Skip to main content

An Incremental formulation for the linear analysis of viscoelastic beams: Relaxation differential approach using generalized variables

  • Conference paper
  • First Online:
Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Volume 3

Abstract

This paper is concerned with the development of a new incremental formulation in the time domain for linear, non-aging viscoelastic materials undergoing mechanical deformation. The formulation is derived from linear differential equations based on a discrete spectrum representation for the relaxation function. The incremental constitutive equations are then obtained by finite difference integration. Thus the difficulty of retaining the stress history in computer solutions is avoided. The influence of the whole past history on the behaviour at any time is given by a pseudo second order tensor. A complete general formulation of linear viscoelastic stress analysis is developed in terms of increments of midsurface strains and curvatures and corresponding stress resultants. The generality allowed by this approach has been established by finding incremental formulation through simple choices of the tensor relaxation components. This approach appears to open a wide horizon (to explore) of new incremental formulations according to particular relaxation components. Remarkable incremental constitutive laws, for which the above technique is applied, are given. This formulation is introduced in a finite element discretization in order to resolve complex boundary viscoelastic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1- Bozza A. and Gentili G. (1995) Inversion and Quasi-Static Problems in Linear Viscoelasticity. Meccanica 30:321–335

    Article  MathSciNet  MATH  Google Scholar 

  2. 2- Aleksey D. Drozdov and AlDorfmann (2004) A Constitutive Model in Finite Viscoelasticity of Particle-reinforced Rubbers. Meccanica 39:245–270

    Article  MATH  Google Scholar 

  3. Kim K.S, Sung LEE H (2007) An incremental formulation for the prediction of two-dimensional fatigue crack growth with curved paths. Int J Num Methods Eng 72:697–721

    Article  MATH  Google Scholar 

  4. Theocaris P.S (1964) Creep and relaxation contraction ratio of linear viscoelastic materials. J Mech Physics Solids 12:125–138

    Article  Google Scholar 

  5. Chazal C, Moutou Pitti R (2009) An incremental constitutive law for ageing viscoelastic materials: a three dimensional approach. C. R. Mecanique 337:30–33

    Article  MATH  Google Scholar 

  6. Mouto Pitti R, Chazal C, Labesse F, Lapusta Y (2011) A generalization of Mv integral to

    Google Scholar 

  7. axisymmetric problems for viscoelastic materials, accepted for publication in Acta Mechanica, DOI10.1007/s00707-011-0460-8

    Google Scholar 

  8. Moutou Pitti R, Chateauneuf A, Chazal C (2010) Fiabilité des structures en béton précontraint avec prise en compte du comportement viscoélastique Fiabilité des Matériaux et des Structures, 6èmes Journées Nationales de Fiabilité Toulouse, France

    Google Scholar 

  9. Krempl E, (1979) An experimental study of uniaxial room-temperature rate-sensitivity, creep and relaxation of AISI type 304 stainless steel. J Mech Physics Solids 27:363–375.

    Article  Google Scholar 

  10. Kujawski D, Kallianpur V, Krempl E (1980) An experimental study of uniaxial creep, cyclic Creep and relaxation of AISI type 304 stainless steel at room temperature. J Mech Physics Solids 28:129–148.

    Article  Google Scholar 

  11. Godunov S.K, Denisenko V.V, Kozin N.S, Kuzmina N.K (1975) Use of relaxation viscoelastic model in calculating uniaxial homogeneous strains and refining the interpolation equations for maxwellian viscosity. J Appl Mech Tech Physics 16:811–814.

    Article  Google Scholar 

  12. Duffrène L, Gy R, Burlet H, Piques R, Faivre A, Sekkat A, Perez J (1997) Generalized Maxwell model for the viscoelastic behavior of a soda-lime-silica glass under low frequency shear loading. Rheologica Acta, 36:173–186.

    Article  Google Scholar 

  13. Boltzmann L (1878) Zur Theorie der elastischen Nachwirkung Sitzungsber, Mat Naturwiss. Kl. Kaiser. Akad. Wiss 70, 275.

    Google Scholar 

  14. Christensen R.M (1971) Theory of Viscoelasticity: an Introduction. Academic Press, New York. ISBN 0-12-174250-4

    Google Scholar 

  15. Mandel J (1978) Dissipativité normale et variables caches. Mech Res Commun 5:225–229.

    Article  MathSciNet  MATH  Google Scholar 

  16. Salençon J (1983) Viscoélasticité. Presse de l’école nationale des ponts et chaussées, Paris.

    Google Scholar 

  17. Chazal C, Dubois F (2001) A new incremental formulation in the time domain of crack initiation in an orthotropic linearly viscoelastic solid. Mech Time-Depend Mater 5:229–253.

    Article  Google Scholar 

  18. Andreas Jäger, Roman Lackner et al. (2007) Identification of viscoelastic properties by means of nanoindentation taking the real tip geometry into account. Meccanica 42:293–306

    Article  MATH  Google Scholar 

  19. 18- Herbert W. Müllner, Andreas Jäger et al. (2008) Experimental identification of viscoelastic properties of rubber compounds by means of torsional rhemetry. Meccanica 43:327–337

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Chazal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Chazal, C., Pitti, R.M., Chateauneuf, A. (2011). An Incremental formulation for the linear analysis of viscoelastic beams: Relaxation differential approach using generalized variables. In: Proulx, T. (eds) Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0213-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0213-8_33

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0212-1

  • Online ISBN: 978-1-4614-0213-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics