Skip to main content

Factitious Angiogenesis III: How to Successfully Endothelialize Artificial Cardiovascular Bioprostheses by Employing Natural Angiogenic Mechanisms

  • Chapter
Molecular, Cellular, and Clinical Aspects of Angiogenesis

Part of the book series: NATO ASI Series ((NSSA,volume 285))

  • 62 Accesses

Abstract

In this series of NATO ASI meetings on angiogenesis, we introduced the concept of “factitious angiogenesis” to describe a novel approach in tissue engineering aimed at the generation of permanent, hemocompatible blood conduits (31,32). We define as blood conduits a variety of cardiovascular prostheses, such as artificial vascular grafts, ventricular assist devices and total artificial hearts, and skeletal muscle ventricles. Without belaboring the profound technical and surgical problems associated with their manufacture, implantation, and/or long term use, all of these cardiovascular prostheses share a major, common obstacle: the inadequate hemocompatibility of their blood-contacting surf aces, which are made of various types of biopolymers (23,30,52). We hypothesized that the hemocompatibility in these novel blood conduits can be significantly improved by lining their blood-contacting surfaces with a non-thrombogenic monolayer of autologous endothelial cells (ECs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. R., A. Pochettino, R. L. Hammond, E. Hohenhaus, A. D. Spanta, C. R. Bridges Jr., S. Lavine, R. D. Bhan, M. Colson, and L. W. Stephenson. 1991. Autogenously lined skeletal muscle ventricles in circulation: up to nine months’ experience. J. Thorac. Cardiovasc. Surg. 101:661–670.

    PubMed  CAS  Google Scholar 

  2. Bell, E. 1991. Tissue engineering: a perspective. J. Cell. Biochem. 45:239–241.

    Article  PubMed  CAS  Google Scholar 

  3. Carpentier, A. and J. C. Chachques. 1985. Myocardial substitution with a stimulated skeletal muscle: first successful clinical case. Lancet 1:1267.

    Article  PubMed  CAS  Google Scholar 

  4. Carpentier, A. and J. C. Chachques. 1987. Latissimus dorsi cardiomyoplasty to increase cardiac output. In Heart valve replacement: current status and future trends. G. Rabago and D. A. Cooley, editors. Future Publishing Co., Inc. Mount Kisco, N.Y. 473–486.

    Google Scholar 

  5. Carpentier, A. and J. C. Chachques. 1991. Clinical dynamic cardiomyoplasty: method and outcome. Semin. Thorac. Cardiovasc. Surg. 3:136–139.

    PubMed  CAS  Google Scholar 

  6. Carpentier, A., J. C. Chachques, and P. A. Grandjean (eds.). 1991. Cardiomyoplasty. The Bakken Research Center Series, Volume 3. Futura Publishing Company, Inc. Mount Kisco, NY.

    Google Scholar 

  7. Chachques, J. C, P. A. Grandjean, T. A. Pfeffer, P. Perier, G. Dreyfus, V. Jebara, C. Acar, M. Levy, I. Bourgeois, J. N. Fabiani, A. Deloche, and A. Carpentier. 1990. Cardiac assistance by atrial or ventricular cardiomyoplasty. J Heart Transplant 9:239–251.

    PubMed  CAS  Google Scholar 

  8. Chiu, R. C. J., ed. 1986. Biomechanical cardiac assist: cardiomyoplasty and muscle-powered devices. Futura Pub. Co. Mount Kisco, NY.

    Google Scholar 

  9. Courtney, J. M., N. M. K. Lamba, S. Sundaram, and C. D. Forbes. 1994. Biomaterials for blood-contacting applications. Biomaterials 15:737–744.

    Article  PubMed  CAS  Google Scholar 

  10. Dvorak, H. F., V. S. Harvey, P. Estrella, L. F. Brown, J. McDonagh, and A. M. Dvorak. 1989. Fibrin containing gels induce angiogenesis: implications for tumor stroma generation and wound healing. Lab. Invest. 57:673–686.

    Google Scholar 

  11. Eskin, S. G., H. D. Sybers, W. O’Bannon, and L. T. Navarro. 1982. Performance of tissue cultured endothelial cells in a mock circulatory loop. Artery 10:159–171.

    PubMed  CAS  Google Scholar 

  12. Freed, L. E., G. Vunjak-Novakovic, and R. Langer. 1993. Cultivation of cell-polymer cartilage implants in bioreactors. J. Cell. Biochem. 51:257–264.

    Article  PubMed  CAS  Google Scholar 

  13. Freshney, R. I. 1994. Culture of animal cells. A manual of basic technique. Wiley-Liss, Inc, New York.

    Google Scholar 

  14. Galvan, D. L., B. R. Unsworth, T. J. Goodwin, J. Liu, and P. I. Lelkes. 1995. Microgravity enhances tissue-specific neuroendocrine differentiation in cocultures of rat adrenal medullary parenchymal and endothelial cells. In Vitro Cell. Dev. Biol. 31:10A.

    Google Scholar 

  15. Golden, M. A., S. R. Hanson, T. R. Kirkman, P. A. Schneider, and A. W. Clowes. 1990. Healing of polytetrafluoroethylene arterial grafts is influenced by graft porosity. J. Vasc. Surg. 11:838–845.

    PubMed  CAS  Google Scholar 

  16. Goodwin, T. J., T. L. Prewett, D. A. Wolf, and G. F. Spaulding. 1993. Reduced shear stress: a major component in the ability of mammalian tissues to form three-dimensional assemblies in simulated microgravity. J. Cell. Biochem. 51:301–311.

    Article  PubMed  CAS  Google Scholar 

  17. Goodwin, T. J., W. F. Schroeder, D. A. Wolf, and M. P. Moyer. 1993. Rotating-wall vessel coculture of small intestine as a prelude to tissue modeling: aspects of simulated microgravity. Proc. Soc. Exp. Biol. Med. 202:181–192.

    PubMed  CAS  Google Scholar 

  18. Greisler, H. P., D. J. Cziperle, D. U. Kim, J. D. Garfield, D. Petsikas, P. M. Murchan, E. O. Applegren, W. Drohan, and W. H. Burgess. 1992. Enhanced endothelialization of expanded polytetrafluoroethylene grafts by fibroblast growth factor type 1 pretreatment. Surgery 112:244–255.

    PubMed  CAS  Google Scholar 

  19. Herring, M. B., R. Compton, D. R. LeGrand, and A. L. Gardner. 1989. Endothelial cell seeding in the management of vascular thrombosis. Semin. Thromb. Hemost. 15:200–205.

    Article  PubMed  CAS  Google Scholar 

  20. Hognes, J. R. and M. VanAntwerp (eds). 1991. The Artificial Heart: Prototypes, Policies, and Patients. National Academy Press, Washington DC.

    Google Scholar 

  21. Höckel, M., K. Schienger, S. Doctrow, T. Kissel, and P. Vaupel. 1993. Therapeutic angiogenesis. Arch. Surg. 128:423–429.

    PubMed  Google Scholar 

  22. Ishibashi, K. and T. Matsuda. 1994. Reconstruction of a hybrid vascular graft hierarchically layered with three cell types. ASAIO J. 40:M284-M290.

    Article  PubMed  CAS  Google Scholar 

  23. Ito, Y. and Y. Imanishi. 1989. Blood compatibility of polyurethanes. Crit. Rev. Biocompat. 5:45–104.

    CAS  Google Scholar 

  24. Kanda, K., T. Matsuda, and T. Oka. 1993. In vitro reconstruction of hybrid vascular tissue: hierarchic and oriented cell layers. ASAIO J. 39:M561-M565.

    Article  PubMed  CAS  Google Scholar 

  25. Kiement, B. J. and B. S. Spooner. 1993. Utilization of microgravity bioreactors for differentiation of mammalian skeletal tissue. J. Cell. Biochem. 51:252–256.

    Article  Google Scholar 

  26. Kohler, T. R., J. R. Stratton, T. R. Kirkman, K. H. Johansen, B. K. Zierler, and A. W. Clowes. 1992. Conventional versus high-porosity polytetrafluoroethylene grafts: clinical evaluation. Surgery 112:901–907.

    PubMed  CAS  Google Scholar 

  27. Langer, R. and J. P. Vacanti. 1993. Tissue engineering. Science 260:920–926.

    Article  PubMed  CAS  Google Scholar 

  28. Langer, R. and J. P. Vacanti. 1995. Artificial Organs. Scientific American. 273:130–133.

    PubMed  CAS  Google Scholar 

  29. Lelkes, P. I., H. Gao, J. R. Edgerton, and C. W. Christensen. 1994. Endothelial cell seeding of latissimus dorsi muscle pouches. J. Surg. Res. 57:460–469.

    Article  PubMed  CAS  Google Scholar 

  30. Lelkes, P. I. and M. M. Samet 1991. Endothelialization of the luminal sac in artificial cardiac prostheses: a challenge for both biologists and engineers. J. Biomech. Eng. 113:132–142.

    Article  PubMed  CAS  Google Scholar 

  31. Lelkes, P. I., M. M. Samet, C. W. Christensen, and D. L. Amrani. 1992. Factitious angiogenesis: endothelialization of artificial cardiovascular prostheses. In Angiogenesis in health and disease. M. E. Maragoudakis, P. Gullino, and P. I. Lelkes, editors. Plenum Press, New York, NY. 339–353.

    Chapter  Google Scholar 

  32. Lelkes, P. I., D. M. Chick, M. M. Samet, V. Nikolaychik, G. A. Thomas, and R. L. Hammond, and L. W. Stephenson. 1994. Factitious angiogenesis: not so factitious anymore? The role of angiogenic processes in the endothelialization of artificial cardiovascular prostheses. In Angiogenesis: Molecular Biology, Clinical Aspects. M. E. Maragoudakis, P. Guillino, and P. I. Lelkes, editors. Plenum Press, New York, NY. 321–331.

    Google Scholar 

  33. Lerich, R. 1933. Essai experimentale de traitement de certains infarctus du myocarde et de l’anerysme du coeur par une graffe de muscle strie. Bull. Soc. Nat. Chir. 59:229–234.

    Google Scholar 

  34. Magovern, G. J. 1991. Introduction to the history and development of skeletal muscle plasticity and its clinical application to cardiomyoplasty and skeletal muscle ventricle. Semin. Thorac. Cardiovasc. Surg. 3:95–97.

    PubMed  CAS  Google Scholar 

  35. Magovern, G. J., F. R. Heckler, S. B. Park, I. Y. Christlieb, G. A. Liebler, J. A. Burkholder, T. D. Maher, D. H. Benckart, G. J. Magovern, Jr., and R. L. Kao. 1988. Paced skeletal muscle for dynamic cardiomyoplasty. Ann. Thorac. Surg. 45:614–619.

    Article  CAS  Google Scholar 

  36. Mansfield, P. B., A. R. Wechezak, and L. R. Sauvage. 1975. Preventing thrombus on artificial vascular surfaces: true endothelial cell linings. Trans. Am. Soc. Artif. Intern. Organs 21:264–272.

    PubMed  CAS  Google Scholar 

  37. Massia, S. P. and J. A. Hubbell. 1992. Tissue engineering in the vascular graft. Cytotechnology 10:189–204.

    Article  CAS  Google Scholar 

  38. Menger, M. D., F. Hammersen, P. Walter, and K. Messmer. 1990. Neovascularization of prosthetic vascular grafts: quantitative analysis of angiogenesis and microhemodynamics by means of intravital microscopy. Thorac. Cardiovasc. Surgeon 38:139–145.

    Article  CAS  Google Scholar 

  39. Montesano, R., G. Schaller, and L. Orci. 1991. Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. Cell 66:697–711.

    Article  PubMed  CAS  Google Scholar 

  40. Müller-Glauser, W., P. Zilla, M. Lachat, B. Bisang, F. Rieser, L. von Segesser, and M. Turina. 1993. Immediate shear stress resistance of endothelial cell monolayers seeded in vitro on fibrin glue-coated ePTFE prostheses. Eur. J. Vasc. Surg. 7:324–328.

    Article  PubMed  Google Scholar 

  41. Niinami, H., A. Pochettino, and L. W. Stephenson. 1991. Use of skeletal muscle grafts for cardiac assist. Trends Cardiovasc. Med. 1:122–126.

    Article  PubMed  CAS  Google Scholar 

  42. Nikolaychik, V. V., M. M. Samet, and P. I. Lelkes. 1994. A new, cryoprecipitate-based coating for improved endothelial cell attachment and growth on medical grade artificial surfaces. ASAIO J. 40:M846-M852.

    Article  PubMed  CAS  Google Scholar 

  43. Noishiki, Y., Y. Yamane, M. Furuse, and T. Miyata. 1988. Development of a Growable Vascular Graft. ASAIO J. 34:308–313.

    CAS  Google Scholar 

  44. Peppas, N. A. and R. Langer. 1994. New challenges in biomaterials. Science 263:1715–1720.

    Article  PubMed  CAS  Google Scholar 

  45. Pepper, M. D. and R. Montesano. 1991. Proteolytic balance and capillary morphogenesis. Cell Differentiation 32:319–328.

    Google Scholar 

  46. Petrosky, B. V. 1966. Surgical treatment of cardiac aneurysms. J. Cardiovasc. Surg. 7:87–95.

    Google Scholar 

  47. Pette, D. 1991. Changes in phenotype expression of stimulated skeletal muscle. In Cardiomyoplasty. The Bakken Reserach Center Series Volume 3. A. Carpentier, J. C. Chachques, and P. A. Grandjean, editors. Futura Publishing Company, Inc. Mount Kisco, NY. 19–31.

    Google Scholar 

  48. Pochettino, A., D. R. Anderson, R. L. Hammond, S. Salmons, and L. W. Stephenson. 1991. Skeletal muscle ventricles. Semin. Thorac. Cardiovasc. Surg. 3:154–159.

    PubMed  CAS  Google Scholar 

  49. Pochettino, A., F. W. Mocek, H. Lu, R. L. Hammond, A. D. Spanta, T. L. Hooper, H. Niinami, R. Ruggiero, M. L. Colson, and L. W. Stephenson. 1992. Skeletal muscle ventricles with improved thromboresistance: 28 weeks in circulation. Ann. Thorac. Surg. 53:1025–1032.

    Article  PubMed  CAS  Google Scholar 

  50. Pochettino, A., A. D. Spanta, R. L. Hammond, D. R. Anderson, C. R. Bridges Jr., P. Samet, H. Ninami, E. Hohenhaus, S. Salmons, and L. W. Stephenson. 1990. Skeletal muscle ventricles for total heart replacement. Ann. Surg. 212:345–352.

    Article  PubMed  CAS  Google Scholar 

  51. Samet, M. M., D. M. Wankowski, V. Nikolaychik, and P. I. Lelkes. 1994. Endothelial cell seeding with rotation of a ventricular blood sac. ASAIO J. 40:M319-M324.

    Article  PubMed  Google Scholar 

  52. Schoen, F. J. 1991. Biomaterials science, medical devices, and artificial organs: synergistic interactions for the 1990s. Trans. Am. Soc. Artif. Intern. Organs 37:44–48.

    CAS  Google Scholar 

  53. Schwarz, R. P., T. J. Goodwin, and D. A. Wolf. 1992. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tiss. Cult. Meth. 14:51–58.

    Article  CAS  Google Scholar 

  54. Stephenson, L. W., J. A. Macoviak, F. Armenti, T. Bitto, J. D. Mannion, and M. A. Acker. 1986. Skeletal muscle for potential correction of congenital heart defects. In Biomechanical cardiac assist: cardiomyoplasty and muscle-powered devices. R. C.-J. Chiu, editor. Futura Pub. Co. Mount Kisco, N.Y. 129–139.

    Google Scholar 

  55. Thomas, G. A., P. I. Lelkes, D. M. Chick, S. Isoda, H. Lu, H. Nakajima, R. L. Hammond, H. L. Walters III, and L. W. Stephenson. 1995. Skeletal muscle ventricles seeded with autogenous endothelium. ASAIO J. 41:204–211.

    PubMed  CAS  Google Scholar 

  56. Thomas, G. A., P. I. Lelkes, D. M. Chick, H. Lu, T. A. Kowal, R. L. Hammond, H. Nakajima, H. O. Nakajima, A. D. Spanta, and L. W. Stephenson. 1995. Endothelial lined skeletal muscle ventricles: open and percutaneous techniques. J. Card. Surg. In press.

    Google Scholar 

  57. Thomas, G. A., P. I. Lelkes, S. Isoda, D. Chick, H. Lu, R. L. Hammond, H. Nakajima, H. L. Walters III, and L. W. Stephenson. 1995. Endothelial cell-lined skeletal muscle ventricles in circulation. J. Thorac. Cardiovasc. Surg. 109:66–73.

    Article  CAS  Google Scholar 

  58. Watt, F. M. 1991. Cell culture models of differentiation. FASEB J. 5:298–294.

    Google Scholar 

  59. Wechezak, A. R., R. F. Viggers, L. R. Sauvage, and P. B. Mansfield. 1984. Endothelial cell rounding associated with long-term implantations of left ventricular assist devices. Scanning Electron Microscopy 3:1353–1360.

    Google Scholar 

  60. Wu, M. H.-D., Q. Shi, A. R. Wechezak, A. W. Clowes, I. L. Gordon, and L. R. Sauvage. 1995. Definitive proof of endothelialization of a Dacron arterial prosthesis in a human being. J. Vase. Surg. 21:862–867.

    Article  CAS  Google Scholar 

  61. Zilla, P., R. Fasol, M. Grimm, T. Fischlein, T. Eberl, P. Preiss, O. Krupicka, U. von Oppell, and M. Deutsch. 1991. Growth properties of cultured human endothelial cells on differently coated artificial heart materials. J. Thorac. Cardiovasc. Surg. 101:671–680.

    PubMed  CAS  Google Scholar 

  62. Zilla, P. P., R. D. Fasol, and M. Deutsch (eds.). 1987. Endothelialization of vascular grafts. Karger, Basel, Switzerland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Lelkes, P.I., Nikolaychik, V.V., Samet, M.M., Wankowski, D.M., Chekanov, V. (1996). Factitious Angiogenesis III: How to Successfully Endothelialize Artificial Cardiovascular Bioprostheses by Employing Natural Angiogenic Mechanisms. In: Maragoudakis, M.E. (eds) Molecular, Cellular, and Clinical Aspects of Angiogenesis. NATO ASI Series, vol 285. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0389-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0389-3_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8030-6

  • Online ISBN: 978-1-4613-0389-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics