Skip to main content

Recent Advances in Rapid and Sensitive Screening For Abiotic Stress Tolerance

  • Chapter
  • First Online:
Improvement of Crops in the Era of Climatic Changes

Abstract

Traditionally, screening for abiotic stress tolerance at field level was based on necrosis scores and shoot biomass reduction on stress exposure, relative to unstressed controls. However, such a measure of tolerance screening is laborious, destructive, and time consuming, and results are subjected to environmental variation. Recently, noninvasive, high-throughput screening techniques have been developed for screening abiotic stress tolerance in crops. In this direction, some physiological, biochemical, and/or molecular indicators/markers have been identified for rapid and sensitive indirect screening of germplasm. Physiological markers like membrane damage based on electrolyte leakage, stomatal conductance, chlorophyll content and so on are currently available. In addition, quick and sensitive screening in crop plants is possible with biochemical markers like status of reactive oxygen species and oxidative damage to biological macromolecules like lipids, proteins, and nucleic acids. Identification of molecular markers associated with the tolerance response has also made rapid and sensitive indirect selection possible in a few crop species. Thus, development of such methods is valuable in breeding for abiotic stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akpınar BA, Lucas SJ, Budak H (2013) Genomics approaches for crop improvement against abiotic stress. Sci World J 2013. Article ID 361921,9

    Google Scholar 

  • Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183

    Article  CAS  PubMed  Google Scholar 

  • Ashraf MA, Ashraf M, Ali Q (2010) Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents. Pak J Bot 42(1):559–565

    CAS  Google Scholar 

  • Ashraf M, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breeding 132(1):10–20

    Article  Google Scholar 

  • Arenhart RA, Lima JC, Pedron M, Carvalho FE, Silveira JA, Rosa SB, Caverzan A, Andrade CM, Schünemann M, Margis R, Margis-Pinheiro M (2013) Involvement of ASR genes in aluminium tolerance mechanisms in rice. Plant Cell Environ 36(1):52–67

    Article  CAS  PubMed  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Bernardo R (2009) Genomewide selection for rapid introgression of exotic germplasm in maize. Crop Sci 49:419–425

    Article  Google Scholar 

  • Bernardo R (2010) Genomewide selection with minimal crossing in self-pollinated crops. Crop Sci 50:624–627

    Google Scholar 

  • Berger B, Parent B, Tester M (2010) High-throughput shoot imaging to study drought responses. J Exp Botany 61:3519–3528

    Google Scholar 

  • Bernardo R (2010) Genomewide selection with minimal crossing in self-pollinated crops. Crop Sci 50:624–627

    Article  Google Scholar 

  • Chaerle L, Hagenbeek D, De Bruyne E, Van Der Straete D (2007a) Chlorophyll fluorescence imaging for disease-resistance screening of sugar beet. Plant Cell Tiss Organ Cult 91:97–106

    Article  CAS  Google Scholar 

  • Chaerle L, Leinonen I, Jones HG, Van Der Straeten D (2007b) Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. J Exp Bot 58(4):773–784

    Article  CAS  Google Scholar 

  • Chen ZH, Zhou MX, Newman IA, Mendham NJ, Zhang GP, Shabala S (2007) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34:150–162

    Article  CAS  Google Scholar 

  • Coram TE, Mantri N, Ford R, Pang ECK (2007) Evans Review No. 4: functional genomics in chickpea: an emerging frontier for molecular-assisted breeding. Funct Plant Biol 34:861–873

    Article  CAS  Google Scholar 

  • Delannay X, McLaren G, Ribaut JM (2012) Fostering molecular breeding in developing countries. Mol Breeding 29 (4):857–873

    Article  CAS  Google Scholar 

  • Duran C, Appleby N, Clark T, Wood D, Imelfort M, Batley J, Edwards D (2009) AutoSNPdb: an annotated single nucleotide polymorphism database for crop plants. Nucleic Acids Res 37:D951–953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • El-Shabrawi H, Kumar B, Kaul T, Reddy MK, Singla-Pareek SL, Sopory SK (2010) Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma 245(1–4):85–96

    Article  CAS  PubMed  Google Scholar 

  • Gomathi R, Rakkiyapan P (2011) Comparative lipid peroxidation, leaf membrane thermostability, and antioxidant system in four sugarcane genotypes differing in salt tolerance. Int J Plant Physiol Biochem 3(4):67–74

    CAS  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Heiskanen J (2006) Estimated aboveground tree biomass and leaf area index in a mountain birch forest using ASTER satellite data. Int J Remote Sens 27:1135–1158

    Article  Google Scholar 

  • Huseynova IM, Rustamova SM (2010) Screening for drought stress tolerance in wheat genotypes using molecular markers. Proc ANAS (Biol Sci) 65(5–6):132–139

    Google Scholar 

  • Jiang Q, Roche D, Monaco TA, Durham S (2006) Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. Field Crops Res 96:269–278

    Article  Google Scholar 

  • Jones HG, Schofield P (2008) Thermal and other remote sensing of plant stress. Gen Appl Plant Physiol 34(1–2):19–32 (Spl Issue)

    Google Scholar 

  • Jones HG, Serraj R, Loveys BR, Xiong L, Wheaton A, Price AH (2009) Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct Plant Biol 36:978–989

    Google Scholar 

  • Lang NT, Buu BC, Ismail A (2008) Molecular mapping and marker assisted selection for salt tolerance in rice (Oryza sativa L.). Omonrice 16:50–56

    Google Scholar 

  • Mantri N, Ford R, Coram TE, Pang ECK (2010a) Evidence of unique and shared responses to major biotic and abiotic stresses in chickpea. Environ Exp Bot 69(3):286–292

    Article  Google Scholar 

  • Mantri N, Pang ECK, Ford R (2010b) Molecular biology for stress management. In: Yadav S, McNeil D, Redden R, Patil S (eds) Climate change and management of cool season grain legume crops. Springer, Science + Business Media NY, USA, pp 377–408

    Google Scholar 

  • Mantri N, Patade V, Penna S, Ford R, Pang ECK (2012) Abiotic stress responses in plants—present and future. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism to productivity. Springer, Science + Business Media NY, USA, pp 1–19

    Google Scholar 

  • Matous K, Benediktyová Z, Berger S, Roitsch T, Nedbal L (2006) Case study of combinatorial imaging: what protocol and what chlorophyll fluorescence image to use when visualizing infection of Arabidopsis thaliana by Pseudomonas syringae? Photosynth Res 90(3):243–253

    Article  CAS  PubMed  Google Scholar 

  • Masuka B, Araus JL, Das B, Sonder K, Cairns JE (2012) Phenotyping for abiotic stress tolerance in maize. J Integr Plant Biol 54(4):238–249

    Article  CAS  PubMed  Google Scholar 

  • McCouch SR, Zhao K, Wright M, Tung CW, Ebana K, Thomson M, Reynolds A, Wang D, DeClerck G, Ali ML, McClung A, Eizenga G, Bustamante C (2010) Development of genome-wide SNP assays for rice. Breed Sci 60:524–535

    Article  Google Scholar 

  • McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau TE, Stokowski R, Ballinger DG, Frazer KA, Cox DR, Padhukasahasram B, Bustamante CD, Weigel D, Mackill DJ, Bruskiewich RM, Rätsch G, Buell CR, Leung H, Leach JE (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci U S A 106(30):12273–12278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mishra A, Mishra KB, Höermiller II, Heyer AG, Nedbal L (2011) Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions. Plant Signal Behav 6(2):301–310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Monneveux P, Reynolds MP, Trethowan R, González-Santoyo H, Peña RJ, Zapata F (2005) Relationship between grain yield and carbon isotope discrimination in bread wheat under four water regimes. European J Agron 22(2):231–242

    Article  CAS  Google Scholar 

  • Monneveux P, Rekika D, Acevedo E, Merah O (2006) Effect of drought on leaf gas exchange, carbon isotope discrimination, transpiration efficiency and productivity in field grown durum wheat genotypes. Plant Sci 170(4):867–872

    Article  CAS  Google Scholar 

  • Morison JIL, Baker NR, Mullineaux PM, Davies WJ (2008) Improving water use in crop production. Philos Trans R Soc B Biol Sci 363:639–658

    Google Scholar 

  • Moses FA, McNeil MD, Redden B, Kollmorgen JF, Pittock C (2008) Sampling strategies and screening of chickpea (Cicer arietinum L.) germplasm for salt tolerance. Genet Resour Crop Evol 55:53–63

    Article  Google Scholar 

  • Munns R, James RA (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218

    Article  CAS  Google Scholar 

  • Natarajkumar P, Sujatha K, Laha GS, Viraktamath BC, Reddy CS, Mishra B, Balachandran SM, Ram T, Srinivasarao K, Hari Y, Sundaram RM (2010) Identification of a dominant bacterial blight resistance gene from Oryza nivara and its molecular mapping. Rice Genet Newsl 25:22

    Google Scholar 

  • Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK, Ma B, Lin Q, Zhang ZB, Zhang JS, Chen SY (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35(6):1156–1170

    Article  CAS  PubMed  Google Scholar 

  • Patade VY, Suprasanna P (2008) Radiation induced in vitro mutagenesis for sugarcane improvement. Sugar Tech 10(1):14–19

    Article  CAS  Google Scholar 

  • Patade VY, Suprasanna P (2009) An in vitro radiation induced mutagenesis-selection system for salinity tolerance in sugarcane. Sugar Tech 11(3):246–251

    Article  CAS  Google Scholar 

  • Patade VY, Suprasanna P, Bapat VA (2008) Gamma irradiation of embryogenic callus cultures and in vitro selection for salt tolerance in sugarcane (Saccharum offcinarum L.). Agril Sci China 7(9):101–105

    Google Scholar 

  • Patade VY, Bhargava S, Suprasanna P (2011a) Transcript expression profiling of stress responsive genes in response to short-term salt or PEG stress in sugarcane leaves. Mol Biol Rep doi:10.1007/s11033-011-1100-z

    Google Scholar 

  • Patade VY, Bhargava S, Suprasanna P (2011b) Effects of NaCl and iso-osmotic PEG stress on growth, osmolytes accumulation and antioxidant defense in cultured sugarcane cells. Plant Cell Tiss Organ Cult doi:10.1007/s11240-011-0041-5

    Google Scholar 

  • Patade VY, Bhargava S, Suprasanna P (2011c) Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress: growth, osmolytes accumulation and antioxidant defense. J Plant Interact doi:10.1080/17429145.2011.557513

    Google Scholar 

  • Porch TG (2006) Application of stress indices for heat tolerance screening of common bean. J Agron Crop Sci 192:390–394

    Article  Google Scholar 

  • Raman H, Moroni JH, Saito K, Read BJ, Scott BJ (2002) Identification of AFLP and microsatellite markers linked with an aluminium tolerance gene in barley (Hordeum vulgare L.). Theor Appl Genet 105(2–3):458–464

    CAS  PubMed  Google Scholar 

  • Raman H, Karakousis A, Moroni JS, Raman R, Read B, Garvin DF, Kochian LV, Sorrells ME (2003) Development and allele diversity of microsatellite markers linked to the aluminium tolerance gene Alp in barley. Aust J Agric Res 54(12):1315–1321

    Article  CAS  Google Scholar 

  • Rahnama A, James R, Poustini K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37(3):255–263

    Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32:237–249

    Google Scholar 

  • Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58(2):351–360

    Article  CAS  PubMed  Google Scholar 

  • Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opinion Plant Biol 14(3):232–239

    Google Scholar 

  • Siddiqi EH, Ashraf M, Hussain M, Jamil A (2009) Assessment of inter-cultivar variation for salttolerance in safflower (Carthamus tinctorius L.) using gas exchange characteristics as selection criteria. Pak J Bot 41(5):2251–2259

    CAS  Google Scholar 

  • Smethurst CF, Gill WM, Shabala S (2009) Using excised leaves to screen lucerne for salt tolerance: physiological and cytological evidence. Plant Signal Behav 4(1):39–41

    Google Scholar 

  • Sorkheh K, Shiran B, Khodambshi M, Rouhi V, Ercisli S (2011) In vitro assay of native Iranian almond species (Prunus L. spp.) for drought tolerance. Plant Cell Tiss Organ Cult 105:395–404

    Article  Google Scholar 

  • Stodart BJ, Raman H, Coombes N, Mackay M (2007) Evaluating landraces of bread wheat Triticum aestivum L. for tolerance to aluminium under low pH conditions. Genetic Resor Crop Evol 54(4):759–766

    Article  Google Scholar 

  • Tang Y, Sorrells ME, Kochian LV, Gravan DF (2000) Identification of RFLP markers linked to the barley aluminium tolerance gene Alp. Crop Sci 40:778–782

    Article  CAS  Google Scholar 

  • Thakur A (2004) Use of easy and less expensive methodology to rapidly screen fruit crops for drought tolerance. Acta Hort 662:231–235

    Google Scholar 

  • Tsiatas JT, Tokatlidis IS, Tsikrikoni C, Lithourgidis AS (2008) Leaf carbon isotope discrimination, ash content and K relationships with seedcotton yield and lint quality in lines of Gossypium hirsutum L. Field Crops Res 107(1):70–77

    Article  Google Scholar 

  • Tung CW, Zhao K, Wright MH, Ali ML, Jung J, Kimball J, Tyagi W, Thomson MJ, McNally K, Leung H (2010) Development of a research platform for dissecting phenotype–genotype associations in rice (Oryza spp.). Rice 3(4):205–217

    Article  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27(9):522–530

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Raman H, Zhou M, Ryan PR, Delhaize E, Hebb DM, Coombes N, Mendham N (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 115:265–276

    Google Scholar 

  • Wang JP, Raman H, Zhang GP, Mendham N, Zhou MX (2006) Aluminium tolerance in barley (Hordeum vulgare L.): physiological mechanisms, genetics and screening methods. J Zhejiang Univ Sci B 7(10):769–787

    Google Scholar 

  • Wang JK, Chapman SC, Bonnett DG, Rebetzke GJ, Crouch J (2007) Application of population genetic theory and simulation models to efficiently pyramid multiple genes via marker-assisted selection. Crop Sci 47:582–590

    Article  Google Scholar 

  • White JW, Andrade-Sanchez P, Gore MA, Bronsona KF, Coffelt TA, Conley MM, Feldmann KA, French AN, Heun JT (2012) Field-based phenomics for plant genetics research. Field Crops Res 133:101–112

    Article  Google Scholar 

  • Wei B, Jing R, Wang Ch, Chen J, Mao X, Chang X, Jia J (2009) Dreb1 genes in wheat (Triticum aestivum L.): development of functional markers and gene mapping based on SNPs. Mol Breed 23:13–22

    Article  CAS  Google Scholar 

  • West JD, Peak D, Peterson JQ, Mott KA (2005) Dynamics of stomatal patches for a single surface of Xanthium strumarium L. leaves observed with fluorescence and thermal images. Plant Cell Environ 28:633–641

    Article  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Yang W, Duan L, Chen G, Xiong L, Liu Q (2013) Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Curr Opin Plant Biol 16(2):180–187

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Fu J, Gou M, Huai J, Liu Y, Jian M, Huang Q, Guo X, Dong Z, Wang H, Wang G (2010) Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol Biol 72:407–423

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Liang ZS, Xu X, Li SH, Monneveux P (2009) Evidences for the association between carbon isotope discrimination and grain yield—Ash content and stem carbohydrate in spring wheat grown in Ningxia (Northwest China). Plant Sci 176(6):758–767

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Mantri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mantri, N., Patade, V., Pang, E. (2014). Recent Advances in Rapid and Sensitive Screening For Abiotic Stress Tolerance. In: Ahmad, P., Wani, M., Azooz, M., Phan Tran, LS. (eds) Improvement of Crops in the Era of Climatic Changes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8824-8_2

Download citation

Publish with us

Policies and ethics