Skip to main content
Log in

Drugs from bugs: the use of insects as a valuable source of transgenes with potential in modern plant protection strategies

  • Review
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Transgenic expression of antimicrobial peptides in crops has become a novel approach among the strategies to combat phytopathogens in modern plant protection measures. The first antimicrobial transgenes of insect origin, modified cecropins, have been demonstrated to confer resistance of several transgenic cultivars against both bacterial and fungal phytopathogens. Insects represent a promising reservoir for antimicrobial peptides to engineer disease resistant crops. The increasing knowledge about the potent insect innate immunity may help to develop a novel strategy in sustainable agriculture. Several approaches are presently under investigation to prevent evolution of phytopathogens that can overcome disease resistance in transgenic crops expressing an insect antimicrobial peptide. Pathogen-induced expression of insect antimicrobial peptides in crops and combined multiple expression of different antimicrobial peptides along with proteinase inhibitors from insects may prevent selection of resistant phytopathogens. The potential of insect antimicrobial peptides as transgenes to render disease resistant crops has just started to be explored and may provide tools to be ahead of the evolutionary adaptability of phytopathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Banzet N, Latorse MP, Bulet P, Francois E, Derpierre C, Dubald M (2002) Expression of insect cytein-rich antifungal peptides in transgenic tobacco enhances resistance to a fungal disease. Plant Sci 162:995–1006

    Article  CAS  Google Scholar 

  • Blum MS (1996) Semiochemical parsimony in the arthropoda. Annu Rev Entomol 41:353–374

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Nyström T, de Cock H, Bennich H (1998) Attacin—an insect immune protein—binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis. Microbiol 144:2179–2189

    Article  CAS  Google Scholar 

  • Cavallarin L, Andreu D, Segundo BS (1998) Cecropin A-derived peptides are potent inhibitors of fungal plant pathogens. Mol Plant Microbe Interact 11:218–227

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti A, Ganaphathi T, Mukherjee P, Bapat V (2003) MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587–596

    PubMed  CAS  Google Scholar 

  • Christensen B, Fink J, Merrifield R, Mauzerall D (1988) Channel-forming properties of cecropins and related compounds incorporated into planar lipid membranes. Proc Natl Acad Sci USA 85:5072–5076

    Article  PubMed  CAS  Google Scholar 

  • Clark B, Phillips T, Coats J (2005) Environmental fate and effects of Bacillus thuringiensis (Bt) proteins from transgenic crops: a review. J Agric Food Chem 53:4643–4653

    Article  PubMed  CAS  Google Scholar 

  • Collens J, Lee D, Seeman A, Curtis W (2004) Development of auxotrophic Agrobacterium tumefaciens for gene transfer in plant tissue culture. Biotechnol Prog 20:890–896

    Article  PubMed  CAS  Google Scholar 

  • DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852–862

    Article  PubMed  CAS  Google Scholar 

  • Ekengren S, Hultmark D (1999) Drosophila cecropin as an antifungal agent. Insect Biochem Mol Biol 29:965–972

    Article  PubMed  CAS  Google Scholar 

  • Fehlbaum P, Bulet P, Michaut L, Lagueux M, Broekaert W, Hetru C, Hoffann J (1994) Insect immunity: septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant defensins. J Biol Chem 269:33159–33163

    PubMed  CAS  Google Scholar 

  • Feld BK, Pasteels JM, Boland W (2001) Phaedon cochleariae and Gastrophysa viridula (Coleoptera: Chrysomelidae) produce defensive iridoid monoterpenes de novo and are able to sequester glycosidically bound terpenoid precursors. Chemoecology 11:191–198

    Article  CAS  Google Scholar 

  • Florack D, Allefs S, Bollen R, Bosch D, Visser B, Stiekema W (1995) Expression of giant silk moth cecropin B genes in tobacco. Transgenic Res 4:132–141

    Article  PubMed  CAS  Google Scholar 

  • Gao A, Hakimi S, Mittanck C, Wu Y, Woerner B, Stark D, Shah D, Liang J, Rommens C (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18:1307–1310

    Article  PubMed  CAS  Google Scholar 

  • Gross J, Müller C, Vilcinskas A, Hilker M (1998) Antimicrobial activity of exocrine glandular secretions, hemolymph and larval regurgitate of the mustard leaf beetle Phaedon cochleariae. J Invertbr Pathol 72:296–303

    Article  Google Scholar 

  • Gross J, Podsiadlowski L, Hilker M (2002) Antimicrobial activity of the exocrine glandular secretion of Chrysomela larvae. J Chem Ecol 28(2):317–331

    Article  PubMed  CAS  Google Scholar 

  • Hancock R, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotech 16:82–88

    Article  CAS  Google Scholar 

  • Hightower R, Baden C, Penzes E, Dunsmuir P (1994) The expression of cecropin peptide in transgenic tobacco does not confer resistance to Pseudomonas syringae pv. tabaci. Plant Cell Rep 13:295–299

    Article  CAS  Google Scholar 

  • Hoffmann J (2003) The immune response of Drosophila. Nature 426:33–38

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Nordeen R, Di M, Owens L, McBeath J (1997) Expression of engineered cecropin gene cassette in transgenic tobacco plants confers resistance to Pseudomonas syringae pv. tabaci. Phytopathol 87:494–499

    Article  CAS  Google Scholar 

  • Hultmark D, Engström A, Bennich H, Kapur R, Boman HG (1982) Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur J Biochem 127:207–217

    Article  PubMed  CAS  Google Scholar 

  • Hultmark D, Engstrom A, Andersson K, Steiner H, Bennich H, Boman HG (1983) Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J 2:571–576

    PubMed  CAS  Google Scholar 

  • Jaynes JM, Xanthopoulos KG, Destefano-Beltran L, Dodds JH (1987) Increasing bacterial resistance in plants utilizing genes from insects. Bioessays 6:263–270

    Article  CAS  Google Scholar 

  • Jaynes JM, Nagpala P, Destefano-Beltran L, Huang JH, Kim JH, Denney T, Cetiner S (1993) Expression of a cecropin B lytic peptide analogue in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanaceum. Plant Sci 89:43–53

    Article  CAS  Google Scholar 

  • Ko K, Norelli J, Reynoird J-P, Boresjza-Wysocka E, Brown S, Aldwinckle HS (2000) Effect of untranslated leader sequence of AMV RNA 4 and signal peptide of pathogenesis-related protein 1b on attacin gene expression, and resistance to fire blight in transgenic apple. Biotechn Letters 22:373–381

    Article  CAS  Google Scholar 

  • Kogel KH, Langen G (2005) Induced disease resistance and gene expression in cereals. Cell Microbiol 7:1555–1564

    Article  PubMed  CAS  Google Scholar 

  • Kylsten P, Samakovlis C, Hultmark D (1990) The cecropin locus in Drosophila; a compact gene cluster involved in the response to infection. EMBO J 9:217–224

    PubMed  CAS  Google Scholar 

  • Lamberty M, Ades S, Uttenweiler J, Brookhart G, Bushey D, Hoffmann J, Bulet P (1999) Insect immunity: isolation from the lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity. J Biol Chem 274:9320–9326

    Article  PubMed  CAS  Google Scholar 

  • Lockey T, Ourth D (1995) Formation of pores in Escherichia coli cell membranes by a cecropin isolated from hemolymph of Heliothis virescens larvae. Eur J Biochem 236:263–271

    Article  Google Scholar 

  • Marillonet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 23:718–723

    Article  PubMed  CAS  Google Scholar 

  • Marshall SH, Arenas G (2003) Antimicrobial peptides: a natural alternative to chemical antibiotics and a potential for applied biotechnology. Elect J Biotech 6(2):271–284

    Google Scholar 

  • Mehlo L, Gahakwa D, Nghia P, Loc N, Capell T, Gatehouse J, Gatehouse A, Christou P (2005) An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proc Natl Acad Sci USA 102:7812–7816

    Article  PubMed  CAS  Google Scholar 

  • Meylaers K, Cerstianaens A, Vierstraete E, Baggerman G, Michiels C, De Loof A, Schoofs L (2003) Antimicrobial compounds of low molecular mass are constitutively present in insects: characterisation of β-alanyl-tyrosine. Curr Pharm Des 9:159–174

    Article  PubMed  CAS  Google Scholar 

  • Mills D, Hammerschlag F, Nordeen R, Owens L (1994) Evidence for the breakdown of cecropin B by proteinases in the intercellular fluid of peach leaves. Plant Sci 104:17–22

    Article  CAS  Google Scholar 

  • Moffat AS (2001) Finding new ways to fight plant diseases. Science 292:2270–2273

    Article  PubMed  CAS  Google Scholar 

  • Osusky M, Zhou G, Osuska L, Hancock RE, Kay W, Misra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol 18:1162–1166

    Article  PubMed  CAS  Google Scholar 

  • Owens L, Heutte T (1995) A single amino acid substitution in the antimicrobial defense protein cecropin B is associated with diminished degradation by leaf intercellular fluid. Mol Plant Microbe Interact 10:525–528

    Article  Google Scholar 

  • Powell W, Catranis C, Maynard C (1995) Synthetic antimicrobial peptide design. Mol Plant Microbe Interact 8:792–794

    PubMed  CAS  Google Scholar 

  • Reynoird J, Mourgues F, Norelli J, Aldwinckle HS, Brisset M, Chevreau E (1999) First evidence for differences in fire blight resistance among transgenic pear clones expressing attacin gene. Plant Sci 149:23–31

    Article  CAS  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler D, Dean D (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    PubMed  CAS  Google Scholar 

  • Schuhmann B, Seitz V, Vilcinskas A, Podsiadlowski L (2003) Cloning and expression of Gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch Insect Biochem Physiol 53:125–133

    Article  PubMed  CAS  Google Scholar 

  • Schulz S, Gross J, Hilker M (1997) Origin of the defensive secretion of the leaf beetle Chrysomela lapponica. Tetrahedron 53:9203–9212

    Article  CAS  Google Scholar 

  • Seitz V, Clermont A, Wedde M, Hummel M, Vilcinskas A, Schlatterer K, Podsiadlowski L (2003) Identification of immunorelevant genes from greater wax moth (Galleria mellonella) by a subtractive hybridization approach. Dev Comp Immunol 27:207–215

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Sharma R, Imamura M, Yamakawa M, Machii H (2000) Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Lett 484:7–11

    Article  PubMed  CAS  Google Scholar 

  • Sharma H, Sharma K, Crouch J (2005) The utility and management of transgenic plants with Bacillus thuringiensis genes for protection from pests. Crit Rev Plant Sci 23:47–72

    Article  CAS  Google Scholar 

  • Steiner H, Andreu D, Merrifield R (1988) Binding and action of cecropin and cecropin analogues: antibacterial peptides from insects. Biochim Biophys Acta 939:260–266

    Article  PubMed  CAS  Google Scholar 

  • Theis T, Stahl U (2004) Antifungal proteins: targets, mechanisms and prospective applications. Cell Mol Life Sci 61:437–455

    Article  PubMed  CAS  Google Scholar 

  • Thevissen K, Warnecke DC, Francois I, Leipelt M, Heinz E, Ott C, Zähringer U, Thomma B, Ferket K, Cammue B (2004) Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279:3900–3905

    Article  PubMed  CAS  Google Scholar 

  • Turpen T, Turpen A, Weinzettl N, Kumagani M, Dawson W (1993) Transfection of whole plants from wounds inoculated with Agrobacterium tumefaciens containing cDNA of tobacco mosaic virus. J Virol Methods 42:227–239

    Article  PubMed  CAS  Google Scholar 

  • Vilcinskas A, Matha V (1997) Antimycotic activity of lysozyme and its contribution to antifungal humoral defence reactions in Galleria mellonella. Anim Biol 6:19–29

    Google Scholar 

  • Vilcinskas A, Götz P (1999) Parasitic fungi and their interaction with the insect immune system. Adv Parasitol 43:267–313

    Google Scholar 

  • Yevtushenko D, Sidorov VA, Romero R, Kay WW, Misra S (2004) Wound-inducible promoter from poplar is responsive to fungal infection in transgenic potato. Plant Sci 167:715–724

    Article  CAS  Google Scholar 

  • Yevtushenko D, Romero R, Forward B, Hancock R, Kay W, Misra S (2005) Pathogen-induced expression of a cecropin A-mellitin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco. J Exp Bot 56:1685–1695

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Vilcinskas.

Additional information

Communicated by Jürgen Gross

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilcinskas, A., Gross, J. Drugs from bugs: the use of insects as a valuable source of transgenes with potential in modern plant protection strategies. J Pest Sci 78, 187–191 (2005). https://doi.org/10.1007/s10340-005-0114-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-005-0114-5

Keywords

Navigation