Skip to main content

The effects of carnitine on myocardial carbohydrate metabolism

  • Chapter
The Carnitine System

Abstract

The mammalian heart primarily meets its requirements for energy through the oxidation of fatty acids [1]. The oxidation of glucose and lactate provides most of the remaining energy needs, with glycolysis providing an additional small amount of ATP production [1, 2, 3]. An important step in the oxidation of fatty acids is the translocation of fatty acyl-CoA into the inner mitochondrial space. This is achieved by a carnitine mediated translocation involving carnitine palmitoyltransferase (CPT) I, carnitine acyltranslocase and CPT II (see Figure 1). By virtue of its role as a carrier, therefore, carnitine is essential for the oxidation of long chain fatty acids.

“L-propionylcarnitine administration to intact hearts increases myocardial carnitine content and results in a dramatic increase in the contribution of glucose oxidation to ATP production. Stimulation of carbohydrate oxidation may partly explain the beneficial effects of L-carnitine and L-propionylcarnitine in diabetes and hypertrophy.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 1974; 36: 413–459.

    Article  PubMed  CAS  Google Scholar 

  2. Allard MF, Schönekess BO, Henning SL, English DR, Lopaschuk GD. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol. 1994; 267: H742–H750.

    PubMed  CAS  Google Scholar 

  3. Saddik M, Lopaschuk GD. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem 1991; 266: 8162–8170.

    PubMed  CAS  Google Scholar 

  4. Broderick TL, Quinney HA, Lopaschuk GD. Carnitine Stimulation of glucose oxidation in the fatty acid perfused isolated working rat heart. J Biol Chem 1992; 267: 3758–3763.

    PubMed  CAS  Google Scholar 

  5. Lysiak W, Lilly K, DiLisa F, Toth PP, Bieber LL. Quantitation of the effect of L-carnitine on the levels of acid-soluble short-chain acyl-CoA and CoASH in rat heart and liver mitochondria. J Biol Chem 1988; 263: 1511–1516.

    Google Scholar 

  6. Lysiak W, Toth PP, Suelter CH, Bieber LL. Quantitation of the efflux of acylcarnitines from rat heart, brain and liver mitochondria. J Biol Chem 1986; 261: 13698–13703.

    PubMed  CAS  Google Scholar 

  7. Pearson DJ, Tubbs PK. Carnitine and derivatives in rat tissues. Biochem J 1967; 105: 953–963.

    PubMed  CAS  Google Scholar 

  8. Uziel G, Baravagalia B, DiDonato S. Carnitine stimulation of pyruvate dehydrogenase complex (PDHC) in isolated human skeletal muscle mitochondria. Muscle Nerve 1988; 11: 720–724.

    Article  PubMed  CAS  Google Scholar 

  9. Patel MS, Roche TE. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J 1990; 4: 3224–3233.

    PubMed  CAS  Google Scholar 

  10. McGarry JD, Woeltje KF, Kuwajima M, Foster DW. Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes Metab Rev 1989; 5: 271–284.

    Article  PubMed  CAS  Google Scholar 

  11. Cook GA. Differences in the sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA are due to differences in Ki values. J Biol Chem 1984; 259: 12030–12033.

    PubMed  CAS  Google Scholar 

  12. McGarry JD, Mills SE, Long CS, Foster DW. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J 1983; 214: 21–28.

    PubMed  CAS  Google Scholar 

  13. Singh B, Stakkestad JA, Bremer J, Borrebaek B. Determination of malonyl-coenzyme A in rat heart, kidney, and liver: A comparison between acetyl-coenzyme A and butyrlycoenzyme A as fatty acid synthase primers in the assay procedure. Anal Biochem 1984; 138: 107–111.

    Article  PubMed  CAS  Google Scholar 

  14. Mabrouk GM, Helmy IM, Thampy KG, Wakil SJ. Acute hormonal control of acetyl-CoA carboxylase: The roles of insulin, glucagon, and epinephrine. J Biol Chem 1990; 265: 6330–6338.

    PubMed  CAS  Google Scholar 

  15. Wakil SJ, Titchener EB, Gibson DM. Evidence for the participation of biotin in the enzymatic synthesis of fatty acids. Biochim Biophys Acta 1958; 29: 225–226.

    Article  PubMed  CAS  Google Scholar 

  16. Bianchi A, Evans JL, Iverson AJ, Nordlund AC, Watts TD, Witters LA. Identification of an isozymic form of acetyl-CoA carboxylase. J Biol Chem 1990; 265: 1502–1509.

    PubMed  CAS  Google Scholar 

  17. Thampy KG. Formation of malonyl-CoA in rat heart. Identification and purification of an isozyme of A carboxylase from rat heart. J Biol Chem 1989; 264: 17631–17634.

    CAS  Google Scholar 

  18. Trumble GE, Smith MA, Winder WW. Evidence of a biotin dependent acetyl-coenzyme A carboxylase in rat muscle. Life Sci 1991; 49: 39–43.

    Article  PubMed  CAS  Google Scholar 

  19. Iverson AJ, Bianchi A, Nordlund AC, Witters LA. Immunological analysis of acetyl-CoA carboxylase mass, tissue distribution and subunit composition. Biochem J 1990; 269: 365–371.

    PubMed  CAS  Google Scholar 

  20. Saddik M, Gamble J, Witters LA, Lopaschuk GD. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem 1993; 268: 25836–25845.

    PubMed  CAS  Google Scholar 

  21. Idell-Wenger JA, Grotyohann LW, Neely JR. Coenzme A and carnitine distribution in normal and ischemic hearts. J Biol Chem 1978; 253: 4310–4318.

    PubMed  CAS  Google Scholar 

  22. Paulson DJ, Schmidt MJ, Traxler JS, Ramacci MT, Shug AL. Improvement of myocardial function in diabetic rats after treatment with L-carnitine. Metabolism 1984; 33: 358–363.

    Article  PubMed  CAS  Google Scholar 

  23. Siliprandi N, Di Lisa F, Pivetta A, Miotto G, Siliprandi D. Transport and function of L-carnitine and L-propionylcarnitine: relevance to some cardiomyopathies and cardiac ischemia. Z Kardiol 1987; 76(Suppl 5): 34–40.

    PubMed  CAS  Google Scholar 

  24. Paulson DJ, Traxler J, Schmidt M, Noonan J, Shug AL. Protection of the ischaemic myocardium by L-propionylcarnitine: effects on the recovery of cardiac output after ischaemia and reperfusion, carnitine transport, and fatty acid oxidation. Cardiovasc Res 1986; 20: 536–541.

    Article  PubMed  CAS  Google Scholar 

  25. Liedtke AJ, DeMaison L, Nellis SH. Effects of L-propionylcarnitine on mechanical recovery during reflow in intact hearts. Am J Physiol 1988; 255: H169–H176.

    PubMed  CAS  Google Scholar 

  26. Motterlini R, Samaja M, Tarantola M, Micheletti R, Bianchi G. Functional and metabolic effects of propionyl-L-carnitine in the isolated perfused hypertrophied rat heart. Mol Cell Biochem 1992; 116: 139–145.

    Article  PubMed  CAS  Google Scholar 

  27. Broderick TL, Quinney HA, Lopaschuk GD. L-carnitine increases glucose metabolism and mechanical function following ischemia in diabetic rat heart. Cardiovas Res (in press).

    Google Scholar 

  28. Garland PB, Randle PJ. Regulation of glucose uptake by muscle. 10. Effects of alloxandiabetes, starvation, hypophysectomy and adrenalectomy and of fatty acids, ketones and pyruvate on the glycerol output and concentrations of free fatty acids, long chain fatty acyl coenzyme A, glycerol phosphate and citrate cycle intermediates in rat hearts and diaphragm muscles. Biochem J 1964; 93: 678–687.

    PubMed  CAS  Google Scholar 

  29. Randle PJ. Fuel selection in animals. Biochem Soc Trans 1986; 14: 799–806.

    PubMed  CAS  Google Scholar 

  30. Wall SR, Lopaschuk GD. Glucose oxidation rates in fatty acid-perfused isolated working hearts from diabetic rats. Biochim Biophys Acta 1989; 1006: 97–103.

    Article  PubMed  CAS  Google Scholar 

  31. El Alaoui-Talibi Z, Landormy S, Loireau A, Moravec J. Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts. Am J Physiol 1992; 262: H1068–H1074.

    Google Scholar 

  32. DiDonato S, Garavaglia B, Rimoldi M, Carrara F. Introduction to clinical and biomedical aspects of carnitine deficiencies. In: Ferrari R, Di Mauro S, Sherwood G, editors. L-carnitine and its role in medicine: From function to therapy. San Diego: Academic Press, 1992: 81–98.

    Google Scholar 

  33. Paulson DJ, Sanjak M, Shug AL. Carnitine deficiency and the diabetic heart. In: Carter AL, editor. Current concepts in carnitine research. Boca Raton: CRC Press, 1992: 215–230.

    Google Scholar 

  34. Lopaschuk GD, Spafford MA, Davies NJ, Wall SR. Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res 1990; 66: 546–553.

    Article  PubMed  CAS  Google Scholar 

  35. Renstrom B, Nellis SH, Liedtke AJ. Metabolic oxidation of glucose during early reperfusion. Circ Res 1989; 65: 1094–1101.

    Article  PubMed  CAS  Google Scholar 

  36. Görge G, Chatelain P, Schaper J, Lerch R. Effect of increasing degrees of ischemic injury on myocardial oxidative metabolism early after reperfusion in isolated rat hearts. Circ Res 1991; 68: 1681–1692.

    Article  PubMed  Google Scholar 

  37. Liedtke AJ, DeMaison L, Eggleston AM, Cohen LM, Nellis SH. Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ Res 1988; 62: 535–542.

    Article  PubMed  CAS  Google Scholar 

  38. Vary TC, Neely JR. A mechanism for reduced myocardial carnitine content in diabetic animals. Am J Physiol 1982; 243: H154–H158.

    PubMed  CAS  Google Scholar 

  39. Reibel DK, O’Rourke B, Foster KA. Mechanisms for altered carnitine content in hypertrophied rat hearts. Am J Physiol 1987; 252: H561–H565.

    PubMed  CAS  Google Scholar 

  40. Folts JD, Shug AL, Koke JR, Bittar N. Protectio nof the ischemic dog myocardium with carnitine. Am J Cardiol 1978; 41: 1209–1214.

    Article  PubMed  CAS  Google Scholar 

  41. Hülsmann WC, Dubelaar ML, Lamers JMJ, Maccari F. Protection by acyl-carnitines and phenylmethylsulfonyl fluoride in rat heart subjected to ischemia and reperfusion. Biochim Biophys Acta 1985; 847: 62–66.

    Article  PubMed  Google Scholar 

  42. Liedtke AJ, Nellis SH. Effects of carnitine in ischemic and fatty acid supplemented swine hearts. J Clin Invest 1979; 64: 440–447.

    Article  PubMed  CAS  Google Scholar 

  43. Broderick TL, Quinney HA, Barker CC, Lopaschuk GD. Beneficial effect of carnitine on mechanical recovery of rat hearts reperfused after a transient period of global ischemia is accompanied by a stimulation of glucose oxidation. Circulation 1993; 87: 972–981.

    Article  PubMed  CAS  Google Scholar 

  44. Yang XP, Samaja M, English E et al. Hemodynamic and metabolic activities of propionyl-L-carnitine in rats with pressure-overload cardiac hypertrophy. J Cardiovasc Pharm 1992; 20: 88–98.

    CAS  Google Scholar 

  45. Davini P, Bigalli A, Lamanna F, Boem A. Controlled-study on L-carnitine therapeutic efficacy in post-infarction. Drugs Exp Clin Res 1992; 18: 355–365.

    PubMed  CAS  Google Scholar 

  46. Fernandez C, Proto C. La L-carnitina nel trattamentoell’ ischemia miocardica cronica. Analisi dei risultati di tre studi multicentrici erassegna bibliografica. Clin Ter 1992; 140: 353–377.

    PubMed  CAS  Google Scholar 

  47. Sotobat I, Noda S, Hayashi H et al. Clinical evaluation of the effect of levocarnitine chloride on exercise tolerance in stable angina pectoris by the serial multistage treadmill exercise testing: a muliticenter, double-blind study. Jpn Clin Pharmacol Ther 1989; 20: 607–618.

    Article  Google Scholar 

  48. Paulson DJ, Shug AL, Zhao J. Protection of the ischemic diabetic heart by L-propionylcarnitine therapy. Mol Cell Biochem 1992; 116: 131–137.

    Article  PubMed  CAS  Google Scholar 

  49. Lopaschuk GD, Wall SR, Olley PM, Davies NJ. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts form fatty acid-induced injury independent of changes in long chain acylcarnitine. Circ Res 1988; 63: 1036–1043.

    Article  PubMed  CAS  Google Scholar 

  50. McVeigh JJ, Lopaschuk GD. Dichloroacetate stimulation of glucose oxidation improves recovery of ischemic rat hearts. Am J Physiol 1990; 259: H1079–H1085.

    PubMed  CAS  Google Scholar 

  51. Lopaschuk GD, Wambolt RB, Barr RL. An imbalanc ebetween glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic perfusion of ischemic hearts. J Pharmacol Expt Ther 1993; 264: 135–144.

    CAS  Google Scholar 

  52. Kerbey AL, Vary TC, Randle PJ. Molecular mechanisms regulating myocardial glucose oxidation. Basic Res Cardiol 1985; 80(Suppl 2): 93–96.

    PubMed  CAS  Google Scholar 

  53. Tani M. Mechanisms of 2+overload in reperfused ischemic myocardium. Annu Rev Physiol 1990; 52: 543–559.

    Article  PubMed  CAS  Google Scholar 

  54. Shug AL, Thomsen JH, Folts JD et al. Changes in tissue levels of carnitine and other metabolites during myocardial ischemia and anoxia. Arch Biochem Biophys 1978; 187: 25–33.

    Article  PubMed  CAS  Google Scholar 

  55. Suzuki Y, Kamikawa T, Kobayashi A, Masumura Y, Yamazaki N. Effects of L-carnitine on tissue levels of acyl carnitine, acyl coenzyme A and high energy phosphate in ischemic dog hearts. Jpn Circ J 1981; 45: 687–694.

    Article  PubMed  CAS  Google Scholar 

  56. Oliver MF, Kurien VA, Greenwood TW. Relation between serum-free-fatty acids and arrhythmias and death after acute myocardial infarction. Lancet 1968; 1: 710–714.

    Article  PubMed  CAS  Google Scholar 

  57. Saddik M, Lopaschuk GD. Myocardial triglyceride turnover during reperfusion of isolated rat hearts subjected to a transient period of global ischemia. J Biol Chem 1992; 267: 3825–3831.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schönekess, B.O., Lopaschuk, G.D. (1995). The effects of carnitine on myocardial carbohydrate metabolism. In: De Jong, J.W., Ferrari, R. (eds) The Carnitine System. Developments in Cardiovascular Medicine, vol 162. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0275-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0275-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4122-5

  • Online ISBN: 978-94-011-0275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics