Skip to main content

Congestive Heart Failure as Metabolic Disease

  • Chapter
Frontiers in Cardiovascular Health

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 9))

  • 156 Accesses

Summary

The aim of the present paper is to recall some of our previous data which bring an evidence that hearts of rats with 3-mo-old aorto-caval fistula are metabolically restricted. Due to a 40 per cent depletion of tissue L-carnitine, related to impaired carrier-mediated carnitine transport, they are unable to utilize correctly both carbohydrates and long-chain fatty acids during in vitro per fusicus. This results in substrate limitation of their oxidative phosphorylation reflected by decreased VO2max. At the same time, when supplied with 10mM glucose, insulin and 1.2 mM palmitate, volume-overloaded hearts seem to operate at significantly higher ΔG’ATP at each workload studied. The limitation of oxidative phosphorylation disappears when octanoate instead of palmitate is used for the in vitro perfusions. This short-chain fatty acid bypasses mitochondrial carnitine acyltransferases and, thus, improves mitochondrial NADH availability. This, per se, improves the kinetics of oxidative phosphorylation and left ventricular performance of volume-overloaded hearts. The long-term administration of propionyl-L-carnitine which restores tissue levels of L-carnitine has similar effects. In this latter case, we observe an acceleration of palmitate oxidation and an improved coupling between glycolysis and glucose oxidation. This recovery of both fatty acid and carbohydrate utilization improves mitochondrial NADH availability and, thus, increases VO2max of volume-overloaded hearts. At the same time, cytololic phosphorylation potential and ADPf become regulatory again. The restitution of energy transfer from metabolic substrates to cytosolic adenine nucleotides is thus associated with an acceleration of ATP turnover and with a significant improvement of left ventricular function. Our data suggest that the pathogenesis of congestive heart failure may involve a metabolic component, i.e. the simultaneous inhibition of long-chain fatty acid and glucose oxidation, which results in the kinetic failure of oxidative phosphorylation. It follows that appropriate pharmacological interventions that improve mitochondrial NADH availability and, thus, the kinetics of oxidative phosphorylation may be used to delay the transition from cardiac hypertrophy to congestive heart failure. Prospective molecular mechanisms which may explain the recovery of contractile function in substrate-repleted mechanically-overloaded hearts are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chien KR, Knowlton KU, Zhu H, Chien S. 1991. Regulation of cardiac gene expression during myocardial growth and hypertrophy. FASEB J 5:3037–3046.

    PubMed  CAS  Google Scholar 

  2. Sadoshima J, Izumo S. 1997. The cellular and molecular response of cardiac myocytes to mechanical stress. Ann Rev Physiol 59:551–571.

    Article  CAS  Google Scholar 

  3. Taegtmeyer H. 2000. Genetic Energetics: Transcriptional responses in cardiac metabolism. Ann Biomed Engineering 28:871–876.

    Article  CAS  Google Scholar 

  4. Alpert NR, Mulieri LA. 1982. Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in the rabbit. A characterization of heat liberation in normal and hypertrophied right ventricular papillary muscles. Circ Res 50:491–500.

    Article  PubMed  CAS  Google Scholar 

  5. Taegtmeyer H, Overturf ML. 1988. Effectss of moderate hypertension on cardiac function and metabolism in the rabbit. Hypertension 11:416–426.

    Article  PubMed  CAS  Google Scholar 

  6. Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP. 1996. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 94:2837–2842.

    Article  PubMed  CAS  Google Scholar 

  7. Allard MF, Schönekess BO, Henning SL, English DR, Lopaschuk GD. 1994. The contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied heart. Am J Physiol 267:H742–H750.

    PubMed  CAS  Google Scholar 

  8. El Alaoui-Talibi Z, Landormy S, Loireau A, Moravec J. 1992. Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts. Am J Physiol 262:H1068–H1074.

    PubMed  Google Scholar 

  9. Kobayashi K, Neely JR. 1979. Mechanism of pyruvate deshydrogenase activation by increased cardiac work. J Mol Cell Cardiol 15:369–382.

    Article  Google Scholar 

  10. Schönekess BO, Allard MF, Lopaschuk GD. 1995. Propionyl-L-carnitine improvement of hyptrophied rat heart function is associated with an increase in cardiac efficiency. Eur J Pharmacol 286: 155–166.

    Article  PubMed  Google Scholar 

  11. Bishop SP, Altschuld RA. 1970. Increased glycolytic metabolism in cardiac hypertrophy and congestive heart failure. Am J Physiol 218:153–159.

    PubMed  CAS  Google Scholar 

  12. Kagaya Y, Kanno Y, Takeyama D, Ishida N, Moruyama Y, Takahashi T, Iso T, Takishima T. 1990. Effects of long-term pressure overload on regional myocardial glucose and free fatty acid uptake in rats. Circulation 81:1353–1361.

    Article  PubMed  CAS  Google Scholar 

  13. El Alaoui-Talibi Z, Guendouz A, Moravec M, Moravec J. 1997. Control of oxidative metabolism in volume-overloaded hearts; effect of propionyl-L-carnitine. Am J Physiol 272:H1615–H1624.

    PubMed  Google Scholar 

  14. Broderick TL, Quinney HA, Lopaschuk GD. 1992. Carnitine stimulation of glucose oxidation in fatty acid perfused isolated working rat heart. J Biol Chem 267:3758–3763.

    PubMed  CAS  Google Scholar 

  15. Uziel G, Baravagalia B, Di Donato S. 1988. Carnitine stimulation of pyruvate deshydrogenase complex in isolated skeletal muscle mitochondria. Muscle Nerve 11:720–724.

    Article  PubMed  CAS  Google Scholar 

  16. Schönekess BO, Allard MF, Lopaschuk GD. 1995. Propionyl-L-carnitine improvement of hypertrophied heart function is accompanied by an increase in carbohydrate oxidation. Circ Res 77:726–734.

    Article  PubMed  Google Scholar 

  17. Bremer J. 1995. Carnitine-dependent pathways in the heart muscle. In: The Carnitine System. Ed. JW de Jong and R Ferrari, pp. 7–20. Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  18. Broderick TL, Christos SC, Wolf BA, Di Domenico D, Shug AL, Paulson DJ. 1995. Fatty acid oxidation and cardiac function in sodium pivalate model of secondary carnitine deficiency. Metabolism 44:499–505.

    Article  PubMed  CAS  Google Scholar 

  19. Paulson DJ. 1998. Carnitine deficiency-induced cardiomyopathy. Mol Cell Biochem 180:33–41.

    Article  PubMed  CAS  Google Scholar 

  20. Balaban RS. 1990. Regulation of oxidative phosphorylation in the mammalian cell. Am J Physiol 258:C377–C389.

    PubMed  CAS  Google Scholar 

  21. Chance B, Leigh JS, Kent J, McCully K, Nioka S, Clark BJ, Harris J, Graham T. 1986. Multiple controls of oxidative phosphorylation in living tissues as studied by phosphorus magnetic resonance. Proc Natl Acad Sci USA 83:9458–9462.

    Article  PubMed  CAS  Google Scholar 

  22. From AHL, Zimmer SD, Michurski P, Mohanakrishnan P, Ulstad VK, Thoma WJ, Ugurbil K. 1990. Regulation of oxidative phosphorylation rate in the intact cell. Biochemistry 25:7665–7675.

    Google Scholar 

  23. Motterlini R, Samaja M, Tarantola M, Micheletti R, Bianchi G. 1992. Functional and metabolic effects of propionyl-L-carnitine in the isolated perfused hypertrophied rat heart. Mol Cell Biochem 116:139–145.

    Article  PubMed  CAS  Google Scholar 

  24. Ben Cheikh R, Guendouz A, Moravec J. 1994. Control of oxidative metabolism in volume-overloaded rat hearts: effect of different lipid substrates. Am J Physiol 266:H2090–H2097.

    PubMed  Google Scholar 

  25. Heineman FW, Balaban RS. 1990. Control of mitochondrial respiration in the heart in vivo. Ann Rev Physiol 53:523–542.

    Article  Google Scholar 

  26. Katz LA, Koretsky AP, Balaban RS. 1987. A mechanism of respiratory control in the heart: a 31P NMR and NADH fluorescence study. FEBS Letters 221:270–277.

    Article  PubMed  CAS  Google Scholar 

  27. Rupp H, Elibman C, Dhalla NS. 1988. Succrose feeding prevents changes in myosine isozymes and sarcoplasmic reticulum Ca2+-pump ATPase in pressure-loaded rat heart. Biochem Biophys Res Comm 156:917–923

    Article  PubMed  CAS  Google Scholar 

  28. Schwartz DA, Park EI, Visek WJ, Kaput J. 1996. The e subunit gene of murine F1F0-ATP synthase. J Biol Chem 271:20942–20948.

    Article  Google Scholar 

  29. Zarain-Herzberg A, Rupp H. 1999. Transcriptional modulators targeted at fuel metabolism of hypertrophied heart. Am J Cardiol 83:31H–37H.

    Article  PubMed  CAS  Google Scholar 

  30. Zarain-Herzberg A, Rupp H, Flimban Y, Dhalla NS. 1996. Modification of sarcoplasmic reticulum gene expression in pressure overload cardiac hypertrophy by etomoxir. FASEB J 10:1303–1309.

    PubMed  CAS  Google Scholar 

  31. Young ME, Goodwin GW, Ying J, Guthrie P, Wilson ChR, Laws FA, Taegtmeyer H. Regulation of cardiac and skeletal malonyl-CoA decarboxylase by fatty acids. Am J Physiol 280:E471–E479.

    Google Scholar 

  32. Vary TC, Neely JR. 1982. A mechanism for reduced myocardial carnitine content in diabetic animals. Am J Physiol 243:H154–H158.

    PubMed  CAS  Google Scholar 

  33. Lopaschuk GD, Saddik M. 1992. The relative contributions of glucose and fatty acids to ATP production in hearts reperfused following ischemia. Mol Cell Biochem 116:111–116.

    Article  PubMed  CAS  Google Scholar 

  34. Saddik M, Lopaschuk GD. 1991. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem 266:8162–8170.

    PubMed  CAS  Google Scholar 

  35. Williamson JR, Corkey B. 1969. Assays of intermediates of the citric acid cycle and related compounds by fluorimetric methods. In: Methods in Enzymology, vol. 13. Ed SP Colowick and NO Kaplan, pp. 439–513. New York: Academic Press.

    Google Scholar 

  36. Nishiki K, Erecinska M, Wilson DF. 1978. Energy relationship between cytosolic metabolism and mitochondrial respiration in the heart. Am J Physiol 234:C73–C78.

    PubMed  CAS  Google Scholar 

  37. McGarry JD, Foster DW. 1976. An improved and simplified radioisotopic assay for the determination of free and esterified carnitine. J Lipid Res 17:277–281.

    PubMed  CAS  Google Scholar 

  38. Reibel DK, Uboh CE, Kent RL. 1986. Altered coenzyme A and carnitine metabolism in pressure-overloaded hypertrophied hearts. Am J Physiol 244:H2090–H2097.

    Google Scholar 

  39. Wittels B, Spann JF. 1968. Defective lipid metabolism in the failing heart. J Clin Invest 47: 1787–1794.

    Article  PubMed  CAS  Google Scholar 

  40. York CM, Cantrell CR, Borum PP. 1983. Cardiac carnitine deficiency and altered carnitine transport in cardiomyopathic hamsters. Arch Biochem Biophys 221:526–533.

    Article  PubMed  CAS  Google Scholar 

  41. Long CS, Haller RG, Foster DW. 1982. Kinetics of carnitine dependent fatty acid oxidation: implications of tissue carnitine deficiency. Neurology 32:663–666.

    Article  PubMed  CAS  Google Scholar 

  42. Brunold Ch, EL Alaoui-Talibi Z, Moravec M, Moravec J. 1998. Palmitate oxidation by the mitochondria from volume-overloaded rat hearts. Mol Cell Biochem 180:117–128.

    Article  Google Scholar 

  43. Fiol CJ, Kerner J, Bieber LL. 1987. Effect of malonyl-CoA on the kinetics of membrane bound carnitine palmitoyltransferase of rat heart mitochondria. Biochim Biophys Acta 916:462–492.

    Article  Google Scholar 

  44. Olowe Y, Schulz H. 1980. Regulation of thiolases from pig hearts. Control of fatty acid oxidation in the heart. Eur J Biochem 109:425–429.

    Article  PubMed  CAS  Google Scholar 

  45. Lysiak W, Lilly K, Di Lisa F, Toth PP, Bieber LL. 1988. Quantification of the effect of L-carnitine on the levels of acid-soluble short-chain acyl-CoA and CoASH in rat heart and liver mitochondria. J Biol Chem 263:1151–1156.

    PubMed  CAS  Google Scholar 

  46. Schönekess BO, Lopaschuk GD. 1995. The effects of carnitine on myocardial carbohydrate metabolism. In: The Carnitine System. Ed. JW de Jong and R Ferrari, pp. 39–52. Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  47. Schultz H. 1991. Beta-oxidation of fatty acids. Biochim Biophys Acta 1081:109–120.

    Article  Google Scholar 

  48. Lopaschuk GD, Belke DD, Gamble J, Hoi T, Schönekess BO. 1994. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1213:263–276.

    Article  PubMed  CAS  Google Scholar 

  49. From AHL, Petein MA, Michurski SP, Zimmer SD, Ugurbil K. 1986. 31P-studies of mitochondrial respiration in the intact myocardium. FEBS Letters 206:257–262.

    Article  PubMed  CAS  Google Scholar 

  50. Matchinsky FZ. 1996. A lesson in metabolic regulation inspired by the glucose sensor paradigm. Diabetes 45:223–240.

    Article  Google Scholar 

  51. Tani T, Neely JR. 1989. Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused rat heart. Circ Res 65:1045–1056.

    Article  PubMed  CAS  Google Scholar 

  52. Micheletti R, Giacalone G, Canepari M, Salardi S, Bianchi G, Reggiani C. 1994. Propionyl-L-carnitine prevents myocardial mechanical alterations due to pressure overload in rats. Am J Physiol 266:H2190–H2197.

    PubMed  CAS  Google Scholar 

  53. Lewin B. 1984. Gene expression; Control of replication and transcription. New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Moravec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moravec, J. (2003). Congestive Heart Failure as Metabolic Disease. In: Dhalla, N.S., Chockalingam, A., Berkowitz, H.I., Singal, P.K. (eds) Frontiers in Cardiovascular Health. Progress in Experimental Cardiology, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0455-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0455-9_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5085-9

  • Online ISBN: 978-1-4615-0455-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics