Skip to main content

Advertisement

Log in

Extracellular matrix fibrotic markers in heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Given the importance of fibrous tissue in leading to myocardial dysfunction, non-invasive assessment of fibrosis could prove a clinically useful tool in heart failure (HF) patients. Biomarkers may be used for early detection of otherwise subclinical disease, diagnostic assessment of an acute or chronic clinical syndrome, risk stratification of patients with a suspected or confirmed diagnosis, selection of an appropriate therapeutic intervention and monitoring the response to therapy. Extracellular matrix (ECM) biomarkers in HF are promising biomarkers. They are able to detect early changes in heart and large vessel structure and function and transition to HF. High ECM biomarker levels have been associated with poor outcome. The ability of treatment to reduce myocardial fibrosis in HF patients may be monitored by the measurement of various serum peptides arising from the metabolism of collagen types. Biomarkers may be selectively influenced by pharmacological agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin converting enzyme

baPWV:

Brachial-ankle pulse wave velocity

BNP:

Brain natriuretic peptide

CHF:

Congestive heart failure

DCT:

Deceleration time of the mitral E wave

ECM:

Extracellular matrix

HD:

Patients with Hypertension and type II Diabetes

ICTP:

Type I pyridinoline cross-linked C-terminal telopeptide

LV:

Left ventricular

LVH:

Left ventricular hypertrophy

LVM:

Left ventricular mass

LVMI:

Left ventricular mass index

MMPs:

Matrix MetalloProteinases

PICP:

Procollagen type I C-terminal propeptide

PINP:

Procollagen type I N-terminal propeptide

PIIINP:

N terminal type III collagen peptide

SHR:

Spontaneously hypertensive rats

TIMP:

Tissue inhibitor of matrix metalloproteinases

References

  1. Bishop JE, Laurent GJ (1995) Collagen turnover and its regulation in the normal and hypertrophying heart. Eur Heart J 16(Suppl C):38–44

    PubMed  CAS  Google Scholar 

  2. Zannad F, Dousset B, Alla F (2001) Treatment of congestive heart failure: interfering the aldosterone-cardiac extracellular matrix relationship. Hypertension 38:1227–1232. doi:10.1161/hy1101.099484

    Article  PubMed  CAS  Google Scholar 

  3. D’Armiento J (2002) Matrix metalloproteinase disruption of the extracellular matrix and cardiac dysfunction. Trends Cardiovasc Med 12:97–101. doi:10.1016/S1050-1738(01)00160-8

    Article  PubMed  Google Scholar 

  4. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839. doi:10.1161/01.RES.0000070112.80711.3D

    Article  PubMed  CAS  Google Scholar 

  5. Laviades C, Varo N, Fernandez J et al (1998) Abnormalities of the extracellular degradation of collagen type I in essential hypertension. Circulation 98:535–540

    PubMed  CAS  Google Scholar 

  6. Weber KT (1997) Monitoring tissue repair and fibrosis from a distance. Circulation 96:2488–2492

    PubMed  CAS  Google Scholar 

  7. Lopez B, Gonzalez A, Querejeta R et al (2005) The use of collagen-derived serum peptides for the clinical assessment of hypertensive heart disease. J Hypertens 23:1445–1451

    Article  PubMed  CAS  Google Scholar 

  8. Risteli J, Risteli L (1995) Analysing connective tissue metabolites in human serum. Biochemical, physiological and methodological aspects. Journal of Hepatology 22:77–81. doi:10.1016/0270-9139(95)94132-0

    Article  PubMed  CAS  Google Scholar 

  9. Jensen LT, Horslev-Petersen K, Toft P et al (1990) Serum aminoterminal type III procollagen peptide reflects repair after acute myocardial infarction. Circulation 81:52–57

    PubMed  CAS  Google Scholar 

  10. Querejeta R, Varo N, Lopez B et al (2000) Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation 101:1729–1735

    PubMed  CAS  Google Scholar 

  11. Querejeta R, Lopez B, Gonzalez A et al (2004) Increased collagen type I synthesis in patients with heart failure of hypertensive origin: relation to myocardial fibrosis. Circulation 110:1263–1268. doi:10.1161/01.CIR.0000140973.60992.9A

    Article  PubMed  CAS  Google Scholar 

  12. Diez J, Querejeta R, Lopez B et al (2002) Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation 105:2512–2517. doi:10.1161/01.CIR.0000017264.66561.3D

    Article  PubMed  CAS  Google Scholar 

  13. Izawa H, Murohara T, Nagata K et al (2005) Mineralocorticoid receptor antagonism ameliorates left ventricular diastolic dysfunction and myocardial fibrosis in mildly symptomatic patients with idiopathic dilated cardiomyopathy: a pilot study. Circulation 112:2940–2945

    PubMed  CAS  Google Scholar 

  14. Lopez B, Gonzalez A, Querejeta R et al (2006) Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure. J Am Coll Cardiol 48:89–96. doi:10.1016/j.jacc.2006.01.077

    Article  PubMed  CAS  Google Scholar 

  15. Diez J (2007) Mechanisms of cardiac fibrosis in hypertension. J Clin Hypertens (Greenwich) 9:546–550. doi:10.1111/j.1524-6175.2007.06626.x

    Article  CAS  Google Scholar 

  16. Diez J, Panizo A, Gil MJ et al (1996) Serum markers of collagen type I metabolism in spontaneously hypertensive rats: relation to myocardial fibrosis. Circulation 93:1026–1032

    PubMed  CAS  Google Scholar 

  17. Varo N, Etayo JC, Zalba G et al (1999) Losartan inhibits the post-transcriptional synthesis of collagen type I and reverses left ventricular fibrosis in spontaneously hypertensive rats. J Hypertens 17:107–114. doi:10.1097/00004872-199917010-00016

    Article  PubMed  CAS  Google Scholar 

  18. Diez J, Laviades C, Mayor G et al (1995) Increased serum concentrations of procollagen peptides in essential hypertension. Relation to cardiac alterations. Circulation 91:1450–1456

    PubMed  CAS  Google Scholar 

  19. Carver W, Nagpal ML, Nachtigal M et al (1991) Collagen expression in mechanically stimulated cardiac fibroblasts. Circ Res 69:116–122

    PubMed  CAS  Google Scholar 

  20. Chapman D, Weber KT, Eghbali M (1990) Regulation of fibrillar collagen types I and III and basement membrane type IV collagen gene expression in pressure overloaded rat myocardium. Circ Res 67:787–794

    PubMed  CAS  Google Scholar 

  21. Mukherjee D, Sen S (1990) Collagen phenotypes during development and regression of myocardial hypertrophy in spontaneously hypertensive rats. Circ Res 67:1474–1480

    PubMed  CAS  Google Scholar 

  22. Nakahara T, Takata Y, Hirayama Y et al (2007) Left ventricular hypertrophy and geometry in untreated essential hypertension is associated with blood levels of aldosterone and procollagen type III amino-terminal peptide. Circ J 71:716–721. doi:10.1253/circj.71.716

    Article  PubMed  Google Scholar 

  23. Ahmed SH, Clark LL, Pennington WR et al (2006) Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation 113:2089–2096. doi:10.1161/CIRCULATIONAHA.105.573865

    Article  PubMed  CAS  Google Scholar 

  24. Martos R, Baugh J, Ledwidge M et al (2007) Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation 115:888–895. doi:10.1161/CIRCULATIONAHA.106.638569

    Article  PubMed  Google Scholar 

  25. Lindsay MM, Maxwell P, Dunn FG (2002) TIMP-1: a marker of left ventricular diastolic dysfunction and fibrosis in hypertension. Hypertension 40:136–141. doi:10.1161/01.HYP.0000024573.17293.23

    Article  PubMed  CAS  Google Scholar 

  26. Diez J (2007) Arterial stiffness and extracellular matrix. Adv Cardiol 44:76–95. doi:10.1159/000096722

    Article  PubMed  CAS  Google Scholar 

  27. Ishikawa J, Kario K, Matsui Y et al (2005) Collagen metabolism in extracellular matrix may be involved in arterial stiffness in older hypertensive patients with left ventricular hypertrophy. Hypertens Res 28:995–1001. doi:10.1291/hypres.28.995

    Article  PubMed  CAS  Google Scholar 

  28. Jugdutt BI (2003) Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 108:1395–1403. doi:10.1161/01.CIR.0000085658.98621.49

    Article  PubMed  Google Scholar 

  29. Jugdutt BI (2003) Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Curr Drug Targets Cardiovasc Haematol Disord 3:1–30. doi:10.2174/1568006033337276

    Article  PubMed  CAS  Google Scholar 

  30. Radauceanu A, Moulin F, Djaballah W et al (2007) Residual stress ischaemia is associated with blood markers of myocardial structural remodelling. Eur J Heart Fail 9:370–376. doi:10.1016/j.ejheart.2006.09.010

    Article  PubMed  CAS  Google Scholar 

  31. Uusimaa P, Risteli J, Niemela M et al (1997) Collagen scar formation after acute myocardial infarction: relationships to infarct size, left ventricular function, and coronary artery patency. Circulation 96:2565–2572

    PubMed  CAS  Google Scholar 

  32. Poulsen SH, Host NB, Jensen SE et al (2000) Relationship between serum amino-terminal propeptide of type III procollagen and changes of left ventricular function after acute myocardial infarction. Circulation 101:1527–1532

    PubMed  CAS  Google Scholar 

  33. Papadopoulos DP, Moyssakis I, Makris TK et al (2005) Clinical significance of matrix metalloproteinases activity in acute myocardial infarction. Eur Cytokine Netw 16:152–160

    PubMed  CAS  Google Scholar 

  34. Zannad F, Alla F, Dousset B et al (2000) Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation 102:2700–2706

    PubMed  CAS  Google Scholar 

  35. Li H, Simon H, Bocan TM et al (2000) MMP/TIMP expression in spontaneously hypertensive heart failure rats: the effect of ACE- and MMP-inhibition. Cardiovasc Res 46:298–306. doi:10.1016/S0008-6363(00)00028-6

    Article  PubMed  CAS  Google Scholar 

  36. Medeiros DM, Velleman SG, Jarrold BB et al (2002) Ontogeny of enhanced decorin levels and distribution within myocardium of failing hearts. Connect Tissue Res 43:32–43. doi:10.1080/713713431

    PubMed  CAS  Google Scholar 

  37. Muller-Brunotte R, Kahan T, Lopez B et al (2007) Myocardial fibrosis and diastolic dysfunction in patients with hypertension: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA). J Hypertens 25:1958–1966. doi:10.1097/HJH.0b013e3282170ada

    Article  PubMed  CAS  Google Scholar 

  38. Poulsen SH, Andersen NH, Heickendorff L et al (2005) Relation between plasma amino-terminal propeptide of procollagen type III and left ventricular longitudinal strain in essential hypertension. Heart 91:624–629. doi:10.1136/hrt.2003.029702

    Article  PubMed  CAS  Google Scholar 

  39. Alla F, Kearney-Schwartz A, Radauceanu A et al (2006) Early changes in serum markers of cardiac extra-cellular matrix turnover in patients with uncomplicated hypertension and type II diabetes. Eur J Heart Fail 8:147–153. doi:10.1016/j.ejheart.2005.06.008

    Article  PubMed  CAS  Google Scholar 

  40. Quilliot D, Alla F, Bohme P et al (2005) Myocardial collagen turnover in normotensive obese patients: relation to insulin resistance. Int J Obes (Lond) 29:1321–1328. doi:10.1038/sj.ijo.0803022

    Article  CAS  Google Scholar 

  41. Mukherjee D, Sen S (1991) Alteration of collagen phenotypes in ischemic cardiomyopathy. J Clin Invest 88:1141–1146. doi:10.1172/JCI115414

    Article  PubMed  CAS  Google Scholar 

  42. Klappacher G, Franzen P, Haab D et al (1995) Measuring extracellular matrix turnover in the serum of patients with idiopathic or ischemic dilated cardiomyopathy and impact on diagnosis and prognosis. Am J Cardiol 75:913–918. doi:10.1016/S0002-9149(99)80686-9

    Article  PubMed  CAS  Google Scholar 

  43. Radauceanu A, Ducki C, Virion JM et al (2008) Extracellular matrix turnover and inflammatory markers independently predict functional status and outcome in chronic heart failure. J Card Fail 14:467–474. doi:10.1016/j.cardfail.2008.02.014

    Article  PubMed  CAS  Google Scholar 

  44. Iraqi W, Rossignol P, Fay R, Nuée J, Ketelslegers JM, Vincent J, Pitt B, Zannad F (2009) Extracellular cardiac matrix biomarkers in patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure: insights from the EPHESUS study. Circulation (in press)

  45. Murakami T, Kusachi S, Murakami M et al (1998) Time-dependent changes of serum carboxy-terminal peptide of type I procollagen and carboxy-terminal telopeptide of type I collagen concentrations in patients with acute myocardial infarction after successful reperfusion: correlation with left ventricular volume indices. Clin Chem 44:2453–2461

    PubMed  CAS  Google Scholar 

  46. Cerisano G, Pucci PD, Sulla A et al (2007) Relation between plasma brain natriuretic peptide, serum indexes of collagen type I turnover, and left ventricular remodeling after reperfused acute myocardial infarction. Am J Cardiol 99:651–656. doi:10.1016/j.amjcard.2006.09.114

    Article  PubMed  CAS  Google Scholar 

  47. Blangy H, Sadoul N, Dousset B et al (2007) Serum BNP, hs-C-reactive protein, procollagen to assess the risk of ventricular tachycardia in ICD recipients after myocardial infarction. Europace 9:724–729. doi:10.1093/europace/eum102

    Article  PubMed  Google Scholar 

  48. Albaladejo P, Bouaziz H, Duriez M et al (1994) Angiotensin converting enzyme inhibition prevents the increase in aortic collagen in rats. Hypertension 23:74–82

    PubMed  CAS  Google Scholar 

  49. Weber KT (1997) Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation 96:4065–4082

    PubMed  CAS  Google Scholar 

  50. Ciulla MM, Paliotti R, Esposito A et al (2004) Different effects of antihypertensive therapies based on losartan or atenolol on ultrasound and biochemical markers of myocardial fibrosis: results of a randomized trial. Circulation 110:552–557. doi:10.1161/01.CIR.0000137118.47943.5C

    Article  PubMed  CAS  Google Scholar 

  51. Briest W, Holzl A, Rassler B et al (2001) Cardiac remodeling after long term norepinephrine treatment in rats. Cardiovasc Res 52:265–273. doi:10.1016/S0008-6363(01)00398-4

    Article  PubMed  CAS  Google Scholar 

  52. Kobayashi N, Mori Y, Nakano S et al (2001) Celiprolol stimulates endothelial nitric oxide synthase expression and improves myocardial remodeling in deoxycorticosterone acetate-salt hypertensive rats. J Hypertens 19:795–801. doi:10.1097/00004872-200104000-00017

    Article  PubMed  CAS  Google Scholar 

  53. Grimm D, Huber M, Jabusch HC et al (2001) Extracellular matrix proteins in cardiac fibroblasts derived from rat hearts with chronic pressure overload: effects of beta-receptor blockade. J Mol Cell Cardiol 33:487–501. doi:10.1006/jmcc.2000.1321

    Article  PubMed  CAS  Google Scholar 

  54. Wei S, Chow LT, Sanderson JE (2000) Effect of carvedilol in comparison with metoprolol on myocardial collagen postinfarction. J Am Coll Cardiol 36:276–281. doi:10.1016/S0735-1097(00)00671-9

    Article  PubMed  CAS  Google Scholar 

  55. Funder JW (2006) Minireview: aldosterone and the cardiovascular system: genomic and nongenomic effects. Endocrinology 147:5564–5567. doi:10.1210/en.2006-0826

    Article  PubMed  CAS  Google Scholar 

  56. Young MJ (2008) Mechanisms of mineralocorticoid receptor-mediated cardiac fibrosis and vascular inflammation. Curr Opin Nephrol Hypertens 17:174–180. doi:10.1097/MNH.0b013e3282f56854

    Article  PubMed  CAS  Google Scholar 

  57. Pitt B, Reichek N, Willenbrock R et al (2003) Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation 108:1831–1838. doi:10.1161/01.CIR.0000091405.00772.6E

    Article  PubMed  CAS  Google Scholar 

  58. Sato A, Takane H, Saruta T (2001) High serum level of procollagen type III amino-terminal peptide contributes to the efficacy of spironolactone and angiotensin-converting enzyme inhibitor therapy on left ventricular hypertrophy in essential hypertensive patients. Hypertens Res 24:99–104. doi:10.1291/hypres.24.99

    Article  PubMed  CAS  Google Scholar 

  59. Zannad F, Radauceanu A (2005) Effect of MR blockade on collagen formation and cardiovascular disease with a specific emphasis on heart failure. Heart Fail Rev 10:71–78. doi:10.1007/s10741-005-2351-3

    Article  PubMed  CAS  Google Scholar 

  60. Hayashi M, Tsutamoto T, Wada A et al (2003) Immediate administration of mineralocorticoid receptor antagonist spironolactone prevents post-infarct left ventricular remodeling associated with suppression of a marker of myocardial collagen synthesis in patients with first anterior acute myocardial infarction. Circulation 107:2559–2565. doi:10.1161/01.CIR.0000068340.96506.0F

    Article  PubMed  CAS  Google Scholar 

  61. Loch D, Levick S, Hoey A et al (2006) Rosuvastatin attenuates hypertension-induced cardiovascular remodeling without affecting blood pressure in DOCA-salt hypertensive rats. J Cardiovasc Pharmacol 47:396–404

    PubMed  CAS  Google Scholar 

  62. Majima T, Komatsu Y, Fukao A et al (2007) Short-term effects of atorvastatin on bone turnover in male patients with hypercholesterolemia. Endocr J 54:145–151. doi:10.1507/endocrj.K06-127

    Article  PubMed  CAS  Google Scholar 

  63. Rajagopalan S, Zannad F, Radauceanu A et al (2007) Effects of valsartan alone versus valsartan/simvastatin combination on ambulatory blood pressure, C-reactive protein, lipoproteins, and monocyte chemoattractant protein-1 in patients with hyperlipidemia and hypertension. Am J Cardiol 100:222–226. doi:10.1016/j.amjcard.2007.02.085

    Article  PubMed  CAS  Google Scholar 

  64. Zucker S, Hymowitz M, Conner C et al (1999) Measurement of matrix metalloproteinases and tissue inhibitors of metalloproteinases in blood and tissues. Clinical and experimental applications. Ann N Y Acad Sci 878:212–227. doi:10.1111/j.1749-6632.1999.tb07687.x

    Article  PubMed  CAS  Google Scholar 

  65. Garnero P, Bianchi F, Carlier MC et al (2000) Biochemical markers of bone remodeling: pre-analytical variations and guidelines for their use. SFBC (Societe Francaise de Biologie Clinique) Work Group. Biochemical markers of bone remodeling. Annales de Biologie Clinique 58:683–704

    PubMed  CAS  Google Scholar 

  66. Fontaine V, Jacob MP, Houard X et al (2002) Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am J Pathol 161:1701–1710

    PubMed  CAS  Google Scholar 

  67. Jung K, Nowak L, Lein M et al (1996) Role of specimen collection in preanalytical variation of metalloproteinases and their inhibitors in blood. Clin Chem 42:2043–2045

    PubMed  CAS  Google Scholar 

  68. Zucker S, Doshi K, Cao J (2004) Measurement of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMP) in blood and urine: potential clinical applications. Adv Clin Chem 38:37–85. doi:10.1016/S0065-2423(04)38002-9

    Article  PubMed  CAS  Google Scholar 

  69. Cremers S, Garnero P (2006) Biochemical markers of bone turnover in the clinical development of drugs for osteoporosis and metastatic bone disease: potential uses and pitfalls. Drugs 66:2031–2058. doi:10.2165/00003495-200666160-00001

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiez Zannad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zannad, F., Rossignol, P. & Iraqi, W. Extracellular matrix fibrotic markers in heart failure. Heart Fail Rev 15, 319–329 (2010). https://doi.org/10.1007/s10741-009-9143-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-009-9143-0

Keywords

Navigation