Skip to main content

Control of Biotic and Abiotic Stresses in Cultivated Plants by the Use of Biostimulant Microorganisms

  • Chapter
  • First Online:
Improvement of Crops in the Era of Climatic Changes

Abstract

The need for new eco-friendly control methods against plant diseases and pests requires that the scientific research is focused on effective tools for a safe environment for humans and animal health. The systemic acquired resistance (SAR) represents a valid opportunity in plant natural protection. Particularly, biocontrol microorganisms (BCMs) can be used as inducers of SAR. At the same time, fungal BCMs are able to promote plant growth and development (so acting as plant growth-promoting microorganisms (PGPMs)) that in turn determine a higher tolerance against abiotic stresses, such as drought and salinity. The ability of BCMs and PGPMs of modulating plant defence mechanisms, like SAR, was demonstrated, but the details of this BCM-plant molecular crosstalk are poorly known and many defensive compounds are likely to exist but remain to be identified. For these reasons, BCMs and PGPMs can be defined as “biostimulant microorganisms”, able to foster plant growth and defence against pathogens throughout the crop life cycle, from seed germination to plant maturity. The aim of this chapter is to give an up-to-date overview on the recent breakthroughs in the use of biostimulant microorganisms on plants for improving crop vigour, yields and quality and for increasing plant tolerance against biotic and abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akrami M, Golzary H, Ahmadzadeh M (2011) Evaluation of different combinations of Trichoderma species for controlling Fusarium rot of lentil. Afr J Biotechnol 10(14):2653–2658

    Google Scholar 

  • Amaresan N, Jayakumar V, Kumar K, Thajuddin N (2012) Isolation and characterization of plant growth promoting endophytic bacteria and their effect on tomato (Lycopersicon esculentum) and chilli (Capsicum annuum) seedling growth. Ann Microbiol 62(2):805–810

    Article  CAS  Google Scholar 

  • Ambrico A, Trupo M (2011) Evaluation of the antifungal activity of morphologically distinct colonies of Bacillus subtilis strain ET-1. J Plant Pathol 93(4):S4.25–S4.62

    Google Scholar 

  • Ambrico A, Trupo M, Lopez L (2010) Identification and characterization of Bacillus subtilis ET-1, a strain with antifungal activity against fruit rot pathogens. J Plant Pathol 92(4):S4.72

    Google Scholar 

  • Asada K (1992) Ascorbate peroxidase - a hydrogen peroxide scavenging enzyme in plants. Physiol Plant 85:235–241

    Article  CAS  Google Scholar 

  • AugĂ© RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhizae 11:3–42

    Article  Google Scholar 

  • Avis T, Gravel V, Antoun H, Tweddel RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    Article  CAS  Google Scholar 

  • Baroni F, Boscaglia A, Di Lella LA, Protano G, Riccobono F (2004) Arsenic in soil and vegetation of contaminated areas in southern Tuscany (Italy). J Geochem Explor 81:1–14

    Article  CAS  Google Scholar 

  • Berić T, Kojić M, Stanković S, Topisirović L, Degrassi G, Myers M, Venturi V, Fira D (2012) Antimicrobial activity of Bacillus sp. natural isolates and their potential use in the biocontrol of phytopathogenic bacteria. Food Technol Biotechnol 50(1):25–31

    Google Scholar 

  • Bharti N, Baghel S, Barnawal D, Yadav A, Kalra A (2013) The greater effectiveness of Glomus mosseae and Glomus intraradices in improving productivity, oil content and tolerance of salt-stressed menthol mint (Mentha arvensis). J Sci Food Agric 93:2154–2161

    Article  PubMed  CAS  Google Scholar 

  • Bolwell GP, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F, Rowntree EG, Wojtaszek P (1999) Recent advances in understanding the origin of the apoplastic oxidative burst in plant cells. Free Rad Res 31:S137–S145

    Article  CAS  Google Scholar 

  • Bonneau L, Huguet S, Wipf D, Pauly N, Truong HN (2013) Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytol 199:188–202

    Article  PubMed  CAS  Google Scholar 

  • Buonaurio R, Torro DG, Monatlbini P (1987) Soluble superoxide dismutase (SOD) in susceptible and resistant host-parasite complexes of Phaseolus vulgaris and Uromyces phaseoli. Physiol Pathol 31:173–184

    Article  CAS  Google Scholar 

  • Cohen YR (2002) β-Aminobutyric acid-induced resistance against plant pathogens. Plant Dis 86(5):448–457

    Article  CAS  Google Scholar 

  • Datnoff LE, Nemec S, Pernezny K (1995) Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol Control 5:427–431

    Article  Google Scholar 

  • Dichio B, Tataranni G, Bardas GA, Mavrodimos C, Katis N, Ipsilantis I, Xylogiannis V (2012) Production of micropropagated and mycorrhisated myrobolan 29C rootstock. Acta Hort (ISHS) 966:67–70

    Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    PubMed  CAS  Google Scholar 

  • Djonović S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889

    Article  PubMed  Google Scholar 

  • Dutta S, Podile AR (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36(3):232–244

    Article  PubMed  Google Scholar 

  • Elsharkawy MM, Shimizu M, Takahashi H, Hyakumachi M (2012) The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae induce systemic resistance against Cucumber mosaic virus in cucumber plants. Plant Soil 361:397–409

    Article  CAS  Google Scholar 

  • Estrada B, Barea JM, Aroca R, Ruiz-Lozano JM (2013) A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant Soil 366:339–349

    Article  Google Scholar 

  • Felici C, Vettori L, Toffanin A, Nuti M (2008) Development of a strain-specific genomic marker for monitoring a Bacillus subtilis biocontrol strain in the rhizosphere of tomato. FEMS Microbiol Ecol 65:289–298

    Article  PubMed  CAS  Google Scholar 

  • Fragnière C, Serrano M, Abou-Mansour E, MĂ©traux JP, L’Haridon F (2011) Salicylic acid and its location in response to biotic and abiotic stress. FEBS Lett 585(12):1847–1852

    Article  PubMed  Google Scholar 

  • Gams W, Bissett J (1998) Morphology and identification of Trichoderma. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium, basic biology, taxonomy, and genetics vol 1. Taylor and Francis, London, pp 3–34

    Google Scholar 

  • Gilliland A, Singh DP, Hayward JM, Moore CA, Murphy AM, York CJ, Slator J, Carr JP (2003) Genetic modification of alternative respiration has differential effects on antimycin A-induced versus salicylic acid-induced resistance to Tobacco mosaic virus. Plant Physiol 132:1518–1528

    Article  PubMed  CAS  Google Scholar 

  • Grinyer J, Hunt S, McKay M, Herbert BR, Nevalainen H (2005) Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani. Curr Genet 47(6):381–388

    Article  PubMed  CAS  Google Scholar 

  • Harman GE, Lorito M, Lynch JM (2004) Uses of Trichoderma spp. to alleviate or remediate soil and water pollution. In: Laskin AI, Bennett JW, Gadd GM (eds) Advances in Applied Microbiology, vol 56. Elsevier Academic Press, San Diego, CA, USA, pp 313–330

    Google Scholar 

  • Hernández-Suárez M, Hernández-Castillo FD, Gallegos-Morales G, Lira-Saldivar RH, RodrĂ­guez-Herrera R, Aguilar CN (2011) Biocontrol of soil fungi in tomato with microencapsulates containing Bacillus subtilis. Am J Agri & Biol Sci 6(2):189–195

    Article  Google Scholar 

  • Hogekamp C, KĂĽster H (2013) A roadmap of cell-type specific gene expression during sequential stages of the arbuscular mycorrhiza symbiosis. BMC Genomics 14:306

    Article  PubMed  CAS  Google Scholar 

  • Kaewchai S, Soytong K, Hyde KD (2009) Mycofungicides and fungal biofertilizers. Fungal Divers 38:25–50

    Google Scholar 

  • Kauss H, Krause K, Jeblick W (1992) Methyl jasmonate conditions parsley suspension cells for increased elicitation of phenylpropanoid defense responses. Biochem Biophys Res Commun 189:304–308

    Article  PubMed  CAS  Google Scholar 

  • Kogel KH, Franken P, Huckelhoven R (2006) Endophyte or parasite-what decides? Curr Opin Plant Biol 9:358–363

    Article  PubMed  Google Scholar 

  • Krouk G, Ruffel S, GutiĂ©rrez RA, Gojon A, Crawford NM, Coruzzi GM, Lacombe B (2011) A framework integrating plant growth with hormones and nutrients. Trends Plant Sci 16(4):178–182

    Article  PubMed  CAS  Google Scholar 

  • Kuć J (1982) Induced immunity to plant disease. BioScience 32:854–860

    Article  Google Scholar 

  • LegendrĂ© L, Heinstein PF, Low PS (1992) Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cells. J Biol Chem 267:20140–20147

    PubMed  Google Scholar 

  • Leung HM, Leung AO, Ye ZH, Cheung KC, Yung KK (2013) Mixed arbuscular mycorrhizal (AM) fungal application to improve growth and arsenic accumulation of Pteris vittata (As hyperaccumulator) grown in As-contaminated soil. Chemosphere S0045-6535((13):00718–2

    Google Scholar 

  • Li T, Hu YJ, Hao ZP, Li H, Chen BD (2013) Aquaporin genes GintAQPF1 and GintAQPF2 from Glomus intraradices contribute to plant drought tolerance. Plant Signal Behav 8:e24030

    Article  PubMed  Google Scholar 

  • Luo Y, Zhang DD, Dong XW, Zhao PB, Chen LL, Song XY, Wang XJ, Chen XL, Shi M, Zhang YZ (2010) Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against Tobacco mosaic virus. FEMS Microbiol Lett 313:120–126

    Article  PubMed  CAS  Google Scholar 

  • Mathivanan N, Prabavathy VR, Vijayanandraj VR (2008) The effect of fungal secondary metabolites on bacterial and fungal pathogens. In: Karlovsky P (ed) Secondary metabolites in soil ecology. Soil biology, vol 14. Springer, Berlin, pp 129–140

    Chapter  Google Scholar 

  • Mayers CN, Lee KC, Moore CA, Wong SM, Carr JP (2005) Salicylic acid-induced resistance to Cucumber mosaic virus in squash and Arabidopsis thaliana: contrasting mechanisms of induction and antiviral action. Mol Plant Microbe Interact 18(5):428–434

    Article  PubMed  CAS  Google Scholar 

  • Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18:243–270

    Article  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  PubMed  CAS  Google Scholar 

  • Ross AF (1961) Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340–358

    Article  PubMed  CAS  Google Scholar 

  • Ryals JA, Neuenschwande UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    PubMed  CAS  Google Scholar 

  • Samolski I, de Luis A, Vizcaino JA, Monte E, Suarez MB (2009) Gene expression analysis of the biocontrol fungus Trichoderma harzianum in the presence of tomato plants, chitin, or glucose using a high-density oligonucleotide microarray. BMC Microbiol 9:217–231

    Article  PubMed  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutase. Plant Physiol 101:7–12

    PubMed  CAS  Google Scholar 

  • Scandalios JG, Guan L, Polidoros AN (1997) Catalases in plants: gene structure, properties, regulation, and expression. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 343–406

    Google Scholar 

  • Schwacke R, Hager A (1992) Fungal elicitors induce a transient release of active oxygen species from cultured spruce cells that is dependent on Ca2+ and protein-kinase activity. Planta 187:136–141

    Article  PubMed  CAS  Google Scholar 

  • Segarra G, Van der Ent S, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 11:90–96

    Article  PubMed  CAS  Google Scholar 

  • Shi M, Chen L, Wang XW, Zhang T, Zhao PB, Song XY, Sun CY, Chen XL, Zhou BC, Zhang YZ (2012) Antimicrobial peptaibols from Trichoderma pseudokoningii induce programmed cell death in plant fungal pathogens. Microbiology 158(1):166–175

    Article  PubMed  CAS  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  PubMed  CAS  Google Scholar 

  • Singh DP, Moore CA, Gilliland A, Carr JP (2004) Activation of multiple anti-viral defence mechanisms by salicylic acid. Mol Plant Pathol 5:57–63

    Article  PubMed  CAS  Google Scholar 

  • Sofo A, Milella L, Tataranni G (2010) Effects of Trichoderma harzianum strain T-22 on the growth of two Prunus rootstocks during the rooting phase. J Hortic Sci Biotechnol 85:497–502

    Google Scholar 

  • Sofo A, Scopa A, Manfra M, De Nisco M, Tenore G, Trisi J, Di Fiori R, Novellino E (2011) Trichoderma harzianum strain T-22 induces changes in phytohormone levels in cherry rootstocks (Prunus cerasus X P. canescens). Plant Growth Regul 65:421–425

    Article  CAS  Google Scholar 

  • Sofo A, Tataranni G, Di Chio B, Xiloyannis C, Scopa A (2012) Direct effects of Trichoderma harzianum strain T22 on micropropagated GiSeLa6® (Prunus pp) rootstocks. Env Exp Bot 76:33–38

    Article  CAS  Google Scholar 

  • Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Article  Google Scholar 

  • Van Breusegem F, Vranová E, Dat JF, InzĂ© D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:05–414

    Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • Vargas WA, Djonović S, Sukno SA, Kenerley CM (2008) Dimerization controls the activity of fungal elicitors that trigger systemic resistance in plants. J Biol Chem 283:19804–19815

    Article  PubMed  CAS  Google Scholar 

  • Verma M, Brar SK, Tyagi RD, Surampalli RY, ValĂ©ro JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20

    Article  Google Scholar 

  • Wang S, Wu H, Qiao J, Ma L, Liu J, Xia Y, Gao X (2009) Molecular mechanism of plant growth promotion and induced systemic resistance to Tobacco mosaic virus by Bacillus spp. J Microbiol Biotechnol 19(10):1250–1258

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Wu H, Zhan J, Xia Y, Gao S, Wang W, Xue P, Gao X (2011) The role of synergistic action and molecular mechanism in the effect of genetically engineered strain Bacillus subtilis OKBHF in enhancing tomato growth and Cucumber mosaic virus resistance. BioControl 56:113–121

    Article  CAS  Google Scholar 

  • Whitmore L, Wallace BA (2004) The peptaibol database: a database for sequences and structures of naturally occurring peptaibols. Nucl Acids Res 32(1):D593–D594

    Article  PubMed  CAS  Google Scholar 

  • Woo SL, Scala F, Ruocco M, Lorito M (2006) The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Am Phytopathol Soc 96(2):181–185

    Article  CAS  Google Scholar 

  • Wu Q, Bai L, Liu W, Li Y, Lu C, Li Y, Fu K, Yu C, Chen J (2013) Construction of a Streptomyces lydicus A01 transformant with a chit42 gene from Trichoderma harzianum P1 and evaluation of its biocontrol activity against Botrytis cinerea. J Microbiol 51:166–173

    Article  PubMed  CAS  Google Scholar 

  • Yeoh KA, Othman A, Meon S, Abdullah F, Ho CL (2013) Sequence analysis and gene expression of putative oil palm chitinase and chitinase-like proteins in response to colonization of Ganoderma boninense and Trichoderma harzianum. Mol Biol Rep 40:147–158

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Sofo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sofo, A., Nuzzaci, M., Vitti, A., Tataranni, G., Scopa, A. (2014). Control of Biotic and Abiotic Stresses in Cultivated Plants by the Use of Biostimulant Microorganisms. In: Ahmad, P., Wani, M., Azooz, M., Tran, LS. (eds) Improvement of Crops in the Era of Climatic Changes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8830-9_5

Download citation

Publish with us

Policies and ethics