Adenosine and ATP

  • Donald A. McAfee
  • Barbara K. Henon


Previous chapters in this volume have dealt with substances whose roles as signal molecules are well established. Purines, on the other hand, are well known, not as signal molecules, but as elements of genetic material and molecules fundamental to the processes of energy metabolism. Only recently has it become generally acknowledged that purines could also function to carry out, or at least modulate, communication between excitable cells.


Adenosine Receptor Adenosine Deaminase Superior Cervical Ganglion Endogenous Adenosine EPSP Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akasu, T., Hirai, K., and Koketsu, K., 1981, Increase of acetylcholine-receptor sensitivity by adenosine triphosphate: a novel action of ATP on ACh-sensitivity, Br. J. Pharmacol. 74: 505–507.PubMedGoogle Scholar
  2. Akasu, T., Hirai, K., and Koketsu, K., 1983, Modulatory actions of ATP on membrane potentials of bullfrog sympathetic ganglion cells, Brain Res. 258: 313–317.PubMedCrossRefGoogle Scholar
  3. Belardinelli, L., West, A., Crampton, R., and Berne, R. M., 1983, Chronotropic and dromotropic effects of adenosine, in: Regulatory Function of Adenosine ( R. M. Berne, T. W. Rall, and R. Rubio, eds.), Nijhoff, Boston, pp. 377–398.CrossRefGoogle Scholar
  4. Bennett, M. R., Burnstock, K. G., and Holman, M. E., 1963, The effect of potassium and chloride ions on the inhibitory potential recorded in the guinea pig taenia coli, J. Physiol. (Lond.) 169: 33–34.Google Scholar
  5. Berne, R. M., Winn, R. IL, Knabb, T. M., Ely, S. W., and Rubio, R., 1983, Blood flow regulation by adenosine in heart, brain and skeletal muscles, in: Regulatory Function of Adenosine ( R. M. Berne, T. W. Rall, and R. Rubio, eds.), Nijhoff, Boston, pp. 293–318.CrossRefGoogle Scholar
  6. Burnstock, G. 1972, Purinergic nerves, Pharmacol. Rev. 24: 509–572.Google Scholar
  7. Burnstock, G. 1978, A basis for distinguishing two types of purinergic receptors, in: Cell Membrane Receptors for Drugs and Hormones ( R. W. Straub and L. Bolis, eds.), Raven Press, New York, pp. 107–118.Google Scholar
  8. Burnstock, G., 1981, Neurotransmitters and trophic factors in the autonomic nervous system, J. Physiol. (Lond.) 313: 1–35.Google Scholar
  9. Burnstock, G., Campbell, G., Satchell, D., and Smythe, A., 1970, Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut, Br. J. Pharmacol. 40: 668–688.PubMedGoogle Scholar
  10. Burnstock, G., Hökfelt, T., Gershon, M. D., Iversen, L. L., Kosterlitz, H. W., and Szurszewski, J. H., 1979, Non-adrenergic, non-cholinergic autonomic neurotransmission mechanisms, Neurosci. Res. Program Bull. 17: 3.Google Scholar
  11. Campbell, G., and Gibbons, J. L., 1979, Noradrenergic noncholinergic transmission in the autonomic nervous system: purinergic nerves, in: Trends in Autonomic Pharmacology, Vol. 1 ( S. Kalsner, ed.), Urban and Schwarzenberg, Baltimore, pp. 103–144.Google Scholar
  12. Daly, J. W., Butts-Lamb, P., and Padgett, W., 1983, Subclasses of adenosine receptors in the central nervous system: Interaction with caffeine and related methylxanthines, Cell Mol. Neurobiol. 3: 69–80.PubMedCrossRefGoogle Scholar
  13. Den Hertog, A., and Jager, L. P., 1975, Ion fluxes during the inhibitory junction potential in the guinea pig taenia coli, J. Physiol. (Lond.) 250: 681–691.Google Scholar
  14. Dobson, J. G., and Fenton, R. A., 1983, Antiadrenergic effects of adenosine in the heart, in: Regulatory Function of Adenosine ( R. M. Berne, T. W. Rall, and R. Rubio, eds.) Nijhoff, Boston, pp. 363–376.CrossRefGoogle Scholar
  15. Drury, A. N., and Szent-Gyorgyi, A., 1929, The physiological activity of adenosine compounds with especial reference to their action upon the mammalian heart, J. Physiol. (Lond.) 68: 213–237.Google Scholar
  16. Edstrom, J. P., and Phillis, J. W., 1976, The effects of AMP on the potential of rat cerebral cortical neurones, Can. J. Physiol. Pharmacol. 54: 787–790.PubMedCrossRefGoogle Scholar
  17. Fedan, J. S., Hogaboom, G. K., O’Donnell, J. P., Colby, J., and Westfall, D. P., 1981, Contribution by purines to the neurogeneic response of the vas deferens of the guinea pig, Eur. J. Pharmacol. 69: 41–53.PubMedCrossRefGoogle Scholar
  18. Geiger, J. D., LaBella, F. S., and Nagy, J. I., 1984, Characterization and localization of adenosine receptors in rat spinal cord, J. Neurosci. 4: 2303–2310.PubMedGoogle Scholar
  19. Goodman, R. R., Kuhar, M. J., Hester, L., and Snyder, S. H., 1983, Adenosine receptors: Autoradiographic evidence for their location on axon terminals of excitatory neurons, Science 222: 967–969.CrossRefGoogle Scholar
  20. Hartzell, H. C., 1979, Adenosine receptors in frog sinus venosus: Slow inhibitory potentials produced by adenine compounds and acetylcholine, J. Physiol. (Lond.) 293: 23–49.Google Scholar
  21. Henon, B. K., and McAfee, D. A., 1983a, The ionic basis of adenosine receptor actions on post-ganglionic neurones in the rat, J. Physiol. (Lond.) 336: 607–620.Google Scholar
  22. Henon, B. K., and McAfee, D. A., 1983b, Modulation of calcium currents by adenosine receptors on mammalian sympathetic neurons, in: Regulatory Function of Adenosine ( R. M. Berne, T. W. Rall, and R. Rubio, eds.), Nijhoff, Boston, pp. 455–466.CrossRefGoogle Scholar
  23. Henon, B. K., and McAfee, D. A., 1983c, Facilitation of repetitive synaptic activity in postganglionic neurons by adenosine and noradrenalin, Soc. Neurosci. Abst. 1: 1143.Google Scholar
  24. Hills, J. M., Collis, C. S., and Burnstock, G., 1983, The effects of vasoactive intestinal polypeptide on the electrical activity of guinea-pig intestinal smooth muscle, Eur. J. Pharmacol. 88: 371–376.PubMedCrossRefGoogle Scholar
  25. Holton, F. A., and Holton, P., 1954, The capillary dilator substances in dry powders of spinal roots; a possible role of adenosine triphosphate in chemical transmission from nerve endings. J. Physiol. (Lond.) 126: 124–140.Google Scholar
  26. Jager, L. P., and Schevers, J. A. M., 1980, A comparison of effects evoked in guinea-pig taenia caecum by purine nucleotides and by ‘purinergic’ nerve stimulation, J. Physiol. (Lond.), 299: 75–83.Google Scholar
  27. Kuroda, Y., and Kobayashi, K., 1980, Post-tetanic potentiation can be mediated by adenosine-induced increase of cyclic AMP in the presynaptic terminal, Proc. Intn. Union Physiol. Soc. 14: 534.Google Scholar
  28. Londos, C., and Wolff, J., 1977, Two distinct adenosine-sensitive sites on adenylate cyclase, Proc. Natl. Acad. Sci. USA 74: 5482–5486.PubMedCrossRefGoogle Scholar
  29. McAfee, D. A., 1982, Superior cervical ganglion: Physiological consideration, in: Cholinergic Biology: Model Cholinergic Synapses ( I. Hanin and M. Goldberg, eds.) Raven Press, New York, pp. 191–211.Google Scholar
  30. Phillis, J. W., and Wu, P. H., 1981, The role of adenosine and its nucleotides in central synaptic transmission, Prog. Neurobiol. 16: 187–239.PubMedCrossRefGoogle Scholar
  31. Phillis, J. W., and Wu, P. H., 1983, The role of adenosine in central neuromodulation, in: Regulatory Function of Adenosine ( R. M. Berne, T. W. Rall, and R. Rubio, eds.), Nijhoff, Boston, pp. 419–439.CrossRefGoogle Scholar
  32. Phillis, J. W., Kostopoulos, G. K. and Limacher, J. J., 1974, Depression of corticospinal cells by various purines and pyrimidines, Can. J. Physiol. Pharmacol. 52: 1226–1229.PubMedCrossRefGoogle Scholar
  33. Phillis, J. W., Edstrom, J. P., Kostopoulos, G. K., and Kirkpatrick, J. R., 1979a, Effects of adenosine and adenine nucleotides on synaptic transmission in the cerebral cortex, Can. J. Physiol. Pharmacol. 57: 1289–1312.PubMedCrossRefGoogle Scholar
  34. Phillis, J. W., Kostopulos, G. K., Edstrom, J. P., and Ellis, S. W., 1979b, Role of adenosine and adenine nucleotides in central nervous function, in: Physiological and Regulatory Functions of Adenosine and Adénine Nucleotides ( H. P. Baer, and G. I. Drummond, eds.) Raven Press, New York, pp. 343–349.Google Scholar
  35. Potter, D. D., Furshpan, E. J., and Landis, S. C., 1983, Transmitter status in cultured rat sympathetic neurons: Plasticity and multiple function, Fed. Proc. 42: 1626–1632.PubMedGoogle Scholar
  36. Proctor, W. R., and Dunwiddie, T., 1983, Adenosine inhibits calcium spikes in hippocampal pyramidal neurons in vitro, Neurosci. Lett. 35: 197–201.PubMedCrossRefGoogle Scholar
  37. Reddington, M., and Schubert, P., 1979, Parallel investigations of the effects of adenosine on evoked potentials and cyclic AMP accumulation in hippocampus slices of the rat, Neurosci. Lett. 14: 37–42.PubMedCrossRefGoogle Scholar
  38. Reddington, M., Lee, K. S., and Schubert, P., 1982, An A,-adenosine receptor of evoked potentials in a rat hippocampal slice preparation, Neurosci. Lett. 28: 275–279.PubMedCrossRefGoogle Scholar
  39. Riberio, J. A., Sa-Almeida, A. M., and Namorado, J. M., 1979, Adenosine and adenosine triphosphate decrease Ca++ uptake by synaptosomes stimulated by potassium, Biochem. Pharmacol. 28: 1297–1300.CrossRefGoogle Scholar
  40. Roch, P., and Kalix, P., 1975, Adenosine 3′, 5′-monophosphate in bovine superior cervical ganglion: Effect of high extracellular potassium, Biochem. Pharmacol. 24: 1293–1296.PubMedCrossRefGoogle Scholar
  41. Rubio, R., Knabb, M. T., Tsukada, T., and Berne, R. M., 1983, Mechanisms of action of adenosine on vascular smooth muscle and cardiac cells, in: Regulatory Function of Adenosine ( R. M. Berne, T. W. Rall, and R. Rubio, eds.), Nijhoff, Boston, pp. 319–332.CrossRefGoogle Scholar
  42. Schrader, J., Rubio, R., and Berne, R. M., 1975, Inhibition of slow action potentials of guinea pig atrial muscle by adenosine: A possible effect on Ca2+ influx, J. Mol. Cell Cardiol. 7: 427–433.PubMedCrossRefGoogle Scholar
  43. Schrader, J., Haddy, F. J., and Gerlach, E., 1977, Release of adenosine, inosine, and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hyperemia, Pflügers Arch. 369: 1–6.PubMedCrossRefGoogle Scholar
  44. Schubert, P., and Kreutzburg, G. W., 1974, Axonal transport of adenosine and uridine derivatives and transfer to postsynaptic neurons, Brain Res. 76: 526–530.PubMedCrossRefGoogle Scholar
  45. Schubert, P., and Mitzdorf, U., 1979, Analysis and quantitative evaluation of the depressive effect of adenosine on evoked potentials in hippocampal slices, Brain Res. 172: 186–190.PubMedCrossRefGoogle Scholar
  46. Schubert, P., Komp, W., and Kreutzberg, G. W., 1979, Correlation of 5′-nucleotidase activity and selective transneuronal transfer of adenosine in the hippocampus, Brain Res. 168: 419–424.PubMedCrossRefGoogle Scholar
  47. Segal, M., 1982, Intracellular analysis of a postsynaptic action of adenosine in the rat hippocampus, Eur. J. Pharmacol. 79: 193–199.PubMedCrossRefGoogle Scholar
  48. Siggins, G. R., and Schubert, P., 1981, Adenosine depression in hippocampal neurons in vitro: An intracellular study of dose-dependent actions on synaptic and membrane potentials, Neurosci. Lett. 23: 55–60.PubMedCrossRefGoogle Scholar
  49. Silinsky, E. M., 1975, On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals, J. Physiol. (Lond.) 247: 145–162.Google Scholar
  50. Small R. C., and Weston, A. H., 1979, Intramural inhibition in rabbit and guinea pig intestine, in: Physiological and Regulatory Functions of Adenosine ( H. P. Baer, and G. I. Drummond, eds.) Raven Press, New York, pp. 45–60.Google Scholar
  51. Sneddon, P., and Westfall, D. P., 1984, Pharmacological evidence that adenosine triphosphate and noradrenaline are co-transmitters in the guinea-pig vas deferens, J. Physiol. (Lond.) 347: 561–580.Google Scholar
  52. Stone, T. W., 1981, Physiological roles for adenosine and adenosine 5′-triphosphate in the nervous system, Neuroscience 6 (4): 523–555.PubMedCrossRefGoogle Scholar
  53. Su, C., (1983), Purinergic neurotransmission and neuromodulation, Am. Rev. Pharmacol. Toxicol. 23: 397–411.CrossRefGoogle Scholar
  54. Tornita, T., 1972, Conductance changes during the inhibitory potential in the guinea pig taenia coli, J. Physiol. (Lond.) 225: 693–703.Google Scholar
  55. Van Calker, D., Muller, M., and Hamprecht, B., 1979, Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells, J. Neurochem. 33: 999–1005.PubMedCrossRefGoogle Scholar
  56. Watkinson, W. P., Foley, D. H., Rubio, R., and Berne, R. M., 1979, Myocardial adenosine formation with increased cardiac performance in the dog, Am. J. Physiol. 236: H13 - H21.PubMedGoogle Scholar
  57. Westfall, D. P., Hogaboom, G. K., Colby, J., O’Donnell, J. P., and Fedan, J. S., 1982, Direct evidence against a role of ATP as the nonadrenergic, noncholinergic inhibitory neurotransmitter in guinea pig taenia coli, Proc. Natl. Acad. Sci, USA 79: 7041–7045.PubMedCrossRefGoogle Scholar
  58. Winn, H., Rubio, G. R., and Berne, R. M., 1981, The role of adenosine in the regulation of cerebral blood flow, J. Cereb. Blood Flow Metab. 1: 239–244.PubMedCrossRefGoogle Scholar
  59. Wu, P. H., Phillis, J. W., and Thierry, D. L., 1982, Adenosine receptor agonist inhibit K+-evoked Ca2+ uptake by rat cortical synaptosomes, J. Neurochem. 39: 700–708.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Donald A. McAfee
  • Barbara K. Henon

There are no affiliations available

Personalised recommendations