Skip to main content

Aging and Markers of Adverse Remodeling After Myocardial Infarction

  • Chapter
  • First Online:
Cardiac Remodeling

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 5))

Abstract

Acute myocardial infarction (MI) is a catastrophic event in patients aged 18 years and above. While improved coronary reperfusion strategies and medical therapies over the last 2 decades have increased survival, hearts of survivors undergo progressive remodeling with changes in structure, size, shape, and systolic function that lead to heart failure. Morbidity from heart failure in post-MI survivors remains high, especially after ST-segment-elevation MI (STEMI) and in older compared to younger patients. Cumulative knowledge of the biology of cardiovascular aging suggests that the aging process is progressive and results in physiological, cellular, and molecular changes that can negatively impact post-MI remodeling. Emerging evidence suggests that aging may adversely influence key factors in post-MI remodeling, including the extent of damage to the cardiac muscle and extracellular matrix (ECM) on the one hand and adequacy of the healing/repair process (with inflammation, ECM remodeling, fibrosis, hypertrophy, and angiogenesis) on the other. These effects may result in differential outcomes of therapy between younger and older survivors of STEMI. Furthermore, reperfusion therapy that is delayed beyond several minutes of acute STEMI results in significant reperfusion damage and adverse remodeling that may be amplified with aging. Biomarkers, including emerging healing-specific proteins, can be used not only to noninvasively monitor the remodeling process and responses to therapy but also to predict adverse post-STEMI remodeling and clinical outcome. Novel biomarkers of adverse remodeling hold great promise for developing novel therapeutic strategies to limit adverse remodeling and improve outcome after STEMI in patients of different ages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michorowski B, Senaratne PJM, Jugdutt BI (1987) Myocardial infarct expansion. Cardiovasc Rev Rep 8:42–47

    Google Scholar 

  2. Michorowski B, Senaratne PJM, Jugdutt BI (1987) Deterring myocardial infarct expansion. Cardiovasc Rev Rep 8:55–62

    Google Scholar 

  3. Pfeffer MA, Braunwald E (1990) Ventricular remodelling after myocardial infarction. Circulation 81:1161–1172

    Article  PubMed  CAS  Google Scholar 

  4. Jugdutt BI (1990) Identification of patients prone to infarct expansion by the degree of regional shape distortion on an early two-dimensional echocardiogram after myocardial infarction. Clin Cardiol 13:28–40

    Article  PubMed  CAS  Google Scholar 

  5. Alexander KP, Newby LK, Armstrong PW et al (2007) American Heart Association Council on Clinical Cardiology; Society of Geriatric Cardiology. Acute coronary care in the elderly, Part II. ST-segment-elevation myocardial infarction. A scientific statement for healthcare professionals from the American Heart Association Council for Clinical Cardiology. Circulation 115:2570–2589

    Article  PubMed  Google Scholar 

  6. American Heart Association (2006) Heart disease and stroke statistics-2006 update. A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113:e85–e151

    Article  Google Scholar 

  7. Cheitlin MD, Zipes DP (2001) Cardiovascular disease in the elderly. In: Braunwald E, Zipes DP, Libby P (eds) Heart Disease. WB Saunders, Philadelphia, PA, pp 2019–2037

    Google Scholar 

  8. Jugdutt BI (2008) Aging and remodeling during healing of the wounded heart: current therapies and novel drug targets. Curr Drug Targets 9:325–344

    Article  PubMed  CAS  Google Scholar 

  9. Libby P (2001) Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104:365–372

    Article  PubMed  CAS  Google Scholar 

  10. DeWood MA, Stifter WF, Simpson CS et al (1986) Coronary arteriographic findings soon after non-Q-wave myocardial infarction. N Engl J Med 315:417–423

    Article  PubMed  CAS  Google Scholar 

  11. DeWood MA, Spores J, Notske R et al (1980) Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 303:897–902

    Article  PubMed  CAS  Google Scholar 

  12. de Feyter PJ, van den Brand M, Serruys PW, Wijns W (1985) Early angiography after myocardial infarction: what have we learned? Am Heart J 109:194–199

    Article  PubMed  Google Scholar 

  13. Man J, Tymchak W, Jugdutt BI (2010) Adjunctive pharmacologic treatment for acute myocardial infarction. In: Brown DL, Jeremias A (eds) Textbook of cardiac intensive care, 2nd edn. Elsevier, Philadelphia, pp 1–72

    Google Scholar 

  14. Jugdutt BI, Hutchins GM, Bulkley BH, Becker LC (1979) Myocardial infarction in the conscious dog: three dimensional mapping of infarct, collateral flow and region at risk. Circulation 60:1141–1150

    Article  PubMed  CAS  Google Scholar 

  15. Jugdutt BI, Khan MI (1992) Impact of increased infarct transmurality on remodeling and function during healing after anterior myocardial infarction in the dog. Can J Physiol Pharmacol 70:949–958

    Article  PubMed  CAS  Google Scholar 

  16. Jugdutt BI, Tang SB, Khan MI et al (1992) Functional impact on remodeling during healing after non-Q-wave versus Q-wave anterior myocardial infarction in the dog. J Am Coll Cardiol 20:722–731

    Article  PubMed  CAS  Google Scholar 

  17. Alpert JS, Thygesen K, Antman E, Bassand JP (2000) Myocardial infarction redefined–a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 36:959–969

    Article  PubMed  CAS  Google Scholar 

  18. Thygesen K, Alpert JS, White HD (2007) Joint ESC/ACCF/AHA/WHF task force for the redefinition of myocardial infarction. Universal definition of myocardial infarction. Eur Heart J 28:2525–2538

    Article  PubMed  Google Scholar 

  19. Braunwald E (1976) Protection of ischemic myocardium. Introductory remarks. Circulation 53:I-1–I-2

    Article  CAS  Google Scholar 

  20. Reimer KA, Jennings RB (1979) The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 40:633–644

    PubMed  CAS  Google Scholar 

  21. Jugdutt BI (1993) Prevention of ventricular remodelling post myocardial infarction: timing and duration of therapy. Can J Cardiol 9:103–114

    PubMed  CAS  Google Scholar 

  22. Jugdutt BI (1996) Prevention of ventricular remodeling after myocardial infarction and in congestive heart failure. Heart Fail Rev 1:115–129

    Article  Google Scholar 

  23. Jugdutt BI (2003) Ventricular remodeling post-infarction and the extracellular collagen matrix. When is enough enough? Circulation 108:1395–1403

    Article  PubMed  Google Scholar 

  24. Jugdutt BI (2003) Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Curr Drug Targets Cardiovasc Haematol Disord 3:1–30

    Article  PubMed  CAS  Google Scholar 

  25. Lewis EF, Moye LA, Rouleau JL et al (2003) Predictors of late development of heart failure in stable survivors of myocardial infarction: the CARE study. J Am Coll Cardiol 42:1446–1453

    Article  PubMed  Google Scholar 

  26. Jugdutt BI (2012) Prevention of heart failure in the elderly: when, where and how to begin? Heart Fail Rev 17:531–544

    Article  PubMed  Google Scholar 

  27. Jugdutt BI, Jelani A, Palaniyappan A et al (2010) Aging-related changes in markers of ventricular and matrix remodelling after reperfused ST-segment elevation myocardial infarction in the canine model. Effect of early therapy with an angiotensin II type 1 receptor blocker. Circulation 122:341–351

    Article  PubMed  CAS  Google Scholar 

  28. Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66:1146–1149

    Article  PubMed  CAS  Google Scholar 

  29. Kloner RA, Ellis SG, Lange R (1983) Studies of experimental coronary artery reperfusion: effects on infarct size, myocardial function, biochemistry, ultrastructure and microvascular damage. Circulation 68(Suppl I):I-8–I-15

    CAS  Google Scholar 

  30. Zhao MJ, Zhang H, Robinson TF, Factor SM, Sonnenblick EH, Eng C (1987) Profound structural alterations of the extracellular collagen matrix in postischemic dysfunctional (“stunned”) but viable myocardium. J Am Coll Cardiol 10:1322–1334

    Article  PubMed  CAS  Google Scholar 

  31. Charney RH, Takahashi S, Zhao M et al (1992) Collagen loss in the stunned myocardium. Circulation 85:1483–1490

    Article  PubMed  CAS  Google Scholar 

  32. Fliss H, Gattinger D (1996) Apoptosis in ischemic and reperfused rat myocardium. Circ Res 76:949–956

    Article  Google Scholar 

  33. Ohno M, Takemura G, Ohno A (1998) “Apoptotic” myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation: analysis by immunogold electron microscopy combined with In situ nick end-labeling. Circulation 98:1422–1430

    Article  PubMed  CAS  Google Scholar 

  34. Matsumura K, Jeremy RW, Schaper J et al (1998) Progression of myocardial necrosis during reperfusion of ischemic myocardium. Circulation 97:795–804

    Article  PubMed  CAS  Google Scholar 

  35. Reffelmann T, Hale SL, Dow JS, Kloner RA (2003) No-reflow phenomenon persists long-term after ischemia/reperfusion in the rat and predicts infarct expansion. Circulation 108:2911–2917

    Article  PubMed  Google Scholar 

  36. Orn S, Manhenke C, Greve OJ, Larsen AI, Bonarjee VVS, Edvardsen T, Dickstein K (2009) Microvascular obstruction is a major determinant of infarct healing and subsequent left ventricular remodelling following primary percutaneous coronary intervention. Eur Heart J 30:1978–1985

    Article  PubMed  Google Scholar 

  37. Hamdan A, Kornowski R, Solodky A et al (2006) Predictors of left ventricular dysfunction in patients with first acute anterior myocardial infarction undergoing primary angioplasty. IMAJ 8:532–535

    PubMed  Google Scholar 

  38. Bolognese L, Neskovic AN, Parodi G et al (2002) Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prognostic implications. Circulation 106:2351–2357

    Article  PubMed  Google Scholar 

  39. St John Sutton M, Pfeffer MA, Moye L (1997) Cardiovascular death and left ventricular remodeling two years after myocardial infarction: baseline predictors and impact of long-term use of captopril: information from the Survival and Ventricular Enlargement (SAVE) trial. Circulation 96:3294–3299

    Article  PubMed  CAS  Google Scholar 

  40. Maggioni AP, Maseri A, Fresco C et al (1993) Age-related increase in mortality among patients with first myocardial infarctions treated with thrombolysis. The investigators of the gruppo Italiano per lo Studio della supravvivenza nell’Infarcto Miocardico (GISSI-2). N Engl J Med 329:1442–1448

    Article  PubMed  CAS  Google Scholar 

  41. Ferrari R, The PREAMI Investigators (2006) Effects of angiotensin-converting enzyme inhibition with peridopril on left ventricular remodeling and clinical outcome. Results of the randomized perindopril and remodeling elderly with acute myocardial infarction (PREAMI) Study. Arch Intern Med 166:659–666

    Article  PubMed  CAS  Google Scholar 

  42. Jelani A, Jugdutt BI (2010) STEMI and heart failure in the elderly: role of adverse remodeling. Heart Fail Rev 15:513–521

    Article  PubMed  Google Scholar 

  43. Fujiwara H, Ashraf M, Sato S et al (1982) Transmural cellular damage and blood flow distribution in early ischemia in pig heart. Circ Res 51:683–693

    Article  PubMed  CAS  Google Scholar 

  44. Sato S, Ashraf M, Millard RW et al (1983) Connective tissue changes in early ischemia of porcine myocardium: an ultrastructural study. J Mol Cell Cardiol 15:261–275

    Article  PubMed  CAS  Google Scholar 

  45. Przyklenk K, Kloner RA (1986) Superoxide dismutase plus catalase improve contractile function in the canine model of the stunned myocardium. Circ Res 58:148–156

    Article  PubMed  CAS  Google Scholar 

  46. Takahashi S, Barry AC, Factor SM (1990) Collagen degradation in ischaemic rat hearts. Biochem J 265:233–241

    PubMed  CAS  Google Scholar 

  47. Danielsen CC, Wiggers H, Anderson HR (1998) Increased amounts of collagenase and gelatinase in porcine myocardium following ischemia and reperfusion. J Mol Cell Cardiol 30:1431–1442

    Article  PubMed  CAS  Google Scholar 

  48. Sawicki G, Menon V, Jugdutt BI (2004) Improved balance between TIMP-3 and MMP-9 after regional myocardial ischemia-reperfusion during AT1 receptor blockade. J Card Fail 10:442–449

    Article  PubMed  CAS  Google Scholar 

  49. Connelly CM, Vogel WM, Wiegner AW et al (1985) Effects of reperfusion after coronary artery occlusion on post-infarction scar tissue. Circ Res 57:562–577

    Article  PubMed  CAS  Google Scholar 

  50. Murakami T, Kusachi S, Murakami M et al (1998) Time-dependent changes of serum carboxy-terminal peptide of type I procollagen and carboxy-terminal telopeptide of type I collagen concentrations in patients with acute myocardial infarction after successful reperfusion: correlation with left ventricular volume indices. Clin Chem 44:2453–2461

    PubMed  CAS  Google Scholar 

  51. Vinten-Johansen J (2004) Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 61:481–497

    Article  PubMed  CAS  Google Scholar 

  52. Kim CB, Braunwald E (1993) Potential benefits of late reperfusion of infarcted myocardium. The open artery hypothesis. Circulation 88:2426–2436

    Article  PubMed  CAS  Google Scholar 

  53. Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47

    Article  PubMed  CAS  Google Scholar 

  54. Ertl G, Franz S (2005) Healing after myocardial infarction. Cardiovasc Res 66:22–32

    Article  PubMed  CAS  Google Scholar 

  55. Zhang Y, DeWitt DL, McNeely TB et al (1997) Secretory leukocyte protease inhibitor suppresses the production of monocyte prostaglandin H synthase-2, prostaglandin E2, and matrix metalloproteinases. J Clin Invest 99:894–900

    Article  PubMed  CAS  Google Scholar 

  56. Sano C, Shimizu T, Sato K et al (2000) Effects of secretory leukocyte protease inhibitor on the production of the anti-inflammatory cytokines, IL-10 and transforming growth factor-beta (TGF-β), by lipopolysaccharide-stimulated macrophages. Clin Exp Immunol 121:77–85

    PubMed  CAS  Google Scholar 

  57. Ashcroft GS, Lei K, Jin W et al (2000) Secretory leukocyte protease inhibitor mediates non-redundant functions necessary for normal wound healing. Nat Med 6:1147–1153

    Article  PubMed  CAS  Google Scholar 

  58. Denhardt DT, Guo X (1993) Osteopontin: a protein with diverse functions. FASEB J 7:1475–1482

    PubMed  CAS  Google Scholar 

  59. Singh K, Sirokman G, Communal C et al (1999) Myocardial osteopontin expression coincides with the development of heart failure. Hypertension 33:663–670

    Article  PubMed  CAS  Google Scholar 

  60. Trueblood NA, Xie Z, Communal C et al (2001) Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circ Res 88:1080–1087

    Article  PubMed  CAS  Google Scholar 

  61. Lane TF, Sage EH (1994) The biology of SPARC, a protein that modulates cell-matrix interactions. FASEB J 8:163–173

    PubMed  CAS  Google Scholar 

  62. Masson S, Arosio B, Luvara G et al (1998) Remodelling of cardiac extracellular matrix during β-adrenergic stimulation: upregulation of SPARC in the myocardium of adult rats. J Mol Cell Cardiol 30:1501–1514

    Google Scholar 

  63. Wu RX, Laser M, Han H et al (2006) Fibroblast migration after myocardial infarction is regulated by transient SPARC expression. J Mol Med 84:241–252

    Article  PubMed  CAS  Google Scholar 

  64. Schellings MW, Vanhoutte D, Swinnen M et al (2009) Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. J Exp Med 206:113–123

    Article  PubMed  CAS  Google Scholar 

  65. McCurdy SM, Dai Q, Zhang J et al (2011) SPARC mediates early extracellular matrix remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol 301:H497–H505

    Article  PubMed  CAS  Google Scholar 

  66. Bujak M, Kweon HJ, Chatila K et al (2008) Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J Am Coll Cardiol 51:1384–1392

    Article  PubMed  Google Scholar 

  67. Ashcroft GS, Horan MA, Ferguson MW (1997) Aging is associated with reduced deposition of specific extracellular matrix components, an upregulation of angiogenesis, and an altered inflammatory response in a murine incisional wound healing model. J Invest Dermatol 108:403–407

    Google Scholar 

  68. Ashcroft GS, Horan MA, Ferguson MWJ (1995) The effect of ageing on cutaneous wound healing in mammals. J Anat 187:1–26

    PubMed  Google Scholar 

  69. Jugdutt BI, Jelani A (2008) Aging and defective healing, adverse remodeling and blunted postconditioning in the reperfused wounded heart. J Am Coll Cardiol 51:1399–1403

    Article  PubMed  Google Scholar 

  70. Jugdutt BI, Palaniyappan A, Uwiera RRE, Idikio H (2009) Role of healing-specific-matricellular proteins and matrix metalloproteinases in age-related enhanced early remodeling after reperfused STEMI in dogs. Mol Cell Biochem 322:25–36

    Article  PubMed  CAS  Google Scholar 

  71. Palaniyappan A, Idikio H, Jugdutt BI (2009) Secretory leucocyte protease inhibitor and matricellular protein modulation of post reperfused myocardial infarction healing, fibrosis and remodeling in rat model. Effect of candesartan and omapatrilat. Circulation 120(Suppl 2):S837

    Google Scholar 

  72. Bradshaw AD, Baicu CF, Rentz TJ et al (2010) Age-dependent alterations in fibrillar collagen content and myocardial diastolic function: role of SPARC in post-synthetic procollagen processing. Am J Physiol 298:H614–H622

    CAS  Google Scholar 

  73. Lindsey M, Wedin K, Brown MD, Keller C, Evans AJ, Smolen J, Burns AR, Rossen RD, Michael L, Entman M (2001) Matrix-dependent mechanism of neutrophil-mediated release and activation of matrix metalloproteinase 9 in myocardial ischemia/reperfusion. Circulation 103:2181–2187

    Article  PubMed  CAS  Google Scholar 

  74. Schneeberger S, Hautz T, Wahl SM et al (2008) The effect of secretory leukocyte protease inhibitor (SLPI) on ischemia/reperfusion injury in cardiac transplantation. Am J Transplant 8:773–782

    Article  PubMed  CAS  Google Scholar 

  75. Singh M, Foster CR, Dalal S, Singh K (2010) Role of osteopontin in heart failure associated with aging. Heart Fail Rev 5:487–494

    Article  CAS  Google Scholar 

  76. Ridnour LA, Windhausen AN, Isenberg JS et al (2007) Nitric oxide regulates matrix metalloproteinases-9 activity by guanylyl-cyclase-dependent and -independent pathways. Proc Natl Acad Sci USA 104:16898–16903

    Article  PubMed  CAS  Google Scholar 

  77. Spinale FG (2010) Amplified bioactive signaling and proteolytic enzymes following ischemia reperfusion and aging. Remodeling pathways that are not like a fine wine. Circulation 122:322–324

    Article  PubMed  Google Scholar 

  78. Heymes C, Swynghedauw B, Chevalier B (1994) Activation of angiotensinogen and angiotensin-converting enzyme gene expression in the left ventricle of senescent rats. Circulation 90:1328–1333

    Article  PubMed  CAS  Google Scholar 

  79. Boengler K, Schulz R, Heusch G (2009) Loss of cardioprotection with ageing. Cardiovasc Res 83:247–261

    Article  PubMed  CAS  Google Scholar 

  80. Boyle MP, Weisman HF (1993) Limitation of infarct expansion and ventricular remodeling by late reperfusion. Study of time course and mechanism in a rat model. Circulation 88:2872–2883

    Article  PubMed  CAS  Google Scholar 

  81. Jugdutt BI (2010) Preventing adverse remodeling and rupture during healing after myocardial infarction in mice and humans. Circulation 122:103–105

    Article  PubMed  Google Scholar 

  82. Heymans S, Luttun A, Nuyens D et al (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135–1142

    Article  PubMed  CAS  Google Scholar 

  83. Honan MB, Harrell FE Jr, Reimer KA et al (1990) Cardiac rupture, mortality and the timing of thrombolytic therapy: a meta-analysis. J Am Coll Cardiol 16:359–367

    Article  PubMed  CAS  Google Scholar 

  84. Rohde LE, Ducharme A, Arroyo LH et al (1999) Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation 99:3063–3070

    Article  PubMed  CAS  Google Scholar 

  85. Jugdutt BI, Michorowski B (1987) Role of infarction expansion in rupture of the ventricular septum after acute myocardial infarction. A two-dimensional echocardiography study. Clin Cardiol 10:641–652

    Article  PubMed  CAS  Google Scholar 

  86. Jugdutt BI, Basualdo CA (1989) Myocardial infarct expansion during indomethacin and ibuprofen therapy for symptomatic post-infarction pericarditis: effect of other pharmacologic agents during early remodelling. Can J Cardiol 5:211–221

    PubMed  CAS  Google Scholar 

  87. Jugdutt BI (1987) Left ventricular rupture threshold during the healing phase after myocardial infarction in the dog. Can J Physiol Pharmacol 65:307–316

    Article  PubMed  CAS  Google Scholar 

  88. Jugdutt BI, Idikio H, Uwiera R (2007) Therapeutic drugs during healing after myocardial infarction modify infarct collagens and ventricular distensibility at elevated pressures. Mol Cell Biochem 304:79–91

    Article  PubMed  CAS  Google Scholar 

  89. Gould KE, Taffet GE, Michael LH et al (2002) Heart failure and greater infarct expansion in middle-aged mice: a relevant model of postinfarction heart failure. Am J Physiol Heart Circ Physiol 282:H625–21

    Google Scholar 

  90. Ballard VLT, Edelberg JM (2007) Stem cells and the regeneration of the aging cardiovascular system. Circ Res 100:1116–1127

    Article  PubMed  CAS  Google Scholar 

  91. Jugdutt BI, Amy RW (1986) Healing after myocardial infarction in the dog: changes in infarct hydroxyproline and topography. J Am Coll Cardiol 7:91–102

    Article  PubMed  CAS  Google Scholar 

  92. Jugdutt BI (1988) Effect of nitroglycerin and ibuprofen on left ventricular topography and rupture threshold during healing after myocardial infarction in the dog. Can J Physiol Pharmacol 66:385–395

    Article  PubMed  CAS  Google Scholar 

  93. Jugdutt BI, Humen DP, Khan MI, Schwarz-Michorowski BL (1992) Effect of left ventricular unloading with captopril on remodeling and function during healing of anterior transmural myocardial infarction in the dog. Can J Cardiol 8:151–163

    PubMed  CAS  Google Scholar 

  94. Jugdutt BI, Khan MI, Jugdutt SJ, Blinston GE (1995) Effect of enalapril on ventricular remodeling and function during healing after anterior myocardial infarction in the dog. Circulation 91:802–812

    Article  PubMed  CAS  Google Scholar 

  95. Jugdutt BI (1995) Effect of captopril and enalapril on left ventricular geometry, function and collagen during healing after anterior and inferior myocardial infarction in the dog. J Am Coll Cardiol 25:1718–1725

    Article  PubMed  CAS  Google Scholar 

  96. Jugdutt BI, Khan MI, Jugdutt SJ, Blinston GE (1996) Effect of prolonged inotropic stimulation on ventricular remodeling during healing after myocardial infarction in the dog: mechanistic insights. J Am Coll Cardiol 27:1787–1795

    Article  PubMed  CAS  Google Scholar 

  97. Jugdutt BI, Joljart MJ, Khan MI (1996) Rate of collagen deposition during healing after myocardial infarction in the rat and dog models: mechanistic insights into ventricular remodeling. Circulation 94:94–101

    Article  PubMed  CAS  Google Scholar 

  98. Jugdutt BI (1997) Effect of reperfusion on ventricular mass, topography and function during healing of anterior infarction. Am J Physiol 272:H1205–H1211

    PubMed  CAS  Google Scholar 

  99. Jugdutt BI, Lucas A, Khan MI (1997) Effect of ACE inhibition on infarct collagen deposition and remodeling during healing after transmural canine myocardial infarction. Can J Cardiol 13:657–668

    PubMed  CAS  Google Scholar 

  100. Jugdutt BI (1997) Effect of amlodipine versus enalapril on left ventricular remodeling after anterior reperfused myocardial infarction. Can J Cardiol 13:945–954

    PubMed  CAS  Google Scholar 

  101. Jugdutt BI, Musat-Marcu S (2000) Opposite effects of amlodipine and enalapril on infarct collagen during healing after reperfused myocardial infarction. Can J Cardiol 16:617–625

    PubMed  CAS  Google Scholar 

  102. Jugdutt BI, Menon V, Kumar D, Idikio H (2002) Vascular remodeling during healing after myocardial infarction in the dog model. Effects of reperfusion, amlodipine and enalapril. J Am Coll Cardiol 39:1538–1545

    Article  PubMed  Google Scholar 

  103. Jugdutt BI, Idikio H, Uwiera R (2007) Angiotensin receptor blockade and ACE inhibition limit adverse collagen remodeling in the infarct zone and global diastolic dysfunction during healing after reperfused ST-elevation myocardial infarction. Mol Cell Biochem 303:27–38

    Article  PubMed  CAS  Google Scholar 

  104. Cleutjens JP, Kandala JC, Guarda E et al (1995) Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 27:1281–1292

    Article  PubMed  CAS  Google Scholar 

  105. Nian M, Lee P, Khaper N, Liu P (2004) Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 94:1543–1553

    Article  PubMed  CAS  Google Scholar 

  106. Anzai T, Yoshikawa T, Shiraki H et al (1997) C-reactive protein as a predictor of infarct expansion and cardiac rupture after a first Q-wave acute myocardial infarction. Circulation 96:778–784

    Article  PubMed  CAS  Google Scholar 

  107. Bujak M, Frangogiannis NG (2007) The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74:184–195

    Article  PubMed  CAS  Google Scholar 

  108. Weber KT (1997) Extracelular matrix remodeling in heart failure. A role for de novo angiotensin II generation. Circulation 96:4065–4082

    Article  PubMed  CAS  Google Scholar 

  109. Kulkarni AB, Huh CG, Becker D et al (1993) Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. PNAS 90:770–774

    Article  PubMed  CAS  Google Scholar 

  110. Ikeuchi M, Tsutsui H, Shiomi T et al (2004) Inhibition of TGF-beta signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc Res 64:526–535

    Article  PubMed  CAS  Google Scholar 

  111. Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437–2445

    Article  PubMed  Google Scholar 

  112. Vanhoutte D, Schellings M, Pinto Y, Heymans S (2006) Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window. Cardiovasc Res 69:604–613

    Article  PubMed  CAS  Google Scholar 

  113. Jugdutt BI (2008) Pleiotropic effects of cardiac drugs on healing post MI. The good, bad and ugly. Heart Fail Rev 13:439–452

    Article  PubMed  Google Scholar 

  114. Pfeffer JM, Pfeffer MA, Braunwald E (1985) Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 57:84–95

    Article  PubMed  CAS  Google Scholar 

  115. Pfeffer MA, Greaves SC, Arnold MJ, The Healing and Afterload Reducing Therapy (HEART) Trial Investigators et al (1997) Early versus delayed angiotensin-converting enzyme inhibition therapy in acute myocardial infarction. The Healing and Afterload Reducing Therapy Trial. Circulation 95:2643–2651

    Article  PubMed  CAS  Google Scholar 

  116. Urata HB, Healy B, Stewart RW et al (1990) Angiotensin II-forming pathways in normal and failing hearts. Circ Res 66:883–890

    Article  PubMed  CAS  Google Scholar 

  117. Schieffer B, Wirger A, Meybrunn M et al (1994) Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 89:2273–2282

    Article  PubMed  CAS  Google Scholar 

  118. Sawicki G, Jugdutt BI (2004) Detection of changes in protein levels in the in vivo canine model of acute heart failure following ischemia-reperfusion injury—functional proteomics studies. Proteomics 4:2195–2202

    Article  PubMed  CAS  Google Scholar 

  119. Sawicki G, Jugdutt BI (2007) Valsartan reverses post-translational modifications of the δ-subunit of ATP synthase during in vivo canine reperfused myocardial infarction. Proteomics 42:2100–2110

    Article  CAS  Google Scholar 

  120. Kannel WB (2011) Sixty years of preventive cardiology: a framingham perspective. Clin Cardiol 34:342–343

    Article  PubMed  Google Scholar 

  121. Ridker PM, Rifai N, Cook NR, Bradwin G, Buring JE (2005) Non-HDL cholesterol, apolipoproteins A-1 and B100, standard lipid measures, lipid ratios, and CRP as risk factors for cardiovascular disease in women. JAMA 294:326–333

    Article  PubMed  CAS  Google Scholar 

  122. Zethelius B, Berglund L, Sundström J et al (2008) Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med 358:2107–1216

    Article  PubMed  CAS  Google Scholar 

  123. Melander O, Newton-Cheh C, Almgren P et al (2009) Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. JAMA 302:49–57

    Article  PubMed  CAS  Google Scholar 

  124. Daniels LB, Laughlin GA, Clopton P et al (2008) Minimally elevated cardiac troponin T and elevated N-terminal pro-B-type natriuretic peptide predict mortality in older adults: results from the Rancho Bernardo Study. J Am Coll Cardiol 52:450–459

    Article  PubMed  CAS  Google Scholar 

  125. DeFilippi CR, Christenson RH, Gottdiener JS (2010) Dynamic cardiovascular risk assessment in elderly people. The role of repeated N-terminal pro- B-type natriuretic peptide testing. J Am Coll Cardiol 55:441–450

    Article  PubMed  CAS  Google Scholar 

  126. Januzzi JL Jr, Rehman S, Mohammed AA et al (2011) Use of amino-terminal pro-B natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol 58:1881–1889

    Article  PubMed  CAS  Google Scholar 

  127. Sundström J, Ingelsson E, Berglund L et al (2009) Cardiac troponin-I and risk of heart failure: a community-based cohort study. Eur Heart J 30:773–781

    Article  PubMed  CAS  Google Scholar 

  128. deFilippi CR, deLemos JA, Christenson RH (2011) Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA 304:2494–2502

    Article  Google Scholar 

  129. Shlipak MG, Fried LF, Cushman M et al (2005) Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors. JAMA 293:1737–1745

    Article  PubMed  CAS  Google Scholar 

  130. Nasir K, Michos ED, Rumberger JA et al (2004) Coronary artery calcification and family history of premature coronary heart disease. Sibling history is more strongly associated than parental history. Circulation 110:2150–2156

    Article  PubMed  Google Scholar 

  131. Petretta M, Daniele S, Acampa W et al (2012) Prognostic value of coronary artery calcium score and coronary CT angiography in patients with intermediate risk of coronary artery disease. Int J Cardiovasc Imaging 28(6):1547–1556. doi:10.1007/s10554-011-9948-5

    Article  PubMed  Google Scholar 

  132. van Velzen JE, de Graaf FR, Jukema JW et al (2011) Comparison of the relation between the calcium score and plaque characteristics in patients with acute coronary syndrome versus patients with stable coronary artery disease, assessed by computed tomography angiography and virtual histology intravascular ultrasound. Am J Cardiol 108:658–664

    Article  PubMed  Google Scholar 

  133. Kerut EK (2011) Coronary risk assessment and arterial age calculation using coronary artery calcium scoring and the Framingham risk score. Echocardiography 28:686–693

    Article  PubMed  Google Scholar 

  134. Kim H, Januzzi JL (2010) Biomarkers in the management of heart failure. Curr Treat Options Cardiovasc Med 12:519–531

    Article  PubMed  Google Scholar 

  135. Guder G, Bauersachs J, Frantz S et al (2007) Complimentary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. Circulation 115:1754–1761

    Article  PubMed  CAS  Google Scholar 

  136. Kitzman DW, Little WC, Brubaker PH, Anderson RT et al (2002) Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA 288:2144–2150

    Article  PubMed  Google Scholar 

  137. Maisel AS, McCord J, Nowak RM et al (2003) Bedside B-type natriuretic peptide in the emergency diagnosis of heart failure with reduced or preserved ejection fraction. Results from the breathing not properly multinational study. J Am Coll Cardiol 41:2010–2017

    Article  PubMed  Google Scholar 

  138. Maisel AS, Hollander JE, Guss D et al (2004) Primary results of the rapid emergency department heart failure outpatient trial (REDHOT). A multicenter study of B-type natriuretic peptide levels, emergency department decision making, and outcomes in patients presenting with shortness of breath. J Am Coll Cardiol 44:1328–1333

    Article  PubMed  Google Scholar 

  139. Blackenberg S, Zeller T, Saarela O et al (2010) Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts: the MONICA, risk, genetics, archiving, and monograph (MORGAM) biomarker project. Circulation 121:2388–2397

    Article  Google Scholar 

  140. Davidson MH, Ballantyne CM, Jacobson TA et al (2011) Clinical utility of inflammatory markers and advanced lipoprotein testing: advice from an expert panel of lipid specialists. J Clin Lipidol 5:338–367

    Article  PubMed  Google Scholar 

  141. Greenland P, Alpert JS, Beller GA et al (2010) 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults. J Am Coll Cardiol 56:e50–e103

    Article  PubMed  Google Scholar 

  142. Karakas M, Koenig W, Zierer A et al (2012) Myeloperoxidase is associated with incident coronary heart disease independently of traditional risk factors: results from the MONICA/KORA Augsburg study. J Int Med 271:43–50

    Article  CAS  Google Scholar 

  143. Hassan AKM, Bergheanu SC, Hasan-Ali H et al (2009) Usefulness of peak troponin-T to predict infarct size and long-term outcome in patients with first acute anterior myocardial infarction after primary percutaneous coronary intervention. Am J Cardiol 103:779–784

    Article  PubMed  CAS  Google Scholar 

  144. Lund GK, Stork A, Muellerleile K et al (2007) Prediction of left ventricular remodeling and analysis of infarct resorption in patients with reperfused myocardial infarcts by using contrast-enhanced MR imaging. Radiology 245:95–102

    Article  PubMed  Google Scholar 

  145. Zannad F, Rossignol P et al (2010) Extracellular matrix fibrotic markers in heart failure. Heart Fail Rev 15:319–329

    Article  PubMed  CAS  Google Scholar 

  146. Manhenke C, Orn S, Squire I et al (2011) The prognostic value of circulating markers of collagen turnover after acute myocardial infarction. Int J Cardiol 150:277–282

    Article  PubMed  Google Scholar 

  147. Rosenberg M, Zugck C, Nelles M et al (2008) Osteopontin, a new prognostic biomarker in patients with chronic heart disease. Circ Heart Fail 1:43–49

    Article  PubMed  CAS  Google Scholar 

  148. Ohmori R, Momiyama Y, Taniguchi H et al (2003) Plasma osteopontin levels are associated with the presence and extent of coronary artery disease. Atherosclerosis 170:333–337

    Article  PubMed  CAS  Google Scholar 

  149. Soejima H, Irie A, Fukunaga T et al (2007) Osteopontin expression of circulating T cells and plasma osteopontin levels are increased in relation to severity of heart failure. Circ J 71:1879–1884

    Article  PubMed  CAS  Google Scholar 

  150. Lentsch AB, Yoshidome H, Warner RL, Ward PA, Edwards MJ (1999) Secretory leukocyte protease inhibitor in mice regulates local and remote organ inflammatory injury induced by hepatic ischemia/reperfusion. Gastroenterology 117:953–961

    Article  PubMed  CAS  Google Scholar 

  151. Henriksen PA, Hitt M, Xing Z et al (2004) Adenoviral gene delivery of elafin and secretory leukocyte protease inhibitor attenuates NF-kappa B-dependent inflammatory responses of human endothelial cells and macrophages to atherogenic stimuli. J Immunol 172:4535–4544

    PubMed  CAS  Google Scholar 

  152. Socha MJ, Manhiani M, Said N, Imig JD, Motamed K (2007) Secreted protein acidic and rich in cysteine deficiency ameliorates renal inflammation and fibrosis in angiotensin hypertension. Am J Pathol 171:1104–1112

    Article  PubMed  CAS  Google Scholar 

  153. Vasan RS (2006) Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation 113:2335–2362

    Article  PubMed  Google Scholar 

  154. Gaudron P, Eilles C, Kugler I et al (1993) Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors. Circulation 87:755–763

    Article  PubMed  CAS  Google Scholar 

  155. Jugdutt BI (2004) Extracellular matrix and cardiac remodeling. In: Villarreal FJ (ed) Interstitial fibrosis in heart failure. New York, Springer, pp 23–55

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by grant # IAP99003 (2010–2012) from the Canadian Institutes of Health Research, Ottawa, Ontario. We thank Catherine Jugdutt for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodh I. Jugdutt M.D., M.Sc., D.M. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jugdutt, B.I., Jelani, A. (2013). Aging and Markers of Adverse Remodeling After Myocardial Infarction. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_27

Download citation

Publish with us

Policies and ethics