Agrobacterium Ti Plasmids as a Tool for Genetic Engineering in Plants

  • Mary-Dell Chilton
Part of the Basic Life Sciences book series (BLSC, volume 14)


The technology of cloning poses issues and presents possibilities that were almost unimaginable only a few years ago. With the aid of restriction endonucleases and ligase, the biochemist can literally be a genetic architect. If a means can be devised for detecting its presence, a desired gene can be cloned in Escherichia coli, and plasmid DNA can be isolated that contains the gene in high concentration and purity. The gene can then be excised from the E. coli vector plasmid and inserted into other vectors for introduction into a eukaryotic cell. Monkey kidney tissue culture cells, for example, have been shown to produce mouse globulin after introduction of the mouse globulin gene attached to SV40 viral DNA (Hamer and Leder, 1979). In the view of some critics (Goodfield, 1977? Packard, 1977) experiments of this sort pose ethical question and raise the specter of manipulation of the human gene pool. However, the application of recombinant DNA technology to agricultural crop improvement has not been subjected to such criticism. Man has been manipulating the genomes of crop plants for centuries by more traditional methods. Crop improvement by direct manipulation of DNA appears to be a socially acceptable extension of plant breeding efforts. Thus the obstacles that beset the plant genetic engineer are chiefly technical rather than social ones.


Agrobacterium Tumefaciens Tumor Line Crown Gall Crown Gall Tumor Plant Genetic Engineer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bomhoff, G., Klapwijk, P. M., Kester, H. C. M., Schilperoort, R. A., Hernalsteens, J. P., and Schell, J., 1976, Octopine and nopal ine synthesis and breakdown genetically controlled by a Plasmid of Agrobacterium tumefaciens, Molec. Gen, Genet., 145: 177.CrossRefGoogle Scholar
  2. Braun, A. C. and Wood, H. N., 1976, Suppression of the neoplastic state with the acquisition of specialized functions in cells, tissues and organs of crown-gall teratomas of tobacco, Proc. Natl. Acad. Sci. USA, 73: 496.PubMedCrossRefGoogle Scholar
  3. Cameron, J. R., Loh, E. Y., and Davis, R. W., 1979, Evidence for transposition of dispersed repetitive DNA families in yeast, Cell, 16: 739.PubMedCrossRefGoogle Scholar
  4. Chilton, M.-D, Drummond, M. H., Merlo, D. J., Sciaky, D., Montoya, A. L., Gordon, M. P., and Nester, E. W., 1977, Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis, Cell, 11: 263.PubMedCrossRefGoogle Scholar
  5. Chilton, M.-D., Drummond, M. H., Merlo, D. J., and Sciaky, D., 1978, Highly conserved DNA of Ti plasmids overlaps TDNA maintained in plant tumors, Nature, 275: 147.CrossRefGoogle Scholar
  6. Chilton, M.-D., McPherson, J., Saiki, R. K., Thomashow, M. F., Nutter, R. C., Gelvin, S. B., Montoya, A. L., Merlo, D. J., Yang, F. M., Garfinkel, D. J., Nester, E. W., and Gordon, Mf, P., 1979a, in: “Emergent Techniques for the Improvement of Crop Plants,” I. Rubenstein, ed., Univ. of Minnesota Press, (in press).Google Scholar
  7. Chilton, M.-D., Yang, F. M., Saiki, R. K., Postle, K., Montoya, A. L., Nester, E. W., Quetier, F., and Gordon, M. P., 1979b, in: “Genome Organization and Expression in Plants,” C. J. Leaver, ed., Plenum Press, (in press).Google Scholar
  8. Depicker, A., Van Montagu, M., and Schell, J., 1978, Homologous DNA sequences in different Ti plasmids are essential for oncogenicity, Nature, 275: 150.CrossRefGoogle Scholar
  9. Drummond, M. H., Gordon, M. P., Nester, E. W., and Chilton, M. d,, 1977, Foreign DNA of bacterial plasmid origin is transcribed in crown gall tumors, Nature, 269: 535.CrossRefGoogle Scholar
  10. Goodfield, J., 1977, Playing God: genetic engineering and the manipulation of life, Harper and Row, New York.Google Scholar
  11. Gurley, W. B., Kemp, J. D., Albert, M. J., Sutton, D. W., and Callis, J., 1979, Transcription of Ti plasmid-derived sequences in three octopine-type crown gall tumor lines, Proc. Natl. Acad. Sci. USA, 76: 2828.PubMedCrossRefGoogle Scholar
  12. Hamer, D. H. and Leder, P., 1979, Expression of the chromosomal mouse 3ma3-globin gene cloned in SV40, Nature, 281: 35.PubMedCrossRefGoogle Scholar
  13. Kleckner, N., 1977, Translocatable elements in procaryotesr Cell, 11: 1123.Google Scholar
  14. Kleinhofs, A. and Behki, R., 1977, Prospects for plant genome modification by nonconventional methods, Ann. Rev. Genet., 11; 79.PubMedCrossRefGoogle Scholar
  15. Lederboer, A., 1978, Ph.D. Thesis, University of Leiden.Google Scholar
  16. Merlo, D. J., Nutter, R. C., Montoya, A. L., Garfinkel, D. J., Drummond, M. H., Chilton, M.-D., Gordon, M. P., and Nester, E. W., 1980, The boundaries and copy numbers of Ti plasmid T-DNA vary in crown gall tumors, Molec. Gen. Genet., (in press).Google Scholar
  17. Montoya, A. L., Chilton, M.-D., Gordon, M. P., Sciaky, D., and Nester, E. W., 1977, Octopine and nopaline metabolism in Agro- bacterium tumefaciens and crown gall tumor cells: Role of plasmid genes, J. Bacteriol., 129: 101.PubMedGoogle Scholar
  18. Nevers, P. and Saedler, H., 1977, Transposable genetic elements as agents of gene instability and chromosomal rearrangements, Nature, 268: 109.PubMedCrossRefGoogle Scholar
  19. Packard, V., 1977, The people shapers, Little, Brown and Company.Google Scholar
  20. Petit, A., Delhaye, S., Tempe, J., and Morel, G., 1970, Recherches sur les guanidines des tissues de crown gall. Mise en évidence d’une relation biochimique spécifique entre les souches d1Agrobacterium tumefaciens et les tumeurs qu’elles induisent, Physiol. Veg., 8: 205.Google Scholar
  21. Potter, S. S., Brorein, W. J., Dunsmuir, P., and Rubin, G. M., 1979, Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila, Cell, 17: 415.PubMedCrossRefGoogle Scholar
  22. Schell, J., 1979, in: “Nucleic Acids in Plants,” T. Hall, et., Academic Press, (in press).Google Scholar
  23. Strobel, E., Dunsmuir, P., and Rubin, G. M., 1979, Polymorphism in the chromosomal locations of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila, Cell, 17: 429.PubMedCrossRefGoogle Scholar
  24. Turgeon, R., Wood, H. N., and Braun, A. C., 1976, Studies on the recovery of crown gall tumor cells, Proc. Natl. Acad« Sei. USA, 73: 3562.CrossRefGoogle Scholar
  25. Van Larebeke, N., Engler, G., Holsters, M., Van den Eisacker, S., Zaenen, I., Schilperoort, R. A., and Schellf J., 1974, Large plasmid in Agrobacterium tumefaciens essential for crown gall- inducing activity, Nature, 252:169,PubMedCrossRefGoogle Scholar
  26. Van Montagu, M. and Schell, J., 1979, The plasmids of Agrobacterium tumefaciens, in: “Plasmids of Bacteria of Medical Environmental and Commercial Importance”, K. Timmis, ed., Amsterdam, Eslevier/ North Holland Medical Press.Google Scholar
  27. Watson, B., Currier, T. C., Gordon, M. P., Chilton, M. D. and Nester, E. W., 1975, Plasmid required for virulence of Agro bacterium tumefaciens, J. Bacteriol, 123: 255.PubMedGoogle Scholar
  28. Yang, F. M., Montoya, A. L., Merlo, D. J., Drummond, M. H., Chilton, M.-D., Nester, E. W., and Gordon, M. P., 1980, Foreign DNA sequences in crown gall teratomas and their fate during loss of the tumorous traits, Molec. Gen. Genet., (in press).Google Scholar
  29. Zaenen, I., Van Larebeke, N., Teuchy, H., Van Montagu, M., and Schell, J., 1974, Supercoiled circular DNA in crown-gall inducing Agrobacterimn strains, J. Mol, Biol., 86: 109.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Mary-Dell Chilton
    • 1
  1. 1.Department of BiologyWashington UniversitySt. LouisUSA

Personalised recommendations