine ( R. M. Berne, T. W. Rall, and R. Rubio, eds.), Nijhoff, Boston, pp. 319–332.

    Chapter  Google Scholar 

  • Schrader, J., Rubio, R., and Berne, R. M., 1975, Inhibition of slow action potentials of guinea pig atrial muscle by adenosine: A possible effect on Ca2+ influx, J. Mol. Cell Cardiol. 7: 427–433.

    Article  PubMed  CAS  Google Scholar 

  • Schrader, J., Haddy, F. J., and Gerlach, E., 1977, Release of adenosine, inosine, and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hyperemia, Pflügers Arch. 369: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, P., and Kreutzburg, G. W., 1974, Axonal transport of adenosine and uridine derivatives and transfer to postsynaptic neurons, Brain Res. 76: 526–530.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, P., and Mitzdorf, U., 1979, Analysis and quantitative evaluation of the depressive effect of adenosine on evoked potentials in hippocampal slices, Brain Res. 172: 186–190.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, P., Komp, W., and Kreutzberg, G. W., 1979, Correlation of 5′-nucleotidase activity and selective transneuronal transfer of adenosine in the hippocampus, Brain Res. 168: 419–424.

    Article  PubMed  CAS  Google Scholar 

  • Segal, M., 1982, Intracellular analysis of a postsynaptic action of adenosine in the rat hippocampus, Eur. J. Pharmacol. 79: 193–199.

    Article  PubMed  CAS  Google Scholar 

  • Siggins, G. R., and Schubert, P., 1981, Adenosine depression in hippocampal neurons in vitro: An intracellular study of dose-dependent actions on synaptic and membrane potentials, Neurosci. Lett. 23: 55–60.

    Article  PubMed  CAS  Google Scholar 

  • Silinsky, E. M., 1975, On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals, J. Physiol. (Lond.) 247: 145–162.

    CAS  Google Scholar 

  • Small R. C., and Weston, A. H., 1979, Intramural inhibition in rabbit and guinea pig intestine, in: Physiological and Regulatory Functions of Adenosine ( H. P. Baer, and G. I. Drummond, eds.) Raven Press, New York, pp. 45–60.

    Google Scholar 

  • Sneddon, P., and Westfall, D. P., 1984, Pharmacological evidence that adenosine triphosphate and noradrenaline are co-transmitters in the guinea-pig vas deferens, J. Physiol. (Lond.) 347: 561–580.

    CAS  Google Scholar 

  • Stone, T. W., 1981, Physiological roles for adenosine and adenosine 5′-triphosphate in the nervous system, Neuroscience 6 (4): 523–555.

    Article  PubMed  CAS  Google Scholar 

  • Su, C., (1983), Purinergic neurotransmission and neuromodulation, Am. Rev. Pharmacol. Toxicol. 23: 397–411.

    Article  CAS  Google Scholar 

  • Tornita, T., 1972, Conductance changes during the inhibitory potential in the guinea pig taenia coli, J. Physiol. (Lond.) 225: 693–703.

    Google Scholar 

  • Van Calker, D., Muller, M., and Hamprecht, B., 1979, Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells, J. Neurochem. 33: 999–1005.

    Article  PubMed  Google Scholar 

  • Watkinson, W. P., Foley, D. H., Rubio, R., and Berne, R. M., 1979, Myocardial adenosine formation with increased cardiac performance in the dog, Am. J. Physiol. 236: H13 - H21.

    PubMed  CAS  Google Scholar 

  • Westfall, D. P., Hogaboom, G. K., Colby, J., O’Donnell, J. P., and Fedan, J. S., 1982, Direct evidence against a role of ATP as the nonadrenergic, noncholinergic inhibitory neurotransmitter in guinea pig taenia coli, Proc. Natl. Acad. Sci, USA 79: 7041–7045.

    Article  PubMed  CAS  Google Scholar 

  • Winn, H., Rubio, G. R., and Berne, R. M., 1981, The role of adenosine in the regulation of cerebral blood flow, J. Cereb. Blood Flow Metab. 1: 239–244.

    Article  PubMed  CAS  Google Scholar 

  • Wu, P. H., Phillis, J. W., and Thierry, D. L., 1982, Adenosine receptor agonist inhibit K+-evoked Ca2+ uptake by rat cortical synaptosomes, J. Neurochem. 39: 700–708.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

McAfee, D.A., Henon, B.K. (1985). Adenosine and ATP. In: Rogawski, M.A., Barker, J.L. (eds) Neurotransmitter Actions in the Vertebrate Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4961-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4961-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4963-1

  • Online ISBN: 978-1-4684-4961-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics