Skip to main content

Drugs for Bugs: The Potential of Infochemicals Mediating Insect–Plant–Microbe Interactions for Plant Protection and Medicine

  • Chapter
  • First Online:
Phytochemicals, Plant Growth, and the Environment

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 42))

Abstract

The results obtained by the analysis of functions and structures of plant, insect, and microbe metabolites in interactions among each other and with their environment in natural settings hold a strong potential for developing new applications in plant protection or even human medicine. By identification and synthesis of chemical compounds responsible, e.g., for the regulation of migration between insects’ different host plants, we can gain access to important natural sources for the development of effective strategies using attractive and/or repellent molecules for biotechnical control of plant pests in the context of sustainable agricultural production. In addition, newly detected insect-born infochemicals, which have antifungal or antibacterial activity, bear a potential for the development of new active ingredients for medical purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  PubMed  Google Scholar 

  2. Strohl WR (2000) The role of natural products in a modern drug discovery program. Drug Discov Today 5:39–41

    Article  PubMed  Google Scholar 

  3. Rodriguez-Castaneda G, Dyer LA, Brehm G, Connahs H, Forkner RE, Walla TR (2010) Tropical forests are not flat: how mountains affect herbivore diversity. Ecol Lett 13:1348–1357

    Article  PubMed  Google Scholar 

  4. Hellmann JJ, Sanders NJ (2007) The extent and future of global insect diversity. In: Hester RE, Harrison RM (eds) Issues in environmental science and technology. 33–55

    Google Scholar 

  5. Dossey AT (2010) Insects and their chemical weaponry: new potential for drug discovery. Nat Prod Rep 27:1737–1757

    Article  CAS  PubMed  Google Scholar 

  6. Vilcinskas A, Gross J (2005) Drugs from bugs: the use of insects as a valuable source of transgenes with potential in modern plant protection strategies. J Pest Sci 78:187–191

    Article  Google Scholar 

  7. Dicke M, Sabelis MW (1988) Infochemical terminology: should it be based on cost-benefit analysis rather than origin of compounds? Funct Ecol 2:131–139

    Article  Google Scholar 

  8. El-Sayed AM (2011) The pherobase: database of insect pheromones and semiochemicals. http://www.pherobase.com

  9. Giblin-Davis RM, Pena JE, Oehlschlager AC, Perez AL (1996) Optimization of semiochemical-based trapping of Metamasius hemipterus sericeus (Olivier) (Coleoptera: Curculionidae). J Chem Ecol 22:1389–1410

    Article  CAS  Google Scholar 

  10. Knight AL, Light DM (2001) Attractants from Bartlett pear for codling moth, Cydia pomonella (L.), larvae. Naturwissenschaften 88:339–342

    Article  CAS  PubMed  Google Scholar 

  11. Knight AL, Potting RPJ, Light DM (2002) Modeling the impact of a sex pheromone/kairomone attracticide for management of codling moth (Cydia pomonella). Act Horticulturae 584:215–220

    CAS  Google Scholar 

  12. Light DM, Knight AL, Henrick CA, Rajapaska D, Lingren B, Dickens JC, Reynolds KM, Buttery RG, Merrill G, Roitman J, Campbell BC (2001) A pear-derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.). Naturwissenschaften 88:333–338

    Article  CAS  PubMed  Google Scholar 

  13. Mayer CJ, Jarausch B, Jarausch W, Jelkmann W, Vilcinskas A, Gross J (2009) Cacopsylla melanoneura has no relevance as vector of apple proliferation in Germany. Phytopathology 99:729–738

    Article  PubMed  Google Scholar 

  14. Mayer CJ, Vilcinskas A, Gross J (2008) Pathogen-induced release of plant allomone manipulates vector insect behavior. J Chem Ecol 34:1518–1522

    Article  CAS  PubMed  Google Scholar 

  15. Mayer CJ, Vilcinskas A, Gross J (2008) Phytopathogen lures its insect vector by altering host plant odor. J Chem Ecol 34:1045–1049

    Article  CAS  PubMed  Google Scholar 

  16. Mayer CJ, Vilcinskas A, Gross J (2011) Chemically mediated multitrophic interactions in a plant-insect vector-phytoplasma system compared with a partially nonvector species. Agr Forest Entomol 13:25–35

    Article  Google Scholar 

  17. Charmillot PJ, Hofer D, Pasquier D (2000) Attract and kill: a new method for control of the codling moth Cydia pomonella. Entomol Exp Appl 94:211–216

    Article  Google Scholar 

  18. Light D (2007) Experimental use of the micro-encapsulated pear ester kairomone for control of codling moth, Cydia pomonella (L.), in walnuts. IOBC Bull 30:133–114

    Google Scholar 

  19. Khan ZR, Midega CAO, Bruce TJA, Hooper AM, Pickett JA (2010) Exploiting phytochemicals for developing a ‘push-pull’ crop protection strategy for cereal farmers in Africa. J Exp Bot 61:4185–4196

    Article  CAS  PubMed  Google Scholar 

  20. Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400

    Article  CAS  PubMed  Google Scholar 

  21. de Boer JG, Hordijk CA, Posthumus MA, Dicke M (2008) Prey and non-prey arthropods sharing a host plant: effects on induced volatile emission and predator attraction. J Chem Ecol 34:281–290

    Article  PubMed  Google Scholar 

  22. Schoonhoven LM, Jermy T, van Loon J (1998) Insect-plant biology: from physiology to evolution. Chapman and Hall Ltd, London

    Google Scholar 

  23. Elzinga JA, van Nouhuys S, van Leeuwen DJ, Biere A (2007) Distribution and colonisation ability of three parasitoids and their herbivorous host in a fragmented landscape. Basic Appl Ecol 8:75–88

    Article  Google Scholar 

  24. Gross J, Fatouros NE, Neuvonen S, Hilker M (2004) The importance of specialist natural enemies for Chrysomela lapponica in pioneering a new host plant. Ecol Entomol 29:584–593

    Article  Google Scholar 

  25. Gross J, Schumacher K, Schmidtberg H, Vilcinskas A (2008) Protected by fumigants: beetle perfumes in antimicrobial defense. J Chem Ecol 34:179–188

    Article  CAS  PubMed  Google Scholar 

  26. Hoffmann JH, Moran VC, Webb JW (1975) The influence of the host plant and saturation deficit on the temperature tolerance of a psyllid homoptera. Entomol Exp Et Appl 18:55–67

    Article  Google Scholar 

  27. Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Annu Rev Entomol 51:91–111

    Article  CAS  PubMed  Google Scholar 

  28. Strauss E (2009) Phytoplasma research begins to bloom. Science 325:388–390

    Article  CAS  PubMed  Google Scholar 

  29. Seemüller E, Kison H, Lorenz KH (1998) On the geographic distribution and prevalence of the apple proliferation phytoplasma in low-intensity orchards in Germany. Zeitschrift Fur Pflanzenkrankheiten Und Pflanzenschutz-J Plant Dis Protect 105:404–410

    Google Scholar 

  30. Seemüller E, Schneider B (2004) ‘Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus phytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. Int J Syst Evol Microbiol 54:1217–1226

    Article  PubMed  Google Scholar 

  31. Frisinghelli C, Delaiti L, Grando MS, Forti D, Vindimian ME (2000) Cacopsylla costalis (Flor 1861), as a vector of apple proliferation in Trentino. J Phytopathol-Phytopathologische Zeitschrift 148:425–431

    Article  CAS  Google Scholar 

  32. Jarausch B, Schwind N, Jarausch W, Krczal G, Dickler E, Seemueller E (2003) First report of Cacopsylla picta as a vector of apple proliferation phytoplasma in Germany. Plant Dis 87:101

    Article  Google Scholar 

  33. Tedeschi R, Lauterer P, Brusetti L, Tota F, Alma A (2009) Composition, abundance and phytoplasma infection in the hawthorn psyllid fauna of northwestern Italy. Eur J Plant Pathol 123:301–310

    Article  Google Scholar 

  34. Gross J, Mekonen N (2005) Plant odours influence the host finding behaviour of apple psyllids (Cacopsylla picta; C. melanoneura). IOBC Bull 28:351–355

    Google Scholar 

  35. Boevé J-L (2006) Chemically-mediated defence strategies in Nematinae vs. Phymatocerini larvae (Hymenoptera: Tenthredinidae). In: Blank SM et al (eds) Recent sawfly research: synthesis and prospects. Goecke and Evers, Keltern

    Google Scholar 

  36. Boevé JL, Pasteels JM (1985) Modes of defense in Nematine sawfly larvae – efficiency against ants and birds. J Chem Ecol 11:1019–1036

    Article  Google Scholar 

  37. Garb G (1915) The reversible glands of a chrysomelid larva, Melasoma lapponica. J Entomol Zool 7:87–97

    Google Scholar 

  38. Gross J, Schmidtberg H (2009) Glands of leaf beetle larvae – protective structures against attacking predators and pathogens. In: Jolivet P et al (eds) Research on chrysomelidae, Vol. 2. Koninklijke Brill, Leiden, pp. 177–189

    Google Scholar 

  39. Numata A, Ibuka T (1987) Alkaloids from ants and other insects. In: Manske RHF, Brossi A (eds) The alkaloids: chemistry and physiology. Academic, NY

    Google Scholar 

  40. Burse A, Schmidt A, Frick S, Kuhn J, Gershenzon J, Boland W (2007) Iridoid biosynthesis in Chrysomelina larvae: fat body produces early terpenoid precursors. Insect Biochem Mol Biol 37:255–265

    Article  CAS  PubMed  Google Scholar 

  41. Feld BK, Pasteels JM, Boland W (2001) Phaedon cochleariae and Gastrophysa viridula (Coleoptera:Chrysomelidae) produce defensive iridoid monoterpenes de novo and are able to sequester glycosidically bound terpenoid precursors. Chemoecology 11:191–198

    Article  CAS  Google Scholar 

  42. Oldham NJ, Veith M, Boland W, Dettner K (1996) Iridoid monoterpene biosynthesis in insects: evidence for a de novo pathway occurring in the defensive glands of Phaedon armoraciae (Chrysomelidae) leaf beetle larvae. Naturwissenschaften 83:470–473

    CAS  Google Scholar 

  43. Pasteels JM, Rowell-Rahier M, Raupp MJ (1988) Plant-derived defense in chrysomelid beetles. In: Barbosa PLD (ed) Plant-derived defense in chrysomelid beetles. Wiley, NY

    Google Scholar 

  44. Gross J, Hilker M (1995) Chemoecological studies of the exocrine glandular larval secretions of two chrysomelid species (Coleoptera): Phaedon cochleariae and Chrysomela lapponica. Chemoecology 5:85–189

    Google Scholar 

  45. Rank N, Smiley J, Koepf A (1996) Natural enemies and host plant relationships for Chrysomeline leaf beetles feeding on Salicaceae. In: Jolivet PHA, Cox ML (eds) Chrysomelidae biology, Vol. 2. Ecological studies. SPB Academic, Amsterdam, pp 147–171

    Google Scholar 

  46. Gross J, Müller C, Vilcinskas A, Hilker M (1998) Antimicrobial activity of exocrine glandular secretions, hemolymph, and larval regurgitate of the mustard leaf beetle Phaedon cochleariae. J Invertebr Pathol 72:296–303

    Article  PubMed  Google Scholar 

  47. Gross J, Podsiadlowski L, Hilker M (2002) Antimicrobial activity of exocrine glandular secretion of Chrysomela larvae. J Chem Ecol 28:317–331

    Article  CAS  PubMed  Google Scholar 

  48. Gross J (2010) Deadly perfumes: new fumigants from leaf beetles. Chrysomela Newslett 52

    Google Scholar 

  49. Boevé JL, Gfeller H, Schlunegger UP, Francke W (1997) The secretion of the ventral glands in Hoplocampa sawfly larvae. Biochem Syst Ecol 25:195–201

    Article  Google Scholar 

  50. Gross J (2005) Sechsbeinige Chemiker helfen im Pflanzenschutz. Forschungsreport 9:29–31

    Google Scholar 

  51. Boevé JL, Sonet G, Nagy ZT, Symoens F, Altenhofer E, Haberlein C, Schulz S (2009) Defense by volatiles in leaf-mining insect larvae. J Chem Ecol 35:507–517

    Article  PubMed  Google Scholar 

  52. Koch RL (2003) The multicolored Asian lady beetle, Harinonia axyridis: a review of its biology, uses in biological control, and non-target impacts. J Insect Sci (Tucson) 3:1–16

    Article  Google Scholar 

  53. Koch RL, Galvan TL (2008) Bad side of a good beetle: the North American experience with Harmonia axyridis. Biocontrol 53:23–35

    Article  Google Scholar 

  54. Brown PMJ, Adriaens T, Bathon H, Cuppen J, Goldarazena A, Hagg T, Kenis M, Klausnitzer BEM, Kovar I, Loomans AJM, Majerus MEN, Nedved O, Pedersen J, Rabitsch W, Roy HE, Ternois V, Zakharov IA, Roy DB (2008) Harmonia axyridis in Europe: spread and distribution of a non-native coccinellid. Biocontrol 53:5–21

    Article  Google Scholar 

  55. Kögel S, Gross J, Hoffmann C (2012) Sensory detection thresholds of “ladybird taint” in ‘Riesling’ and ‘Pinot Noir’ under different fermentation and processing conditions. Vitis 51:27–32

    CAS  Google Scholar 

  56. Kögel S, Gross J, Hoffmann C, Ulrich D (2012) Diversity and frequencies of methoxypyrazines in hemolymph of Harmonia axyridis and Coccinella septempunctata and their influence on the taste of wine. Eur Food Res Technol 234:399–404

    Article  Google Scholar 

  57. Roy HE, Brown PMJ, Rothery P, Ware RL, Majerus MEN (2008) Interactions between the fungal pathogen Beauveria bassiana and three species of coccinellid: Harmonia axyridis, Coccinella septempunctata and Adalia bipunctata. Biocontrol 53:265–276

    Article  Google Scholar 

  58. Gross J, Eben A, Muller I, Wensing A (2010) A well protected intruder: the effective antimicrobial defense of the invasive ladybird Harmonia axyridis. J Chem Ecol 36:1180–1188

    Article  CAS  PubMed  Google Scholar 

  59. Kögel S, Eben A, Hoffmann C, Gross J (2012) Influence of diet on fecundity, immune defense and 2-isopropyl-3-methoxypyrazine content of Harmonia axyridis Pallas. J Chem Ecol, published online (DOI 10.1007/s10886–012–0139–1)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author greatly appreciates his technical staff at the Julius Kühn-Institut who contributed to the work reviewed: Elke Breitinger, Sandra Förmer, Felix Hergenhahn, Svenja Hoferer, Jürgen Just, Vanessa Lessle, Kai Lukat, Negash Mekonen, Rouven Nietsch, Tobias Schneider, and Sabine Wetzel. Thanks especially go to the author’s wife Eva Gross for linguistic improvements. Parts of the presented studies were funded by the german Research Foundation (DFG) (GR 2645/1-1, 2). The author is very grateful to the stifterverband für die deutsche wissenschaft for additional funding (innovative research award). The author also thanks the editors of Recent Advances in Phytochemistry for the invitation to write this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Gross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gross, J. (2013). Drugs for Bugs: The Potential of Infochemicals Mediating Insect–Plant–Microbe Interactions for Plant Protection and Medicine. In: Gang, D. (eds) Phytochemicals, Plant Growth, and the Environment. Recent Advances in Phytochemistry, vol 42. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4066-6_5

Download citation

Publish with us

Policies and ethics