Skip to main content

Advertisement

Log in

Roles of the PI3K/Akt pathway and autophagy in TLR3 signaling-induced apoptosis and growth arrest of human prostate cancer cells

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Toll-like receptors (TLRs) are widely expressed in immune cells and play a crucial role in many aspects of the immune response. Although some types of TLRs are also expressed in cancer cells, the effects and mechanisms of TLR signaling in cancer cells have not yet been fully elucidated. In the present study, we analyzed the effects of polyinosinic-polycytidylic acid [poly(I:C)], a TLR3 ligand, on three TLR3-expressing human prostate cancer cell lines (LNCaP, PC3, and DU145). We then further characterized the underlying mechanisms, focusing on the poly(I:C)-sensitive LNCaP cell line. Poly(I:C) significantly reduced the viability of LNCaP cells TLR3 and endosome dependently. One mechanism for the antitumor effect was caspase-dependent apoptosis, and another mechanism was poly(I:C)-induced growth arrest. Cell survival and proliferation of LNCaP cells depended on the PI3K/Akt pathway, and PI3K/Akt inhibitors induced apoptosis and growth arrest similar to poly(I:C) treatment. Additionally, poly(I:C) treatment caused dephosphorylation of Akt in LNCaP cells, but transduction of the constitutively active form of Akt rendered LNCaP cells resistant to poly(I:C). Immunoblot analysis of proliferation- and apoptosis-related molecules in poly(I:C)-treated LNCaP cells revealed participation of cyclinD1, c-Myc, p53, and NOXA. Interestingly, poly(I:C) treatment of LNCaP cells was accompanied by autophagy, which was cytoprotective toward poly(I:C)-induced apoptosis. Together, these findings indicate that TLR3 signaling triggers apoptosis and growth arrest of LNCaP cells partially through inactivation of the PI3K/Akt pathway and that treatment-associated autophagy plays a cytoprotective role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Ann Rev Immunol 21:335–376

    Article  CAS  Google Scholar 

  2. Kelly MG, Alvero AB, Chen R et al (2006) TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res 66:3859–3868

    Article  PubMed  CAS  Google Scholar 

  3. Szczepanski MJ, Czystowska M, Szajnik M et al (2009) Triggering of toll-like receptor 4 expressed on human head and squamous cell carcinoma promotes tumor development and protects the tumor from immune attack. Cancer Res 69:3105–3113

    Article  PubMed  CAS  Google Scholar 

  4. He W, Liu Q, Wang L, Chen W, Li N, Cao X (2007) TLR4 signaling promotes immune escapes of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol 44:2850–2859

    Article  PubMed  CAS  Google Scholar 

  5. Salaun B, Lebecque S, Matikainen S, Rimoldi D, Romero P (2007) Toll-like receptor 3 expressed by melanoma cells as a target for therapy? Clin Cancer Res 13:4565–4574

    Article  PubMed  CAS  Google Scholar 

  6. Morikawa T, Sugiyama A, Kume H et al (2007) Identification of toll-like receptor 3 as a potential therapeutic target in clear renal cell carcinoma. Clin Cancer Res 13:7503–7509

    Article  Google Scholar 

  7. Salaun B, Coste I, Rissoan MC, Lebecque SJ, Renno T (2006) TLR3 can direcetly rigger apoptosis in human cancer cells. J Immunol 176:4894–4901

    PubMed  CAS  Google Scholar 

  8. Paone A, Starace D, Galli R et al (2008) Toll-like receptor 3 triggers apoptosis of human prostate cancer cells through a PKC-α-dependent mechanism. Carcinogenesis 29:1334–1342

    Article  PubMed  CAS  Google Scholar 

  9. Salaun B, Zitvogel L, Asselin-Paturel C et al (2011) TLR3 as a biomarker for the therapeutic efficacy of double-stranded RNA in breast cancer. Cancer Res 71:1607–1614

    Article  PubMed  CAS  Google Scholar 

  10. Matsumoto M, Seya T (2008) TLR3: interferon induction by double-strand RNA including poly(I:C). Adv Drug Deliv Rev 60:805–812

    Article  PubMed  CAS  Google Scholar 

  11. Chin AI, Miyahira AK, Covarrubias A et al (2010) Toll-like receptor 3-mediated suppression of TRAMP prostate cancer shows the critical role of type I interferons in tumor immune surveillance. Cancer Res 70:2595–2603

    Article  PubMed  CAS  Google Scholar 

  12. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    Article  PubMed  CAS  Google Scholar 

  13. Paez J, Sellers WR (2003) PI3K/PTEN/AKT pathway. A critical mediator of oncogenic signaling. Cancer Treat Res 115:145–167

    Article  PubMed  CAS  Google Scholar 

  14. Davey RA, Hamson CA, Healey JJ, Cunningham JM (1997) In vitro binding of purified murine ecotropic retrovirus envelop surface protein to its receptor, MCAT-1. J Virol 71:8096–8102

    PubMed  CAS  Google Scholar 

  15. Morita S, Kojima T, Kitamura T (2000) Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7:1063–1066

    Article  PubMed  CAS  Google Scholar 

  16. Kato H, Takeuchi O, Sato S et al (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–115

    Article  PubMed  CAS  Google Scholar 

  17. Rutz M, Metzger J, Gellert T et al (2004) Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent. Eur J Immunol 34:2541–2550

    Article  PubMed  CAS  Google Scholar 

  18. Bertram J, Peacock JW, Tan C et al (2006) Inhibition of the phosphatidylinositol 3′-kinase pathway promotes autocrine Fas-induced death of phosphatase and tensin homologue-deficient prostate cancer cells. Cancer Res 66:4781–4788

    Article  PubMed  CAS  Google Scholar 

  19. Shukla S, MacLennan GT, Hartman DJ, Fu P, Resnick MI, Gupta S (2007) Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. Int J Cancer 121:1424–1432

    Article  PubMed  CAS  Google Scholar 

  20. Guan Z, Wang X, Zhu X et al (2007) Aurora-A, a negative prognostic marker, increases migration and decreases radiosensitivity in cancer cells. Cancer Res 67:10436–10444

    Article  PubMed  CAS  Google Scholar 

  21. Muise-Hemericks RC, Grimes H, Bellacosa A, Malstrom SE, Tsichlis PN, Rosen N (1998) Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Ae-depndent pathway. J Biol Chem 273:29864–29872

    Article  Google Scholar 

  22. Graff JR, Konicek BW, McNulty AM et al (2000) Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. J Biol Chem 275:24500–24505

    Article  PubMed  CAS  Google Scholar 

  23. Sharma M, Chuang WW, Sun Z (2002) Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3β inhibition and nuclear β-catenin accumulation. J Biol Chem 277:30935–30941

    Article  PubMed  CAS  Google Scholar 

  24. Ogawara Y, Kishishita S, Obata T et al (2002) Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 277:21843–21850

    Article  PubMed  CAS  Google Scholar 

  25. Thakkar H, Chen X, Tyan F et al (2001) Pro-survival function of Akt/protein kinase B in prostate cancer cells. Relationship with TRAIL resistance. J Biol Chem 276:38361–38369

    Article  PubMed  CAS  Google Scholar 

  26. Shankar S, Chen Q, Ganapathy S, Singh KP, Srivastava RK (2008) Diallyl trisulfide increases the effectiveness of TRAIL and inhibits prostate cancer growth in an orthotopic model: molecular mechanisms. Mol Cancer Ther 7:2328–2338

    Article  PubMed  CAS  Google Scholar 

  27. She QB, Ye SQ, O’Reilly KE, Lobo J, Rosen N (2005) The BAD protein intergrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathway in PTEN-deficient tumor cells. Cancer Cell 8:287–297

    Article  PubMed  CAS  Google Scholar 

  28. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of diseases. Cell 132:27–42

    Article  PubMed  CAS  Google Scholar 

  29. Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  PubMed  CAS  Google Scholar 

  30. Kim PK, Hailey DW, Mullen RT, Lippincott-Schwartz J (2008) Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci 105:20567–20574

    Article  PubMed  CAS  Google Scholar 

  31. González-Reyes S, Fernández JM, González LO et al (2011) Study of TLR3, TLR4, and TLR9 in prostate carcinomas and their association with biochemical recurrence. Cancer Immunol Immunother 60:217–226

    Article  PubMed  Google Scholar 

  32. Gall R, Starace D, Busa et al (2010) TLR stimulation of prostate tumor cells induces chemkine-mediated recruitment of specific immune cell types. J Immunol 184:6658–6669

    Article  Google Scholar 

  33. Ilvesaro JM, Merrell MA, Swain TM et al (2007) Toll like receptor-9 agonists stimulate prostate cancer invasion in vitro. Prostate 67:774–781

    Article  PubMed  CAS  Google Scholar 

  34. Cully M, Shiu J, Piekorz RP, Muller WJ, Done SJ, Mak TW (2006) Transforming acidic coiled ciol 1 promotes transformation and mammary tumorigenesis. Cancer Res 65:10363–10370

    Article  Google Scholar 

  35. Majumder PK, Sellers WR (2005) Akt-regulated pathways in prostate cancer. Oncogene 24:7465–7474

    Article  PubMed  CAS  Google Scholar 

  36. Malik SN, Brattain M, Ghosh PM et al (2002) Immunohistochemical demonstration of phosphor-Akt in high Gleason grade prostate cancer. Clin Can Res 8:1168–1171

    Google Scholar 

  37. Kreisberg JI, Malik SN, Prihoda TJ et al (2004) Phosphorylation of Akt (Ser473) is an excellent predictor of poor clinical out come in prostate cancer. Can Res 64:5232–5236

    Article  CAS  Google Scholar 

  38. Ayala G, Thompson T, Yang G et al (2004) High levels of phosphorylated form of Akt-1 in prostate cancer and non-neoplastic prostate tissues are strong predictors of biochemical recurrence. Clin Cancer Res 10:6572–6578

    Article  PubMed  CAS  Google Scholar 

  39. Sarkar S, Peters KL, Elco CP, Sakamoto S, Pal S, Sen GC (2004) Novel roles of TLRs tyrosine phosphorylation and PI3 kinase in double-strand RNA signaling. Nat Struct Mol Biol 11:1060–1067

    Article  PubMed  CAS  Google Scholar 

  40. Tang DG, Li L, Chopra DP, Porter AT (1998) Extended survivability of prostate cancer cells in the absence of trophic factors: increased proliferation, evasion of apoptosis, and the role of apoptosis proteins. Cancer Res 58:3466–3479

    PubMed  CAS  Google Scholar 

  41. Ghafar MA, Anastasiadis AG, Chen MW et al (2003) Acute hypoxia increases the aggressive characteristics and survival properties of prostate cancer cells. Prostate 54:58–67

    Article  PubMed  Google Scholar 

  42. Gewirtz DA (2009) Autophagy, senescence and tumor dormancy in cancer therapy. Autophagy 5:1232–1234

    Article  PubMed  Google Scholar 

  43. Hähnel P, Thaler S, Antunes E, Huber C, Theobald M, Schuler M (2008) Targeting AKT signaling sensitizes cancer to cellular immunotherapy. Cancer Res 68:3899–3906

    Article  PubMed  Google Scholar 

  44. Tormo D, Checinska A, Alonso-Curbelo D et al (2009) Targeted activation of innate immunity for therapeutic induction of autophagy and apoptosis in melanoma cells. Cancer Cell 16:103–114

    Article  PubMed  CAS  Google Scholar 

  45. Besch R, Poeck H, Hohenauer T et al (2009) Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J Clin Invest 119:2399–2411

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Yasuko Moriyama for her technical assistance. We thank Dr. Davey RA for the mCAT-1 vector and Dr. Toshio Kitamura for the PLAT-E cells. This study was supported in part by a grant from the Ministry of Education, Culture, Sports, Science and Technology, Japan (no. 18591449 to M. H., no. 23701074 to N. H.), and Extramural Collaborative Research Grant of Cancer Research Institute, Kanazawa University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Harada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 28 kb)

Supplementary material 2 (PDF 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harashima, N., Inao, T., Imamura, R. et al. Roles of the PI3K/Akt pathway and autophagy in TLR3 signaling-induced apoptosis and growth arrest of human prostate cancer cells. Cancer Immunol Immunother 61, 667–676 (2012). https://doi.org/10.1007/s00262-011-1132-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1132-1

Keywords

Navigation