Myocardial Adaptation and Autophagy

  • Dipak K. Das
  • Hannah R. Vasanthi
Part of the Advances in Biochemistry in Health and Disease book series (ABHD, volume 4)


Cells are constantly exposed to adverse environmental conditions; but they possess remarkable ability to adapt them to the stress by up-regulating their own defense system. Adaptation has been widely studied in case of heart. Myocardial adaptation to stress occurs through up-regulating many stress proteins including oxidative stress-inducible proteins, antioxidants, and heat shock proteins. Recent studies have indicated that stress adaptation, especially adaptation due to nutritional deprivation occur via autophagy, a cellular degradative mechanism involved in the recycling and turnover of cytoplasmic constituents from these cells. This review discusses the molecular link between adaptation and autophagy, and establishes the fact that myocardial adaptation to stress may occur through diverse pathways including autophagy. Accumulating evidence supports the notion that autophagy and adaptation are intimately related. Autophagy due to nutritional deprivation is a unique example of cellular adaptation. Among a number of factors, redox signaling appears to be the most important link between adaptation and autophagy. SirT-FoxO network plays a key role in both the processes. Recent studies indicate that both adaptation and autophagy are under the control of miRNA and epigenetics.


Autophagy  Adaptation  Autophagosomes Autophagosomes Redox signaling Redox signaling Oxidative stress  Micro RNA  SirT-FoxO net work  



This study is supported by NIH HL 22559, HL 34360, and HL 33889.


  1. 1.
    Sybers HD, Ingwall J, DeLuca M (1976) Autophagy in cardiac myocytes. Recent Adv Dtud Cardiac Struc Mtab 12:453–463Google Scholar
  2. 2.
    Deckers RS, Wildentha K (1980) Lysosomal alterations in hypoxic and reoxygenated hearts. I. Ultrastructural and cytochemical changes. Am J Pathol 98:425–444Google Scholar
  3. 3.
    Matsui Y, Takagi H, Qu X, Abdellatif M et al (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100:914–922PubMedCrossRefGoogle Scholar
  4. 4.
    Petrovski G, Das S, Juhasz B et al (2011) Cardioprotection by endoplasmic reticulum stress-induced autophagy. Antioxidant Redox Signal 14:2191–2200CrossRefGoogle Scholar
  5. 5.
    Kuma A, Hatano M, Matsui M et al (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036PubMedCrossRefGoogle Scholar
  6. 6.
    Shimomura H, Terasaki F, Hayashi T et al (2001) Autophagic degeneration as a possible mechanism of myocardial cell death in dilated cardiomyopathy. Jpn Circ Res 65:965–968CrossRefGoogle Scholar
  7. 7.
    Matsui Y, Sasa M, Kashii S, Honda Y (2008) Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion. Autophagy 4:409–415PubMedGoogle Scholar
  8. 8.
    Goswami SK, Das DK (2006) Autophagy in the myocardium: dying for survival? Exp Clin Cardiol 11:183–188PubMedGoogle Scholar
  9. 9.
    Martinet W (2008) De Meyer GRY autophagy in atherosclerosis. Curr Atheroscler Rep 10:216–223PubMedCrossRefGoogle Scholar
  10. 10.
    Gurusamy N, Das DK (2009) Autophagy, redox signaling and ventricular remodeling. Antioxidant redox Signal 11:1975–1988CrossRefGoogle Scholar
  11. 11.
    Flack JE (1991) Preconditioning the heart by repeated stunning improves myocardial salvage. Circulation 84:369–374Google Scholar
  12. 12.
    Tosaki A, Cordis GA, Szerdahelyi P et al (1994) Effects of preconditioning on reperfusion arrhythmias, myocardial functions, formation of free radicals, and ion shifts in isolated ischemic/reperfused rat hearts. J Cardiovasc Pharmacol 23:365–373PubMedGoogle Scholar
  13. 13.
    Kimura Y, Iyengar J, Subramanian R et al (1992) Preconditioning of the heart by repeated stunning : attenuation of post-ischemic dysfunction. Basic Res Cardiol 87:128–138PubMedCrossRefGoogle Scholar
  14. 14.
    Das DK (1993) Ischemic preconditioning and myocardial adaptation to ischemia. Cardiovasc Res 27:2077–2079PubMedCrossRefGoogle Scholar
  15. 15.
    Lawson CS, Coltart DJO, Hearse DJ (1992) Ischemic preconditioning and protection against reperfusion-induced arrhythmias, reduction in vulnerability or delay in onset? Studies in the isolated blood perfused rat heart. Eur Heart J 13:2334Google Scholar
  16. 16.
    Liu GS, Thornton J, Van Winkle DM et al (1991) Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84:350–356PubMedCrossRefGoogle Scholar
  17. 17.
    Gross GJ, Auchampach JA (1992) Blockade of ATP sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 70:223–233PubMedCrossRefGoogle Scholar
  18. 18.
    Tosaki A, Behjet NS, Engelman DT et al (1995) Apha 1 adrenergic agonist-induced preconditioning in isolated working rat hearts. J Pharmacol Exp Therapeu 273:689–694Google Scholar
  19. 19.
    Engelman DT, Watanabe M, Engelman RM et al (1995) Hypoxic preconditioning prevents antioxidant reserve in the working rat heart. Cardiovasc Res 29:133–140PubMedGoogle Scholar
  20. 20.
    Maulik N, Watanabe M, Engelman DT et al (1995) Oxidative stress adaptation improves postischemic ventricular recovery. Mol Cell Biochem 144:67–74PubMedCrossRefGoogle Scholar
  21. 21.
    Maulik N, Watanabe M, Engelman DT et al (1995) Myocardial adaptation to ischemia by oxidative stress induced by endotoxin. Am J Physiol 269:C907–C916PubMedGoogle Scholar
  22. 22.
    Donneley TJ, Sievers RE, Vissern FL et al (1992) Heat sock protein induction in rat hearts: a role for improved salvage after ischemia and reperfusion? Circulation 85:769–778CrossRefGoogle Scholar
  23. 23.
    Das DK (1993) Ischemic preconditioning and myocardial adaptation to ischemia. Cardiovasc Res 27:2077–2079PubMedCrossRefGoogle Scholar
  24. 24.
    Das DK, Engelman RM, Kimura Y (1993) Molecular adaptation of cellular defences following preconditioning of heart by repeated ischemia. Cardiovascular Res 27:578–584CrossRefGoogle Scholar
  25. 25.
    Schott RJ, Rohmann S, Braun ER, Schaper W (1990) Ischemic preconditioning reduces infarct size in swine myocardium. Circ Res 66:1133–1142PubMedCrossRefGoogle Scholar
  26. 26.
    Hutter MM, Sievers RE, Barbosa V, Wolfe CL (1994) Heat shock protein induction in rat hearts. A direct correlation between the amount of heat shock protein induced and the degree of myocardial protection. Circulation 89:355–360PubMedCrossRefGoogle Scholar
  27. 27.
    Liu X, Xu C, Knox WH et al (1992) Heat Shock: a new approach for myocardial preservation in cardiac surgery. Circulation 86:358–363Google Scholar
  28. 28.
    Maulik N, Engelman RM, Wei Z et al (1995) Drug-induced heat shock improves post-ischemic ventricular recovery after cardiopulmonary bypass. Circulation 92:381–388CrossRefGoogle Scholar
  29. 29.
    Maulik N, Engelman RM, Wei Z et al (1993) Interleukin-1a preconditioning reduces myocardial ischemia reperfusion injury. Circulation 88:387–394Google Scholar
  30. 30.
    Mitchell MB, Meng X, Ao L et al (1995) Preconditioning of isolated heart is mediated by protein kinase C activation. Circ Res 76:73–81PubMedCrossRefGoogle Scholar
  31. 31.
    Henrich CJ, Simpson PC (1988) Differential acute and chronic response of protein kinase C in cultured neonatal rat heart myocytes to a1 adrenergic and phorbol ester stimulation. J Mol Cell Cardiol 20:1081–1085PubMedCrossRefGoogle Scholar
  32. 32.
    Ytrehus K, Liu Y, Downey JM (1994) Preconditioning protects ischemic rabbit heart by protein kinase C activation. Am J Physiol 266:H1145–H1152PubMedGoogle Scholar
  33. 33.
    Nishizuka Y (1986) Studies and perspectives of protein kinase C. Science 1986(233):305–312CrossRefGoogle Scholar
  34. 34.
    Das DK, Maulik N, Moraru II (1995) Gene expression in acute myocardial stress. Induction by hypoxia, ischemia, reperfusion, hyperthermia and oxidative stress. J Mol Cell Cardiol 27:181–193PubMedCrossRefGoogle Scholar
  35. 35.
    Moraru II, Engelman DT, Engelman RM et al (1994) Myocardial ischemia triggers rapid expression of mitochondrial genes. Surg Forum 40:315–317Google Scholar
  36. 36.
    Zu YL, Ai Y, Gilchrist A et al (1997) High expression and activation of MAP kinase-activated protein kinase 2 in cardiac muscle cells. J Mol Cell Cardiol 8:2159–2168CrossRefGoogle Scholar
  37. 37.
    Gurusamy N, Lekli I, Gherghiceanu M et al (2009) Bag-1 induces autophagy for cardiac cell survival. Autophagy 5:120–121PubMedCrossRefGoogle Scholar
  38. 38.
    Kume S, Uzu T, Horiike K et al (2010) Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 120:1043–1055PubMedCrossRefGoogle Scholar
  39. 39.
    Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293PubMedCrossRefGoogle Scholar
  40. 40.
    Baehrecke EH (2005) Autophagy: duel roles in life and death? Nat Rev Mol Cell Biol 6:505–510PubMedCrossRefGoogle Scholar
  41. 41.
    Kadowaki M, Karim MR, Carpi A, Miotto G (2006) Nutrient control of macroautophagy in mammalian cells. Mol Aspects Med 27:426–443PubMedCrossRefGoogle Scholar
  42. 42.
    Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688PubMedCrossRefGoogle Scholar
  43. 43.
    Meijer AJ, Codogno P (2006) Signaling and autophagy regulation in health, aging and disease. Mol Aspects Med 27:411–425PubMedCrossRefGoogle Scholar
  44. 44.
    Dai DF, Rabinovitch P (2011) Mitochondrial oxidative stress mediates induction of autophagy and hypertrophy in angiotensin-II treated mouse hearts. Autophagy 8:917–918CrossRefGoogle Scholar
  45. 45.
    Lekli I, Ray D, Mukherjee S, Gurusamy N et al (2010) Co-ordinated autophagy with resveratrol and γ-tocotrienol confers synergetic cardioprotection. J Cell Mol Med 10:2506–2518CrossRefGoogle Scholar
  46. 46.
    Petrovski G, Gurusamy N, Das DK (2011) Resveratrol in cardiovascular health and disease. Ann N Y Acad Sci 1215:22–33PubMedCrossRefGoogle Scholar
  47. 47.
    Zheng Q, Su H, Tian Z, Wang X (2011) Proteasome malfunction activates macroautophagy in the heart. Am J Cardiovasc Dis. 1:214–226PubMedGoogle Scholar
  48. 48.
    Groenendyk J, Sreenivasaiah PK, Kim do H et al (2010) Biology of endoplasmic reticulum stress in the heart. Circ Res 107:1185–1197PubMedCrossRefGoogle Scholar
  49. 49.
    Guo R, Ren J (2012) Deficiency in AMPK attenuates ethanol-induced cardiac contractile dysfunction through inhibition of autophagosome formation. Cardiovasc Res 94:480–491PubMedCrossRefGoogle Scholar
  50. 50.
    Kondo-Okamoto N, Noda NN, Suzuki SW et al (2012) Autophagy-related Protein 32 acts as autophagic degron and directly initiates mitophagy. J Biol Chem 287:10631–10638PubMedCrossRefGoogle Scholar
  51. 51.
    Shahnazari S, Namolovan A, Mogridge J et al (2011) Bacterial toxins can inhibit host cell autophagy through cAMP generation. Autophagy 9:957–965CrossRefGoogle Scholar
  52. 52.
    Lin WJ, Yang CY, Li LL et al (2011) Lysosomal targeting of phafin1 mediated by Rab7 induces autophagosome formation. Biochem Biophys Res Commun 417:35–42PubMedCrossRefGoogle Scholar
  53. 53.
    Li WW, Li J, Bao JK (2012) Microautophagy: lesser-known self-eating. Cell Mol Life Sci 7:1125–1136CrossRefGoogle Scholar
  54. 54.
    Majeski AE, Dice JF (2004) Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 36:2435–2444PubMedCrossRefGoogle Scholar
  55. 55.
    Hirota Y, Kang D, Kanki T (2012) The physiological role of mitophagy: new insights into phosphorylation events. Int J Cell Biol 2012:354914PubMedGoogle Scholar
  56. 56.
    Kim HJ, Jung KJ, Yu BP et al (2002) Modulation of redox-sensitive transcription factors by calorie restriction during aging. Mech Aging Dev 123:1589–1595PubMedCrossRefGoogle Scholar
  57. 57.
    Hu YL, DeLay M, Jahangiri A et al (2012) Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res 72:1773–1783PubMedCrossRefGoogle Scholar
  58. 58.
    Gurusamy N, Das DK (2009) Autophagy, redox signaling, and ventricular remodeling. Antioxid Redox Signal 8:1975–1988CrossRefGoogle Scholar
  59. 59.
    King JS, Veltman DM, Insall RH (2011) The induction of autophagy by mechanical stress. Autophagy 7:1490–1499PubMedCrossRefGoogle Scholar
  60. 60.
    Du L, Hickey RW, Bayir H et al (2009) Starving neurons show sex difference in autophagy. J Biol Chem 284:2383–2396PubMedCrossRefGoogle Scholar
  61. 61.
    Gurusamy N, Lekli I, Mukherjee S et al (2010) Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res 86:103–112PubMedCrossRefGoogle Scholar
  62. 62.
    Matsui Y, Kyoi S, Takagi H et al (2008) Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion. Autophagy 4:409–415PubMedGoogle Scholar
  63. 63.
    Gurusamy N, Lekli I, Gorbunov NV et al (2009) Cardioprotection by adaptation to ischemia augments autophagy in association with Bag-1 protein. J Cell Mol Med 13:373–387PubMedCrossRefGoogle Scholar
  64. 64.
    Das DK, Maulik N (2006) l Resveratrol in cardioprotection: a therapeutic promise of alternative medicine. Mol Interven 6:36–47CrossRefGoogle Scholar
  65. 65.
    Dudley J, Das S, Mukherjee S, Das DK (2009) Resveratrol, a unique phytoalexin present in red wine delivers either survival signal or death signal to the ischemic myocardium depending on dose. J Nutr Biochem 20:443–452PubMedCrossRefGoogle Scholar
  66. 66.
    Gurusamy N, Lekli I, Mukherjee S et al (2009) Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc Res 86:103–112PubMedCrossRefGoogle Scholar
  67. 67.
    Polupanov AS, Nazarko VY, Sibirny AA (2011) CCZ1, MON1 and YPT7 genes are involved in pexophagy, the Cvt pathway and non-specific macroautophagy in the methylotrophic yeast Pichia pastoris. Cell Biol Int 34:311–319CrossRefGoogle Scholar
  68. 68.
    Harashima N, Inao T, Imamura R et al (2011) Roles of the PI3K/Akt pathway and autophagy in TLR3 signaling-induced apoptosis and growth arrest of human prostate cancer cells. Cancer Immunol Immunother 61:667–676PubMedCrossRefGoogle Scholar
  69. 69.
    Kim J, Huang WP, Stromhaug PE, Klionsky DJ (2002) Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J Biol Chem 277:763–773PubMedCrossRefGoogle Scholar
  70. 70.
    Liou W, Geuze HJ, Geelen MJ, Slot JW (1997) The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J Cell Biol 136:61–70PubMedCrossRefGoogle Scholar
  71. 71.
    Bennetzen MV, Mariño G, Pultz D et al (2012) Phosphoproteomic analysis of cells treated with longevity-related autophagy inducers. Cell Cycle 11:1827–1840PubMedCrossRefGoogle Scholar
  72. 72.
    Jing CH, Wang L, Liu PP, et al (2012) Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage. Neuroscience [Epub ahead of print]Google Scholar
  73. 73.
    Xue L, Fletcher GC, Tolkovsky AM (2001) Mitochondrial are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis. Curr Biol 11:361–365PubMedCrossRefGoogle Scholar
  74. 74.
    McCormick J, Knight RA, Barry SP et al (2012) Autophagy in the stress-induced myocardium. Front Biosci 4:2131–2141Google Scholar
  75. 75.
    Mitter SK, Rao HV, Qi X et al (2012) Autophagy in the retina: a potential role in age-related macular degeneration. Adv Exp Med Biol 723:83–90PubMedCrossRefGoogle Scholar
  76. 76.
    Jeong JK, Moon MH, Bae BC et al (2012) Autophagy induced by resveratrol prevents human prion protein-mediated neurotoxicity. Neurosci Res 73:99–105PubMedCrossRefGoogle Scholar
  77. 77.
    Dutta D, Calvani R, Bernabei R et al (2012) Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circ Res 110:1125–1138PubMedCrossRefGoogle Scholar
  78. 78.
    Scherz-Shouval R, Shvets E, Fass E et al (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760PubMedCrossRefGoogle Scholar
  79. 79.
    Bensaad K, Cheung EC, Vousden KH (2009) Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J 28:3015–3026PubMedCrossRefGoogle Scholar
  80. 80.
    Chen Y, Azad MB, Gibson SB (2009) Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16:1040–1052PubMedCrossRefGoogle Scholar
  81. 81.
    Mukherjee S, Lekli I, Ray D et al (2010) Comparison of the protective effects of steamed and cooked broccolis on ischaemia reperfusion-induced cardiac injury. Br J Nutr 103:815–823PubMedCrossRefGoogle Scholar
  82. 82.
    Itoh K, Chiba T, Takahashi S et al (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322PubMedCrossRefGoogle Scholar
  83. 83.
    Gurusamy N, Malik G, Gorbunov NV, Das DK (2007) Redox activation of Ref-1 potentiates cell survival following myocardial ischemia reperfusion injury. Free Radic Biol Med 43:397–407PubMedCrossRefGoogle Scholar
  84. 84.
    Ishii T, Itoh K, Yamamoto M (2002) Roles of Nrf2 in activation of antioxidant enzyme genes via antioxidant responsive elements. Methods Enzymol 348:182–190PubMedCrossRefGoogle Scholar
  85. 85.
    Robert G, Gastaldi C, Puissant A, et al (2012) The anti-apoptotic Bcl-B protein inhibits BECN1-dependent autophagic cell death. Autophagy 8. [Epub ahead of print]Google Scholar
  86. 86.
    Gamerdinger M, Carra S, Behl C (2011) Emerging roles of molecular chaperones and co-chaperones in selective autophagy: focus on BAG proteins. J Mol Med 89:1175–1182PubMedCrossRefGoogle Scholar
  87. 87.
    Budanov AV, Karin M (2008) p53 target genes sestrin 1 and sestrin 2 connect genotoxic stress and mTOR signaling. Cell 134:451–460PubMedCrossRefGoogle Scholar
  88. 88.
    Botrugno OA, Robert T, Vanoli F et al (2012) Molecular pathways: old drugs define new pathways: non-histone acetylation at the crossroads of the DNA damage response and autophagy. Clin Cancer Res 18:2436–2442PubMedCrossRefGoogle Scholar
  89. 89.
    Rambold AS, Kostelecky B, Lippincott-Schwartz J (2011) Together we are stronger: fusion protects mitochondria from autophagosomal degradation. Autophagy 7:1568–1569PubMedCrossRefGoogle Scholar
  90. 90.
    Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803PubMedCrossRefGoogle Scholar
  91. 91.
    Calnan DR, Brunet A (2008) The FoxO code. Oncogene 27(16):2276–2288PubMedCrossRefGoogle Scholar
  92. 92.
    Giannakou ME (2004) Partridge L the interaction between FoxO and SirT1: tipping the balance towards survival. Trends Cell Biol 14:408–412PubMedCrossRefGoogle Scholar
  93. 93.
    Uddin MN, Ito S, Nishio N et al (2011) Gadd34 induces autophagy through the suppression of the mTOR pathway during starvation. Biochem Biophys Res Commun 407:692–698PubMedCrossRefGoogle Scholar
  94. 94.
    Petrovski G, Das S, Juhasz B et al (2011) Cardioprotection by endoplasmic reticulum stress-induced autophagy. Antioxid Redox Signal 14:2191–2200PubMedCrossRefGoogle Scholar
  95. 95.
    Mukhopadhyay P, Pacher P, Das DK (2011) MicroRNA signatures of resveratrol in the ischemic heart. Ann N Y Acad Sci 1215:109–116PubMedCrossRefGoogle Scholar
  96. 96.
    Wang X, Song X, Glass CK, Rosenfeld MG (2011) The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs. Cold Spring Harb Perspect Biol 3:a003756PubMedCrossRefGoogle Scholar
  97. 97.
    Faghihi MA, Zhang M, Huang J et al (2010) Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol 11:R56PubMedCrossRefGoogle Scholar
  98. 98.
    Das M, Das S, Lekli I, Das DK (2012) Caveolin induces cardioprotection through epigenetic regulation. J Cell Mol Med 16:888–895PubMedCrossRefGoogle Scholar
  99. 99.
    Potente M, Ghaeni L, Baldessari D et al (2007) Sirt1 controls endothelial angiogenic functions during vascular growth. Genes Devel 21:2644–2658PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Cardiovascular Research CenterUniversity of Connecticut School of MedicineFarmingtonUSA
  2. 2.Department of Biotechnology, School of Life SciencesPondicherry UniversityPondicherryIndia

Personalised recommendations