Skip to main content

The Inactivation of Sodium Channels in the Node of Ranvier and Its Chemical Modification

  • Chapter
Ion Channels

Abstract

The upstroke of the action potential in most axons is caused by a transitory influx of Na+ ions. It has been known from voltage clamp experiments for almost 40 years that the membrane permeability to Na+ increases on depolarization and decreases on repolarization. However, it also decreases on maintained depolarization, a process termed inactivation, which leaves the membrane incapable of passing Na+ on renewed depolarization for a few milliseconds, thus rendering it refractory (Hodgkin and Huxley, 1952).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albuquerque, E. X., Seyama, I, and Narahashi, T., 1973, Characterization of batrachotoxininduced depolarization of the squid giant axon, J. Pharmacol. Exp. Ther. 184: 308–314.

    PubMed  CAS  Google Scholar 

  • Aldrich, R. W., 1986, Voltage-dependent gating of sodium channels: Towards an integrated approach, Trends Neurosci. 9: 82–86.

    Article  CAS  Google Scholar 

  • Aldrich, R. W., and Stevens, C. F., 1983, Inactivation of open and closed sodium channels determined separately, Cold Spring Harbor Symp. Quant. Biol. 48: 147–153.

    Article  Google Scholar 

  • Aldrich, R. W., and Stevens, C. F., 1987. Voltage-dependent gating of single sodium channels from mammalian neuroblastoma cells, J. Neurosci. 7: 418–431.

    PubMed  CAS  Google Scholar 

  • Almers, W., 1978, Gating currents and charge movement in excitable membranes, Rev. Physiol. Biochem. Pharmacol. 82: 96–190.

    Article  PubMed  CAS  Google Scholar 

  • Ã…rhem, P., and Frankenhaeuser, B., 1974, DDT and related substances: Effects on permeability properties of myelinated Xenopus nerve fibre. Potential clamp analysis, Acta Physiol. Scand. 91: 502–511.

    Article  PubMed  Google Scholar 

  • Armstrong, C. M., 1981, Sodium channels and gating currents, Physiol. Rev. 61: 644–683.

    PubMed  CAS  Google Scholar 

  • Armstrong, C. M., and Bezanilla, F., 1973, Currents related to the movement of the gating particles of the sodium channel, Nature. 242: 459–461.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, C. M., Bezanilla, F., and Rojas, E., 1973, Destruction of sodium conductance inactivation in squid axons perfused with pronase, J. Gen. Physiol. 62: 375–391.

    Article  PubMed  CAS  Google Scholar 

  • Barchi, R. L., 1988, Probing the molecular structure of the voltage-dependent sodium channel, Annu. Rev. Neurosci. 11: 455–495.

    Article  PubMed  CAS  Google Scholar 

  • Barhanin, J., Hugues, M., Schweitz, H., Vincent, J. P., and Lazdunski, M., 1981, Structure—function relationships of sea anemone toxin II from Anemonia sulcata, J. Biol. Chem. 256: 5764–5769.

    PubMed  CAS  Google Scholar 

  • Barhanin, J., Giglio, J. R., Léopold, P., Schmid, A., Sampaio, S. V., and Lazdunski, M., 1982, Tityus serrulatus venom contains two classes of toxins. Tityus y toxin is a new tool with a very high affinity for studying the Na+ channel, J. Biol. Chem. 257: 12553–12558.

    PubMed  CAS  Google Scholar 

  • Barhanin, J., Meiri, H., Romey, G., Pauron, D., and Lazdunski, M., 1985, A monoclonal immunotoxin acting on the Na+ channel, with properties similar to those of a scorpion toxin, Proc. Natl. Acad. Sci. USA. 82: 1842–1846.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, S., and Hille, B., 1988, Veratridine modifies open sodium channels, J. Gen. Physiol. 91: 421–443.

    Article  PubMed  CAS  Google Scholar 

  • Bean, B. P., Shrager, P., and Goldstein, D. A., 1981, Modification of sodium and potassium channel gating kinetics by ether and halothane, J. Gen. Physiol. 77: 233–253.

    Article  PubMed  CAS  Google Scholar 

  • Benoit, E., and Dubois, J. M., 1987, Properties of maintained sodium current induced by a toxin from Androctonus scorpion in frog node of Ranvier, J. Physiol. (London). 383: 93–114.

    CAS  Google Scholar 

  • Benoit, E., Corbier, A., and Dubois, J. M., 1985, Evidence for two transient sodium currents in the frog node of Ranvier, J. Physiol. (London). 361: 339–360.

    CAS  Google Scholar 

  • Benoit, E., Legrand, A. M., and Dubois, J. M., 1986, Effects of ciguatoxin on current clamped frog myelinated nerve fibre, Toxicon. 24: 357–364.

    Article  PubMed  CAS  Google Scholar 

  • Béress, L., Béress, R., and Wunderer, G., 1975, Purification of three polypeptides with neuro-and cardiotoxic activity from the sea anemone Anemonia sulcata, Toxicon. 13: 359–367.

    Article  PubMed  Google Scholar 

  • Bergman, C., Dubois, J. M., Rojas, E., and Rathmayer, W., 1976, Decreased rate of sodium conductance inactivation in the node of Ranvier induced by a polypeptide toxin from sea anemone, Biochim. Biophys. Acta. 455: 173–184.

    Article  PubMed  CAS  Google Scholar 

  • Bezanilla, F., 1987, Single sodium channels from the squid giant axon, Biophys. J. 52: 1087–1090.

    Article  PubMed  CAS  Google Scholar 

  • Brismar, T., 1977, Slow mechanism for sodium permeability inactivation in myelinated nerve fibre of Xenopus laevis, J. Physiol. (London). 270: 283–297.

    CAS  Google Scholar 

  • Brodwick, M. S., and Eaton, D. C., 1978, Sodium channel inactivation in squid axon is removed by high internal pH or tyrosine-specific reagents, Science. 200: 1494–1496.

    Article  PubMed  CAS  Google Scholar 

  • Brodwick, M. S., and Eaton, D. C., 1982, Chemical modification of excitable membranes, in: Proteins in the Nervous System: Structure and Function ( B. Haber, J. R. Perez-Polo, and J. D. Coulter, eds.), Liss, New York, pp. 51–72.

    Google Scholar 

  • Brown, G. B., 1986, 3H-batrachotoxin-A benzoate binding to voltage-sensitive sodium channels: Inhibition of the channel blockers tetrodotoxin and saxitoxin, J. Neurosci. 6: 2064–2070.

    PubMed  CAS  Google Scholar 

  • Cahalan, M. D., 1975, Modification of sodium channel gating in frog myelinated nerve fibres by Centruroides sculpturatus scorpion venom, J. Physiol. (London). 244: 511–534.

    CAS  Google Scholar 

  • Cahalan, M., 1981, Molecular properties of sodium channels in excitable membranes, in: The Cell Surface and Neuronal Function ( C. W. Cotman, G. Poste, and G. L. Nicolson, eds.), Elsevier/North-Holland, Amsterdam, pp. 1–47.

    Google Scholar 

  • Cahalan, M. D., and Pappone, P. A., 1981, Chemical modification of sodium channel surface charges in frog skeletal muscle by trinitrobenzene sulphonic acid, J. Physiol. (London). 321: 127–139.

    CAS  Google Scholar 

  • Catterall, W. A., 1975. Activation of the action potential Na+ ionophore of cultured neuroblastoma cells by veratridine and batrachotoxin, J. Biol. Chem. 250: 4053–4059.

    PubMed  CAS  Google Scholar 

  • Catterall, W. A., 1977a. Membrane potential-dependent binding of scorpion toxin to the action potential Na+ ionophore. Studies with a toxin derivative prepared by lactoperoxidasecatalyzed iodination, J. Biol. Chem. 252: 8660–8668.

    PubMed  CAS  Google Scholar 

  • Catterall, W. A., 1977b, Activation of the action potential Na+ ionophore by neurotoxins. An allosteric model, J. Biol. Chem. 252: 8669–8676.

    PubMed  CAS  Google Scholar 

  • Catterall, W. A., 1979, Binding of scorpion toxin to receptor sites associated with sodium channels in frog muscle. Correlation of voltage-dependent binding with activation, J. Gen. Physiol. 74: 375–391.

    Article  PubMed  CAS  Google Scholar 

  • Catterall, W. A., 1980, Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes, Annu. Rev. Pharmacol. Toxicol. 20: 15–43.

    Article  PubMed  CAS  Google Scholar 

  • Catterall, W. A., 1986, Molecular properties of voltage-sensitive sodium channels, Annu. Rev. Biochem. 55: 953–985.

    Article  PubMed  CAS  Google Scholar 

  • Chandler, W. K., and Meves, H., 1970, Evidence for two types of sodium conductance in axons perfused with sodium fluoride solution, J. Physiol. (London). 211: 653–678.

    CAS  Google Scholar 

  • Chinn, K., 1988, Substate and kinetic characteristics of deltamethrin-modified sodium channels, Biophys. J. 53: 230a (Abstr.).

    Google Scholar 

  • Chinn, K., and Narahashi, T., 1986, Stabilization of sodium channel states by deltamethrin in mouse neuroblastoma cells, J. Physiol. (London). 380: 191–207.

    CAS  Google Scholar 

  • Chiu, S. Y., 1977, Inactivation of sodium channels: Second order kinetics in myelinated nerve, J. Physiol. (London). 273: 573–596.

    CAS  Google Scholar 

  • Chiu, S. Y., and Ritchie, J. M., 1981, Ionic and gating currents in mammalian myelinated nerve, in: Demyelinating Disease: Basic and Clinical Electrophysiology ( S. G. Waxman and J. M. Ritchie, eds.), Raven Press, New York, pp. 313–328.

    Google Scholar 

  • Chiu, S. Y., Mrose, H. E., and Ritchie, J. M., 1979, Anomalous temperature dependence of the sodium conductance in rabbit nerve compared with frog nerve, Nature. 279: 327–328.

    Article  PubMed  CAS  Google Scholar 

  • Collins, C. A., and Rojas, E., 1982, Temperature dependence of the sodium channel gating kinetics in the node of Ranvier, Q. J. Exp. Physiol. 67: 41–55.

    PubMed  CAS  Google Scholar 

  • Collins, C. A., Arispe, N., and Rojas, E., 1983, Slow Na+ conductance inactivation following modification of fast inactivation gating in frog muscle fibres, Biomed. Res. 4: 363–370.

    CAS  Google Scholar 

  • Conti, F., 1984, Noise analysis and single-channel recordings, in: Current Topics in Membranes and Transport, Volume 22 ( P. F. Baker, ed.), Academic Press, New York, pp. 371–405.

    Google Scholar 

  • Conti, F., 1986, The relationship between electrophysiological data and thermodynamics of ion channel conformations, in: Ion Channels in Neural Membranes ( J. M. Ritchie, R. D. Keynes, and L. Bolis, eds.), Liss, New York, pp. 25–41.

    Google Scholar 

  • Conti, F., Hille, B., Neumcke, B., Nonner, W., and Stämpfli, R., 1976, Conductance of the sodium channel in myelinated nerve fibres with modified sodium inactivation, J. Physiol. (London). 262: 729–742.

    CAS  Google Scholar 

  • Conti, F., Neumcke, B., Nonner, W., and Stämpfli, R., 1980, Conductance fluctuations from the inactivation process of sodium channels in myelinated nerve fibres, J. Physiol. (London). 308: 217–239.

    CAS  Google Scholar 

  • Couraud, F., Jover, E., Dubois, J. M., and Rochat, H., 1982, Two types of scorpion toxin receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel, Toxicon. 20: 9–16.

    Article  PubMed  CAS  Google Scholar 

  • Creveling, C. R., McNeal, E. T., Daly, J. W., and Brown, G. B., 1983, Batrachotoxin-induced depolarization and [3H]batrachotoxinin-A 20a-benzoate binding in a vesicular preparation from guinea pig cerebral cortex. Inhibition by local anesthetics, Mol. Pharmacol. 23: 350–358.

    PubMed  CAS  Google Scholar 

  • Weille, J. R., Vijverberg, H. P. M., and Narahashi, T., 1988, Interactions of pyrethroids and octylguanidine with sodium channels of squid giant axons, Brain Res. 445: 1–11.

    Article  PubMed  Google Scholar 

  • Drews, G., 1987, Effects of chloramine-T on charge movement and fraction of open channels in frog nodes of Ranvier, Pfluegers Arch. 409: 251–257.

    CAS  Google Scholar 

  • Drews, G., and Rack, M., 1988, Modification of sodium and gating currents by amino group specific cross-linking and monofunctional reagents, Biophys. J. 54: 383–391.

    Article  PubMed  CAS  Google Scholar 

  • Dubois, J. M., and Bergman, C., 1975, Late sodium current in the node of Ranvier, Pfluegers Arch. 357: 145–148.

    Article  CAS  Google Scholar 

  • Dubois, J. M., and Bergman, C., 1977, Asymmetrical currents and sodium currents in Ranvier nodes exposed to DDT, Nature. 266: 741–742.

    Article  PubMed  CAS  Google Scholar 

  • Dubois, J. M., and Coulombe, A., 1984, Current-dependent inactivation induced by sodium depletion in normal and batrachotoxin-treated frog node of Ranvier, J. Gen. Physiol. 84: 2548.

    Article  Google Scholar 

  • Dubois, J. M., and Khodorov, B. I., 1982, Batrachotoxin protects sodium channels from the blocking action of oenanthotoxin, Pfluegers Arch. 395: 55–58.

    Article  CAS  Google Scholar 

  • Dubois, J. M., and Schneider, M. F., 1985, Kinetics of intramembrane charge movement and conductance activation of batrachotoxin-modified sodium channels in frog node of Ranvier, J. Gen. Physiol. 86: 381–394.

    Article  PubMed  CAS  Google Scholar 

  • Duch, D. S., and Levinson, S. R., 1987, Spontaneous opening at zero membrane potential of sodium channels from eel electroplax reconstituted into lipid vesicles, J. Membr. Biol. 98: 57–68.

    Article  PubMed  CAS  Google Scholar 

  • Eaton, D. C., and Brodwick, M. S., 1983, Chemical modification of the Na+ channel: Specific amino acid residues, in: The Physiology of Excitable Cells ( H. D. Grinnell and W. J. Moody, eds.), Liss. New York, pp. 149–163.

    Google Scholar 

  • Eaton, D. C., Brodwick, M. S., Oxford, G. S., and Rudy, B., 1978, Arginine-specific reagents remove sodium channel inactivation, Nature. 271: 473–475.

    Article  PubMed  CAS  Google Scholar 

  • Fishman, H. M., 1985, Relaxations, fluctuations and ion transfer across membranes, Prog. Biophvs. Mol. Biol. 46: 127–162.

    Article  CAS  Google Scholar 

  • Fontecilla-Camps, J. C., Almassy, R. J., Suddath, F. L., Watt, D. D., and Bugg, C. E., 1980, Three-dimensional structure of a protein from scorpion venom: A new structural class of neurotoxins, Proc. Natl. Acad. Sci. USA. 77: 6490–6500.

    Article  Google Scholar 

  • Fox, J. M., 1976, Ultra-slow inactivation of the ionic currents through the membrane of myelinated nerve, Biochim. Biophys. Acta. 426: 232–244.

    Article  PubMed  CAS  Google Scholar 

  • Frankenhaeuser, B., 1960, Quantitative description of sodium currents in myelinated nerve fibres of Xenopus laevis, J. Physiol. (London). 151: 491–501.

    CAS  Google Scholar 

  • Frankenhaeuser, B., 1963, Inactivation of the sodium-carrying mechanism in myelinated nerve fibres of Xenopus laevis, J. Physiol. (London). 169: 445–451.

    CAS  Google Scholar 

  • Frankenhaeuser, B., and Huxley, A. F., 1964, The action potential in the myelinated nerve fibre of Xenopus laevis as computed on the basis of voltage clamp data, J. Physiol. (London). 171: 302–315.

    CAS  Google Scholar 

  • Frankenhaeuser, B., and Moore, L. E., 1963, The effect of temperature on the sodium and potassium permeability changes in myelinated nerve fibres of Xenopus laevis, J. Physiol. (London). 169: 431–437.

    CAS  Google Scholar 

  • Frankenhaeuser, B., and Vallbo, A. B., 1965, Accommodation in myelinated nerve fibres of Xenopus laevis as computed on the basis of voltage clamp data, Acta Physiol. Scand. 63: 120.

    Article  Google Scholar 

  • French, R. J., and Horn, R., 1983, Sodium channel gating: Models, mimics, and modifiers, Annu. Rev. Biophys. Bioeng. 12: 319–356.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, J. E., and Meves, H., 1980, The effect of scorpion venom on the sodium currents of the squid giant axon, J. Physiol. (London). 308: 479–499.

    CAS  Google Scholar 

  • Glasstone, S., Laidler, K. J., and Eyring, H., 1941, The Theory of Rate Processes, McGraw—Hill, New York.

    Google Scholar 

  • Gonoi, T., and Hille, B., 1987, Gating of Na channels. Inactivation modifiers discriminate among models, J. Gen. Physiol. 89: 253–274.

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt, R. E., Blatt, Y., and Montal, M., 1985, The structure of the voltage-sensitive sodium channel. Inferences derived from computer-aided analysis of the Electrophorus electricus channel primary structure, FEBS Lett. 193: 125–134.

    Article  PubMed  CAS  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfluegers Arch. 391: 85–100.

    Article  CAS  Google Scholar 

  • Hartung, K., and Rathmayer, W., 1985, Anemoniu sulcata toxins modify activation and inactivation of Na+ currents in a crayfish neurone, Pfluegers Arch. 404: 119–125.

    Article  CAS  Google Scholar 

  • Hille, B., 1968, Pharmacological modifications of the sodium channels in frog nerve, J. Gen. Physiol. 51: 199–219.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1972, The permeability of the sodium channel to metal cations in myelinated nerve, J. Gen. Physiol. 59: 637–658.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1978, Ionic channels in excitable membranes. Current problems and biological approaches, Biophys. J. 22: 283–294.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1984, Ionic Channels of Excitable Membranes, Sinauer.Associates, Sunderland, Mass.

    Google Scholar 

  • Hille, B., Leibowitz, M. D., Sutro, J. B., Schwarz, J. R., and Holan, G., 1987, State-dependent modification of sodium channels by lipid-soluble agonists, in: Proteins in Excitable Membranes ( B. Hille and D. M. Fambrough, eds.), Wiley, New York, pp. 109–124.

    Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952, A quantitative description of membrane conductance and its application to conduction and excitation in nerve, J. Physiol. (London). 117: 500–544.

    CAS  Google Scholar 

  • Horn, R., and Vandenberg, C. A., 1986, Inactivation of single sodium channels, in: Ion Channels in Neural Membranes ( J. M. Ritchie, R. D. Keynes, and L. Bolis, eds.), Liss, New York, pp. 71–83.

    Google Scholar 

  • Horn, R., Vandenberg, C. A., and Lange, K., 1984, Statistical analysis of single sodium channels. Effects of N-bromoacetamide, Biophys. J. 45: 323–335.

    Article  PubMed  CAS  Google Scholar 

  • Hu, S. L., Meves, H., Rubly, N., and Watt, D. D., 1983, A quantitative study of the action of Centruroides sculpturatus toxins III and IV on the Na currents of the node of Ranvier, Pfluegers Arch. 397: 90–99.

    Article  CAS  Google Scholar 

  • Huang, J. M., Tanguy, J., and Yeh, J. Z., 1987, Removal of sodium inactivation and block of sodium channels by chloramine-T in crayfish and squid giant axons, Biophys. J. 52: 155–163.

    Article  PubMed  CAS  Google Scholar 

  • Jacques, Y., Fosset, M., and Lazdunski, M., 1978, Molecular properties of the action potential Na+ ionophore in neuroblastoma cells. Interaction with neurotoxins, J. Biol. Chem. 253: 7383–7392.

    PubMed  CAS  Google Scholar 

  • Jonas, P., Vogel, W., Arantes, E. C., and Giglio, J. R., 1986, Toxin γ of the scorpion Tityus serrulatus modifies both activation and inactivation of the sodium permeability of nerve membrane, Pfluegers Arch. 407: 92–99.

    Article  CAS  Google Scholar 

  • Jover, E., Couraud, F., and Rochat, H., 1980, Two types of scorpion neurotoxins characterized by their binding to two separate receptor sites on rat brain synaptosomes, Biochem. Biophys. Res. Commun. 95: 1607–1614.

    Article  PubMed  CAS  Google Scholar 

  • Khodorov, B. I., 1978, Chemicals as tools to study nerve fiber sodium channels; effects of batrachotoxin and some local anesthetics, in: Membrane Transport Processes, Volume 2 ( D. C. Tosteson, Y. A. Ovchinnikov, and R. Latorre, eds.), Raven Press, New York, pp. 153–174.

    Google Scholar 

  • Khodorov, B. I., 1981, Sodium inactivation and drug-induced immobilization of the gating charge in nerve membrane, Prog. Biophys. Mol. Biol. 37: 49–89.

    Article  PubMed  CAS  Google Scholar 

  • Khodorov, B. I., 1985, Batrachotoxin as a tool to study voltage-sensitive sodium channels of excitable membranes, Prog. Biophys. Mol. Biol. 45: 57–148.

    Article  PubMed  CAS  Google Scholar 

  • Khodorov, B. I., and Revenko, S. V., 1979, Further analysis of the mechanisms of action of batrachotoxin on the membrane of myelinated nerve, Neuroscience. 4: 1315–1330.

    Article  PubMed  CAS  Google Scholar 

  • Khodorov, B. I., Peganov, E. M., Revenko, S. V., and Shishkova, L. D., 1975, Sodium currents in the voltage-clamped nerve fiber of frog under the combined action of batrachotoxin and procaine, Brain Res. 84: 541–546.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, J. E., and Meves, H., 1979, The effect of temperature on the asymmetrical charge movement in squid giant axons, J. Physiol. (London). 289: 479–500.

    CAS  Google Scholar 

  • Kirsch, G. E., Yeh, J. Z., Farley, J. M., and Narahashi, T., 1980, Interaction of n-alkylguanidines with sodium channels of squid axon membrane, J. Gen. Physiol. 76: 315–335.

    Article  PubMed  CAS  Google Scholar 

  • Kniffki, K. D., Siemen, D., and Vogel, W., 1981, Development of sodium permeability inactivation in nodal membranes, J. Physiol. (London). 313: 37–48.

    CAS  Google Scholar 

  • Koppenhöfer, E., and Schmidt, H., 1968a, Die Wirkung von Skorpiongift auf die lonenströme des Ranvierschen Schnürrings. I. Die Permeabilitäten PNa und PK, Pfluegers Arch. 303: 133–149.

    Article  Google Scholar 

  • Koppenhöfer, E., and Schmidt, H., 1968b, Die Wirkung von Skorpiongift auf die Ionenströme des Ranvierschen Schnürrings. II. Unvollständige Natrium-Inaktivierung, Pfluegers Arch. 303: 150–161.

    Article  Google Scholar 

  • Koppenhöfer, E., and Vogel, W., 1969, Wirkung von Tetrodotoxin und Tetraäthylammoniumchlorid an der Innenseite der Schnürringsmembran von Xenopus laevis, Pfluegers Arch. 313: 545–568.

    Google Scholar 

  • Krueger, B. M., and Blaustein, M. P., 1980, Sodium channels in presynaptic terminals. Regulation by neurotoxins, J. Gen. Physiol. 76: 287–313.

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz, M. D., Sutro, J. B., and Hille, B., 1986, Voltage-dependent gating of veratridinemodified Na channels, J. Gen. Physiol. 87: 25–46.

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz, M. D., Schwarz, J. R., Holan, G., and Hille, B., 1987, Electrophysiological comparison of insecticide and alkaloid agonists of Na channels, J. Gen. Physiol. 90: 75–93.

    Article  PubMed  CAS  Google Scholar 

  • Lund, A. E., and Narahashi, T., 1981a, Interaction of DDT with sodium channels in squid giant axon membranes, Neuroscience. 6: 2253–2258.

    Article  PubMed  CAS  Google Scholar 

  • Lund, A. E., and Narahashi, T., 1981b, Kinetics of sodium channel modification by the insecticide tetramethrin in squid axon membranes, J. Pharmacol. Exp. Ther. 219: 464–473.

    PubMed  CAS  Google Scholar 

  • McCarthy, W. A., and Yeh, J. Z., 1987, Chloramine-T removes closed and open Na-channel inactivation in N1E-115 neuroblastoma cells: A single channel/multi-channel patch study, Biophys. J. 51: 436a. (Abstr.).

    Google Scholar 

  • Meeder, T., and Ulbricht, W., 1987, Action of benzocaine on sodium channels of frog nodes of Ranvier treated with chloramine-T, Pfluegers Arch. 409: 265–273.

    CAS  Google Scholar 

  • Meiri, H., Spira, G., Sammar, M., Namir, M., Schwartz, A., Komoriya, A., Kosower, E. M., and Patti, Y., 1987, Mapping a region associated with Na channel inactivation using antibodies to a synthetic peptide corresponding to a part of the channel, Proc. Natl. Acad. Sci. USA. 84: 5058–5062.

    Article  PubMed  CAS  Google Scholar 

  • Meves, H., 1966, The effect of veratridine on internally perfused giant axons, J. Physiol. (London). 290: 211–217.

    CAS  Google Scholar 

  • Meves, H., 1978, Inactivation of the sodium permeability in squid giant nerve fibres, Prog. Biophys. Mol. Biol. 33: 207–230.

    Article  PubMed  CAS  Google Scholar 

  • Meves, H., 1984, Hodgkin—Huxley: Thirty years after, in: The Squid Axon ( P. F. Baker, ed.), Academic Press, New York, pp. 279–329.

    Chapter  Google Scholar 

  • Meves, H., 1986, Sodium and gating current: Experiments on the node of Ranvier, in: Membrane Control of Cellular Activity ( H. C. Lüttgau, ed.), Fischer Verlag, Stuttgart, pp. 33–46.

    Google Scholar 

  • Meves, H., Rubly, N., and Watt, D. D., 1982, Effect of toxins isolated from the venom of the scorpion Centruroides sculpturatus on the Na currents of the node of Ranvier, Pfluegers Arch. 393: 56–62.

    Article  CAS  Google Scholar 

  • Meves, H., Rubly, N., and Watt, D. D., 1984, Voltage-dependent effect of a scorpion toxin on sodium current inactivation, Pfluegers Arch. 402: 24–33.

    Article  CAS  Google Scholar 

  • Meves, H., Rubly, N., and Watt, D. D., 1987, Gating current experiments on frog nodes of Ranvier treated with Centruroides sculpturatus toxins or aconitine, Pfluegers Arch. 409: 381–393.

    Article  CAS  Google Scholar 

  • Moore, L. E., 1971, Effect of temperature and calcium ions on rate constants of myelinated nerve, Am. J. Physiol. 221: 131–137.

    PubMed  CAS  Google Scholar 

  • Mozhayeva, G. N., and Naumov, A. P., 1980, Kinetics of interaction of scorpion toxin with sodium channels in the Ranvier node membrane, Neurophysiology. 12: 409–415.

    Article  Google Scholar 

  • Mozhayeva, G. N., Naumov, A. P., and Negulyaev, Y. A., 1976, Effects of aconitine on some properties of sodium channels in the Ranvier node membrane, Neirofiziologiya. 8: 152–160 (in Russian).

    Google Scholar 

  • Mozhayeva, G. N., Naumov, A. P., Negulyaev, Y. A., and Nosyreva, E. D., 1977, The permeability of aconitine-modified sodium channels to univalent cations in myelinated nerve, Biochim. Biophys. Acta. 466: 461–473.

    Article  PubMed  CAS  Google Scholar 

  • Mozhayeva, G. N., Naumov, A. P., Soldatov, N. M., and Grishin, E. V., 1979, Effects of the toxins of the scorpion Buthus eupeus on the sodium channels of the membrane of the node of Ranvier, Biophysics. 24: 242–249.

    Google Scholar 

  • Mozhayeva, G. N., Naumov, A. P., Nosyreva, E. D., and Grishin, E. V., 1980, Potential-dependent interaction of toxin from venom of the scorpion Buthus eupeus with sodium channels in myelinated fibre, Biochim. Biophys. Acta. 597: 587–602.

    Article  PubMed  CAS  Google Scholar 

  • Mozhayeva, G. N., Naumov, A. P., and Nosyreva, E. D., 1981, Kinetic and steady-state characteristics of sodium channels modified by aconitine, Neurophysiology. 12: 404–408.

    Article  Google Scholar 

  • Mozhayeva, G. N., Naumov, A. P., and Negulyaev, Y. A., 1982, Interaction of Hions with acid groups in aconitine-modified sodium channels, Gen. Physiol. Biophys. 1: 21–35.

    Google Scholar 

  • Mozhayeva, G. N., Naumov, A. P., and Khodorov, B. I., 1983, Selectivity and sensitivity to hydrogen ion blocking of batrachotoxin-modified sodium channels in nerve fiber membrane, Neurophysiology. 15: 416–423.

    Article  Google Scholar 

  • Mozhayeva, G. N., Naumov, A. P., and Khodorov, B. I., 1984, Activation and inactivation of batrachotoxin-modified sodium channels in the frog nerve fiber membrane, Neurophysiology. 16: 14–21.

    Article  Google Scholar 

  • Mozhayeva. G. N., Naumov, A. P., and Khodorov, B. I., 1986, A study of properties of batrachotoxin modified sodium channels, Gen. Physiol. Biophys. 5: 17–46.

    PubMed  CAS  Google Scholar 

  • Mozhayeva, G. N., Naumov, A. P., and Nosyreva, E. D., 1987, Effects of glutaraldehyde on sodium channel activation and inactivation in frog nerve fiber, Neurophysiology. 18: 403–409.

    Article  Google Scholar 

  • Nagy, K., 1987, Subconductance states of single sodium channels modified by chloramine-T and sea anemone toxin in neuroblastoma cells, Eur. Biophys. J. 15: 129–132.

    Article  PubMed  CAS  Google Scholar 

  • Narahashi, T., 1974, Chemicals as tools in the study of excitable membranes, Physiol. Rev. 54: 813–889.

    Article  PubMed  CAS  Google Scholar 

  • Narahashi, T., 1977, Toxic chemicals as probes of nerve membrane function, in: Membrane Toxicity ( M. W. Miller and A. E. Shamoo, eds.), Plenum Press, New York, pp. 407–445.

    Google Scholar 

  • Narahashi, T., 1986, Toxins that modulate the sodium channel gating mechanism, Ann. N.Y. Acad. Sci. 479: 133–151.

    Article  PubMed  CAS  Google Scholar 

  • Narahashi, T., Moore, J. W., and Shapiro, B. I., 1969, Condylactis toxin: Interaction with nerve membrane ionic conductances, Science. 163: 680–681.

    Article  PubMed  CAS  Google Scholar 

  • Narahashi, T., Shapiro, B. I., Deguchi, T., Scuka, M., and Wang, C. M., 1972, Effects of scorpion venom on squid axon membranes, Am. J. Physiol. 222: 850–857.

    PubMed  CAS  Google Scholar 

  • Naumov, A. P., Negulyaev, Y. A., and Nosyreva, E. D., 1979, Change of selectivity of sodium channels in membrane of nerve fiber treated with veratrine, Tsitoloeiva. 21: 692–696 (in Russian).

    CAS  Google Scholar 

  • Negulyaev, Y., and Nosyreva, E. D., 1979, A comparative study of procaine and benzocaine effect on normal and aconitine modified sodium channels, Tsitologiya. 21: 697–701 (in Russian).

    CAS  Google Scholar 

  • Neher, E., and Sakmann, B., 1976, Single channel currents recorded from membranes of denervated frog muscle fibres, Nature. 260: 799–802.

    Article  PubMed  CAS  Google Scholar 

  • Neumcke, B., Nonner, W., and Stämpfli, R., 1976, Asymmetrical displacement current and its relation with the activation of sodium current in the membrane of frog myelinated nerve, Pfluegers Arch. 363: 193–203.

    Article  CAS  Google Scholar 

  • Neumcke, B., Schwarz, W., and Stämpfli, R., 1980, Modification of sodium inactivation in myelinated nerve by Anemonia toxin II and iodate. Analysis of current fluctuations and current relaxations. Biochim. Biophys. Acta. 600: 456–466.

    Article  PubMed  CAS  Google Scholar 

  • Neumcke, B., Schwarz, W., and Stämpfli, R., 1985, Comparison of the effects of Anemonia toxin II on sodium and gating currents in frog myelinated nerve, Biochim. Biophys. Acta. 814: 111–119.

    Article  PubMed  CAS  Google Scholar 

  • Neumcke, B., Schwarz, J. R., and Stämpfli, R., 1987, A comparison of sodium currents in rat and frog myelinated nerve: Normal and modified sodium inactivation, J. Physiol. (London). 382: 175–191.

    CAS  Google Scholar 

  • Nonner, W., 1980, Relations between the inactivation of sodium channels and the immobilization of gating charge in frog myelinated nerve, J. Physiol. (London). 299: 573–603.

    CAS  Google Scholar 

  • Nonner, W., Spalding, B. C., and Hille, B., 1980, Low intracellular pH and chemical agents slow inactivation gating in sodium channels of muscle, Nature. 284: 360–363.

    Article  PubMed  CAS  Google Scholar 

  • Numa, S., and Noda, M., 1986, Molecular structure os sodium channels, Ann. N.Y. Acad. Sci. 479: 338–355.

    Article  PubMed  CAS  Google Scholar 

  • Ochs, G., Bromm, B., and Schwarz, J. R., 1981, A three-state model for inactivation of sodium permeability, Biochim. Biophys. Acta. 645: 243–252.

    Article  PubMed  CAS  Google Scholar 

  • Oxford, G. S., and Swenson, R. P., 1979, n-alkanols potentiate sodium channel inactivation in squid giant axons, Biophys. J.. 26: 585–590.

    Google Scholar 

  • Oxford, G. S., Wu, C. H., and Narahashi, T., 1978, Removal of sodium channel inactivation in squid giant axons by N-bromoacetamide, J. Gen. Physiol. 71: 227–247.

    Article  PubMed  CAS  Google Scholar 

  • Pappone, P. A., and Cahalan, M. D., 1985, Demyelination as a test for a mobile Na channel modulator in frog node of Ranvier, Biophys. J. 47: 217–223.

    Article  PubMed  CAS  Google Scholar 

  • Pater, C., and Sauviat, M. P., 1987, Voltage-clamp of cut-end skeletal muscle fibre: A diffusion experiment, Gen. Physiol. Biophys. 6: 305–309.

    PubMed  CAS  Google Scholar 

  • Patlak, J., and Horn, R., 1982, Effect of N-bromoacetamide on single sodium channel currents in excised membrane patches, J. Gen. Physiol. 79: 333–351.

    Article  PubMed  CAS  Google Scholar 

  • Pichon, Y., 1981, Pharmacological characterization of ionic channels in unmyelinated axons, J. Physiol. (Paris). 77: 1119–1127.

    CAS  Google Scholar 

  • Quandt, F. N., 1987, Burst kinetics of sodium channels which lack fast inactivation in mouse neuroblastoma cells, J. Physiol. (London). 392: 563–585.

    CAS  Google Scholar 

  • Quandt, F. N., and Narahashi, T.. 1982, Modification of single Na+ channels by batrachotoxin, Proc. Natl. Acad. Sci. USA. 79: 6732–6736.

    Article  PubMed  CAS  Google Scholar 

  • Rack. M.. 1985, Effect of chemical modification of amino groups by two different imidoesters on voltage-clamped nerve fibres of the frog. Pfluegers Arch. 404: 126–130.

    Article  Google Scholar 

  • Rack, M., 1986, The effects of the sulfhydryl group reactive chemical reagent N-ethylmaleimide on Na currents of frog nerve fibres depend strongly on electrical stimulation, Pfluegers Arch. 406:R27 (Abstr.).

    Google Scholar 

  • Rack, M., 1988, Periodate treatment reduces the tetrodotoxin-sensitivity of voltage-gated Na channels, Biochim. Biophys. Acta. 939: 47–51.

    Article  PubMed  CAS  Google Scholar 

  • Rack, M., and Woll, K. H., 1984, Effects of chemical modification of carboxyl groups on the voltage-clamped nerve fiber of the frog, J. Membr. Biol. 82: 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Rack, M., Hu, S., Rubly, N., and Waschow, C., 1984, Effects of chemical modification of amino and sulfhydryl groups on the voltage-clamped frog node of Ranvier, Pfluegers Arch. 400: 403–408.

    Article  CAS  Google Scholar 

  • Rack, M., Rubly. N., and Waschow, C., 1986. Effects of some chemical reagents on sodium current inactivation in myelinated nerve fibers of the frog, Biophys. J. 50: 557–564.

    Article  PubMed  CAS  Google Scholar 

  • Rack, M., Richter, D., and Rubly, N., 1987, Purification of a 3-toxin from the venom of the African scorpion Leiurus quinquestriatus, FEBS Lett. 214: 163–166.

    Article  PubMed  CAS  Google Scholar 

  • Rando, T. A., 1987, A re-interpretation of the decay of the veratridine-modified current, Biophys. J. 51: 437a (Abstr.).

    Google Scholar 

  • Rando, T. A., Wang, G. K., and Strichartz, G. R., 1986, The interaction between the activator agents hatrachotoxin and veratridine and the gating process of neuronal sodium channels, Mol. Pharmacol. 29: 467–477.

    PubMed  CAS  Google Scholar 

  • Rochat, H., Bernard, P., and Couraud, F., 1979, Scorpion toxins: Chemistry and mode of action, in: Neurotoxins: Tools in Neurobiology ( B. Ceccarelli and F. Clementi, eds.), Raven Press, New York, pp. 325–334.

    Google Scholar 

  • Rojas, E., and Rudy, B., 1976, Destruction of the sodium conductance inactivation by a specific protease in perfused nerve fibres from Loligo. J. Physiol. (London). 262: 501–531.

    CAS  Google Scholar 

  • Romey, G., Abita, J. P., Schweitz, H., Wunderer, G., and Lazdunski, M., 1976, Sea anemone toxin: A tool to study molecular mechanisms of nerve conduction and excitation—secretion coupling, Proc. Natl. Acad. Sci. USA. 73: 4055–4059.

    Article  PubMed  CAS  Google Scholar 

  • Ruben, P., Starkus, J. G., and Rayner, M. D., 1988, Single channel recordings in crayfish axons, Biophys. J. 53: 538a (Abstr.).

    Google Scholar 

  • Salgado, V. L., Yeh, J. Z., and Narahashi, T., 1985, Voltage-dependent removal of sodium inactivation by N-bromoacetamide and pronase, Biophys. J. 47: 567–571.

    Article  PubMed  CAS  Google Scholar 

  • Salkoff, L., Butler, A., Wei, A., Scavarda, N., Baker, K., Pauron, D., and Smith, C., 1987, Molecular biology of the voltage-gated sodium channel, Trends Neurosci. 10: 522–527.

    Article  CAS  Google Scholar 

  • Schauf, C. L., 1987, Properties of single Na+ channels in cut-open Myxicola giant axons, Can. J. Physiol. Pharmacol. 65: 568–573.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, H., and Schmitt, O., 1974, Effect of aconitine on the sodium permeability of the node of Ranvier, Pfluegers Arch. 349: 133–148.

    Article  CAS  Google Scholar 

  • Schmidtmayer, J., 1985, Behaviour of chemically modified sodium channels in frog nerve supports a three-state model of inactivation, Pfluegers Arch. 404: 21–28.

    Article  CAS  Google Scholar 

  • Schmidtmayer, J., 1989, Potential and temperature dependence of normal and chemically modified inactivation of sodium channels. Quantitative description by a cyclic three-state model. Pfluegers Arch. 414: 273–281.

    Article  CAS  Google Scholar 

  • Schmidtmayer, J., Stoye-Herzog, M., and Ulbricht, W., 1982, Rate of action of Anemonia solcate toxin II on sodium channels in myelinated nerve fibres, Pfluegers Arch. 394: 313–319.

    Article  CAS  Google Scholar 

  • Schmidtmayer, J., Stoye-Herzog, M., and Ulbricht, W., 1983, Combined action of intraaxonal iodate and external sea anemone toxin ATX II on sodium channel inactivation of frog nerve fibres, Pfluegers Arch. 398: 204–209.

    Article  CAS  Google Scholar 

  • Schmitt, O., and Schmidt, H., 1972, Influence of calcium ions on the ionic currents of nodes of Ranvier treated with scorpion venom, Pfluegers Arch. 333: 51–61.

    Article  CAS  Google Scholar 

  • Schneider, M. F., and Dubois, J. M., 1986, Effects of benzocaine on the kinetics of normal and batrachotoxin-modified Na channels in frog node of Ranvier, Biophys. J. 50: 523–530.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, J. R., 1986, The effect of temperature on Na currents in rat myelinated nerve fibres, Pfluegers Arch. 406: 397–404.

    Article  CAS  Google Scholar 

  • Schwarz, J. R., and Eikhof, G., 1987, Na currents and action potentials in rat myelinated nerve fibres at 20 and 37°C, Pfluegers Arch. 409: 569–577.

    Article  CAS  Google Scholar 

  • Schwarz, J. R., Bromm, B., Spielmann, R. P., and Weytjens, J. L. F., 1983, Development of Na inactivation in motor and sensory myelinated nerve fibres of Rana esculenta, Pfluegers Arch. 398: 126–129.

    Article  CAS  Google Scholar 

  • Schwarz, W., 1979, Temperature experiments of nerve and muscle membranes of frogs. Indication for a phase transition, Pfluegers Arch. 382: 27–34.

    Article  CAS  Google Scholar 

  • Siemen, D., and Vogel, W., 1983, Tetrodotoxin interferes with the reaction of scorpion toxin (Buthus tamulus) at the sodium channel of the excitable membrane, Pfluegers Arch. 397: 306–311.

    Article  CAS  Google Scholar 

  • Sigel, E., 1987, Effects of veratridine on single neuronal sodium channels expressed in Xenopus oocytes, Pfluegers Arch. 410: 112–120.

    Article  CAS  Google Scholar 

  • Sigworth, F. J., 1981, Covariance of nonstationary sodium current fluctuations at the node of Ranvier, Biophys. J. 34: 111–133.

    Article  PubMed  CAS  Google Scholar 

  • Simard, J. M., Meves, H., and Watt, D. D., 1986, Effects of toxins VI and VII from the scorpion Centruroides sculpturatus on the Na currents of the frog node of Ranvier, Pfluegers Arch. 406: 620–628.

    Article  CAS  Google Scholar 

  • Stämpfli, R., 1974, Intraaxonal iodate inhibits sodium inactivation, Experientia. 30: 505–508.

    Article  PubMed  Google Scholar 

  • Strichartz, G. R., and Wang, G. K., 1986, Rapid voltage-dependent dissociation of scorpion atoxins coupled to Na channel inactivation in amphibian myelinated nerves, J. Gen. Physiol. 88: 413–435.

    Article  PubMed  CAS  Google Scholar 

  • Strichartz, G. R., Rando, T., Hall, S., Gitchier, J., Hall, L., Magnani, B., and Hansen Bay, C., 1986, On the mechanism by which saxitoxin binds to and blocks sodium channels, Ann. N.Y. Acad. Sci. 479: 96–112.

    Article  PubMed  CAS  Google Scholar 

  • Strichartz, G. R., Rando, T., and Wang, G. K., 1987, An integrated view of the molecular toxinology of sodium channel gating in excitable cells, Annu. Rev. Neurosci. 10: 237–267.

    Article  PubMed  CAS  Google Scholar 

  • Stühmer, W., Methfessel, C., Sakmann, B., Noda, M., and Numa, S., 1987, Patch clamp characterization of sodium channels expressed from rat cDNA, Eur. Biophys. J. 14: 131–138.

    Article  PubMed  Google Scholar 

  • Sutra, J. B., 1986, Kinetics of veratridine action on Na channels of skeletal muscle, J. Gen. Physiol. 87: 1–24.

    Article  Google Scholar 

  • Tanaka, J. C., Eccleston, J. F., and Barchi, R. L., 1983, Cation selectivity characteristics of the reconstituted voltage-dependent sodium channel purified from rat skeletal muscle sarcolemma, J. Biol. Chem. 258: 7519–7526.

    PubMed  CAS  Google Scholar 

  • Ulbricht, W., 1965, Voltage clamp studies of veratrinized frog nodes, J. Cell. Comp. Physiol. 66: 91–98.

    Article  CAS  Google Scholar 

  • Ulbricht, W., 1969a, The effect of veratridine on excitable membranes of nerve and muscle, Ergeb. Physiol. 61: 17–71.

    Google Scholar 

  • Ulbricht, W., 1969b, Effect of temperature on the slowly changing sodium permeability of veratrinized nodes of Ranvier, Pfluegers Arch. 311: 73–95.

    Article  CAS  Google Scholar 

  • Ulbricht, W., 1972a, Rate of veratridine action. I. Fast phase determined during sustained depolarization in the voltage clamp, Pfluegers Arch. 336: 187–199.

    Article  CAS  Google Scholar 

  • Ulbricht, W., 1972b, Rate of veratridine action on the nodal membrane. II. Fast and slow phase determined with periodic impulses in the voltage clamp, Pfluegers Arch. 336: 201–212.

    Article  CAS  Google Scholar 

  • Ulbricht, W., 1974, Drugs to explore the ionic channels in the axon membrane, in: Biochemistry of Sensory Functions ( L. Jaenicke, ed.), Springer-Verlag, Berlin, pp. 351–366.

    Google Scholar 

  • Ulbricht, W., 1981, Kinetics of drug action and equilibrium results at the node of Ranvier, Physiol. Rev. 61: 785–828.

    PubMed  CAS  Google Scholar 

  • Ulbricht, W., 1987, Block of sodium channels with chemically modified gating, in: Receptors and Ion Channels (Y. A. Ovchinnikov and F. Hucho, eds.), de Gruyter, Berlin, pp. 171–178.

    Google Scholar 

  • Ulbricht, W., and Schmidtmayer, J., 1981, Modification of sodium channels in myelinated nerve by Anemonia sulcata toxin II, J. Physiol. (Paris). 77: 1103–1111.

    CAS  Google Scholar 

  • Ulbricht, W., and Stoye-Herzog. M., 1984, Distinctly different rates of benzocaine action on sodium channels of Ranvier nodes kept open by chloramine-T and veratridine, Pfluegers Arch. 402: 439–445.

    Article  CAS  Google Scholar 

  • Ulbricht, W., Wagner, H.-H., and Schmidtmayer, J., 1986, Kinetics of TTX-STX block of sodium channels, Ann. N.Y. Acad. Sci. 479: 68–83.

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg, C. A., and Horn, R., 1984, Inactivation viewed through single sodium channels, J. Gen. Physiol. 84: 535–564.

    Article  PubMed  CAS  Google Scholar 

  • Vijverberg, H. P. M., van der Zalm, J. M., and van den Bercken, J., 1982, Similar mode of action of pyrethroids and DDT on sodium channel gating in myelinated nerves, Nature. 295: 601–603.

    Article  PubMed  CAS  Google Scholar 

  • Vijverberg, H. P. M., van der Zalm, J. M., van Kleef, R. G. D. M., and van den Bercken, J., 1983. Temperature-and structure-dependent interaction of pyrethroids with the sodium channels in frog nodes of Ranvier, Biochim. Biophys. Acta. 728: 73–82.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, J. P., Balerna, M., Barhanin, J., Fosset, M., and Lazdunski, M., 1980, Binding of sea anemone toxin to receptor sites associated with gating system of sodium channels in synaptic nerve endings in vitro, Proc. Natl. Acad. Sci. USA. 77: 1646–1650.

    Article  CAS  Google Scholar 

  • Wang. G. K., 1984a, Irreversible modification of sodium channel inactivation in toad myelinated nerve fibres by the oxidant chloramine-T, J. Physiol. (London). 346: 127–141.

    CAS  Google Scholar 

  • Wang, G. K., 1984b, Modification of sodium channel inactivation in single myelinated nerve fibers of methionine-reactive chemicals, Biophys. J. 46: 121–124.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G. K., and Strichartz, G. R., 1983, Purification and physiological characterization of neurotoxins from venoms of the scorpions Centruroides sculpturatus and Leiurus quinquestriatus, Mol. Pharmacol. 23: 519–533.

    PubMed  CAS  Google Scholar 

  • Wang, G. K., and Strichartz, G. R., 1985, Kinetic analysis of the action of Leiurus scorpion a-toxins on ionic currents in myelinated nerve, J. Gen. Physiol. 86: 739–762.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G. K., Brodwick, M. S., and Eaton, D. C., 1985, Removal of sodium channel inactivation in squid axon by the oxidant chloramine-T, J. Gen. Physiol. 86: 289–302.

    Article  PubMed  CAS  Google Scholar 

  • Warashina, A., and Fujita, S., 1983, Effect of sea anemone toxins on the sodium inactivation process in crayfish axons, J. Gen. Physiol. 81: 305–323.

    Article  PubMed  CAS  Google Scholar 

  • Watt, D. D., and Simard, J. M., 1984, Neurotoxic proteins in scorpion venoms, J. Toxicol. Toxin Rev. 3: 181–221.

    CAS  Google Scholar 

  • Watt, D. D., Simard, J. M., Babin, D. R., and Mleynek, R. V., 1978, Physiological characterization of toxins isolated from scorpion venoms, in: Toxins: Animal, Plant and Microbial ( P. Rosenberg, ed.), Pergamon Press, Oxford, pp. 647–660.

    Google Scholar 

  • Woodhull, A. M., 1973, Ionic blockage of sodium channels in nerve, J. Gen. Physiol. 61: 687–708.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C. H., Sides, P. J., and Narahashi, T., 1980, Interaction of deoxycholate with the sodium channel of squid axon membranes, J. Gen. Physiol. 76: 355–379.

    Article  PubMed  CAS  Google Scholar 

  • Wunderer, G., 1978, Die Disulfidbrücken von Toxin II aus Anemonia sulcata, Hoppe-Seyler’s Z. Physiol. Chem. 359: 1193–1201.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, D., 1985, The operation of the sodium channel in nerve and muscle, Prog. Neurobiol. 24: 257–291.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, D., and Yeh, J. Z., 1984, Kinetics of 9-aminoacridine block of single Na channels, J. Gen. Physiol. 84: 361–377.

    Article  PubMed  CAS  Google Scholar 

  • Yeh, J. Z., 1982, A pharmacological approach to the structure of the Na channel in squid axon, in: Proteins in the Nervous System: Structure and Function ( B. Haber, J. R. Perez-Polo, and J. D. Coulter, eds.), Liss, New York, pp. 17–49.

    Google Scholar 

  • Yoshii, M., and Narahashi, T., 1984, Patch clamp analysis of veratridine-induced sodium channels, Biophys. J. 45: 184

    Google Scholar 

  • Zaborovskaya, L. D., and Khodorov, B. I., 1983, Difference in the blocking action of benzocaine and amine drugs on batrachotoxin-modified sodium channels of the Ranvier node, Neurophysiology. 14: 468–474.

    Article  Google Scholar 

  • Zaborovskaya, L. D., and Khodorov, B. I., 1985, Effect of Tityus y toxin on the activation process in sodium channels of frog myelinated nerve, Gen. Physiol. Biophys. 4: 101–104.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Ulbricht, W. (1990). The Inactivation of Sodium Channels in the Node of Ranvier and Its Chemical Modification. In: Narahashi, T. (eds) Ion Channels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7305-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7305-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7307-4

  • Online ISBN: 978-1-4615-7305-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics