Skip to main content

The Spinning of Silk-like Proteins Into Fibers

  • Chapter
Protein-Based Materials

Part of the book series: Bioengineering of Materials ((BOM))

Abstract

It is remarkable that so many different silk fibroin compositions are found in nature that are converted to high performance fibers by their respective organisms. In contrast, we note that there are a relatively small number of synthetic polymers that have led to commercial man-made fibers. In fact, the development of man-made fibers in the late nineteenth century was motivated by the desire to mimic silk, the only natural, continuous filament then available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bamford CH, Brown L, Elliott A, Hanby W, Trotter IF (1954): Alpha and beta forms of polyalanine. Nature 173:27–29

    Article  CAS  Google Scholar 

  • Brown L, Trotter IF (1956): X-ray studies of Poly-alanine. Trans Faraday Soc 52:537–548

    Article  CAS  Google Scholar 

  • Capello J, Crissman J, Dorman M, Mikolajczak M, Textor G, Marquet M, Ferrari F (1990): Genetic engineering of structural protein polymers. Biotechnol Prog 6(3):198–202

    Article  Google Scholar 

  • Cappello J, McGrath K (1994): Spinning of protein polymers. In: Silk Polymers, Materials Science and Biotechnology, Kaplan D, Adams W, Farmer B, Viney C, eds. Washington DC: American Chemical Society

    Google Scholar 

  • Croston C, Evans C, Smith A (1945): Zein fibers: Preparation by wet spinning. Industr Eng Chem 37:1194–1198

    Article  CAS  Google Scholar 

  • Elliott A, Malcolm BR (1959): Chain arrangement and sense of the alpha helix in poly-alanine fibers. Proc Roy Soc Lond A249:30–41

    Google Scholar 

  • Foa C (1912): Colloidal properties of natural silk. Kolloid Z 10:7–12

    Article  CAS  Google Scholar 

  • Green N, Wrigley N, Russel W, Martin S, McLachlan A (1983): Evidence for a repeating cross beta-sheet structure in the adenovirus fiber. EMBO J 2:1357–1365

    PubMed  CAS  Google Scholar 

  • Holt C, Sawyer L (1988): Primary and predicted secondary structures of the caseins in relation to their biological functions. Protein Eng 2:251–259

    Article  PubMed  CAS  Google Scholar 

  • Iizuka E (1985a): Silk: An overview. J Appl Polym Sci: Appl Polym Symp 41:163–171

    CAS  Google Scholar 

  • Iizuka E (1985b): Silk Thread: Mechanism of spinning and its mechanical properties. J Appl Polym Sci: Appl Polym Symp 41:173–185

    CAS  Google Scholar 

  • Kerkam K, Viney C, Kaplan D, Lombardi S (1991): Liquid crystallinity of natural silk secretions. Nature 349:596–598

    Article  CAS  Google Scholar 

  • Leuchs H, Geiger W (1906): The anhydrides of alpha-amino N-carboxylic acids and alpha-amino acids. Ber Deut Chem Ges 41:1721–1726

    Google Scholar 

  • Lock R (1992): Process for spinning polypeptide fibers. U.S. Patent 5,171,505

    Google Scholar 

  • McGrath K, Fournier M, Mason T, Tirrell D (1992): Genetically directed syntheses of new polymeric materials: Expression of artificial genes encoding proteins with repeating-(AlaGly)3ProGluGly-elements. J Am Chem Soc 114:727–733

    Article  CAS  Google Scholar 

  • Glasser W, Hatakeyma H (1992): Gelation and subsequent molecular orientation of silk fibroin. In: Viscoelasticity of Biomaterials, Washington DC: American Chemical Society

    Chapter  Google Scholar 

  • Magoshi J, Magoshi Y, Nakamura S (1994): Mechanism of fiber formation of silkworm. In: Silk Polymers, Materials Science and Biotechnology, Kaplan D, Adams W, Farmer B and Viney C, eds. Washington DC: American Chemical Society

    Google Scholar 

  • Magoshi J, Magoshi Y, Nakamura S (1985a): Physical properties and structure of silk: 9. Liquid crystal formation of silk fibroin. Polym Comm 26:60–61

    CAS  Google Scholar 

  • Magoshi J, Magoshi Y, Nakamura S (1985b): Physical properties and structure of silk: 10. The mechanism of fibre formation from liquid silk of silkworm Bombyx mori. Polym Comm 26:309–311

    CAS  Google Scholar 

  • Magoshi J, Magoshi Y, Nakamura S (1985c): Crystallization, liquid crystal, and fiber formation of silk fibroin. J Appl Polym Sci: Appl Polym Symp 41:187–204

    CAS  Google Scholar 

  • Morton W, Hearle J (1975): Physical properties of Textile Fibers, 2nd ed. London: The Textile Institute/Heineman Ltd

    Google Scholar 

  • Noguchi J, Tokura S, Nishi N (1972): Poly-alpha-amino acid fibers. Angew Makromol Chemie 22:107–131

    Article  CAS  Google Scholar 

  • O’Brien J, Hoess R, Gardner K, Lock R, Wasserman Z, Weber P, Salemme F (1994): Design, synthesis and fabrication of a novel self-assembling fibrillar protein. In: Silk Polymers, Materials Science and Biotechnology, Kaplan D, Adams W, Farmer B and Viney C, eds. Washington DC: American Chemical Society

    Google Scholar 

  • Rathke T, Hudson S (1994): Review of chitin and chitosan as fiber and film formers. J Macromol Sci Rev Macromol Chem Phys C34:375–437

    Article  CAS  Google Scholar 

  • Sutermeister E, Brown F (1939): Casein and its Industrial Application, 2nd Ed. New York: Reinhold

    Google Scholar 

  • Urry D (1988): Bioelastics break new ground in the development of biomaterials. Res Rev 30:57–64

    CAS  Google Scholar 

  • Waite J, Jensen R, Morse D (1992): Cement precursor proteins of the reef building polychaete Phragmatopa californica (Fewkes). Biochem 31:5733–5738

    Article  CAS  Google Scholar 

  • Woodward RB, Schramm CH (1947): Synthesis of protein analogs. J Amer Chem Soc 69:1551–1552

    Article  CAS  Google Scholar 

  • Wormell RL (1954): New Fibres from Proteins. New York: Academic Press

    Google Scholar 

  • Yamaura K, Okumura Y, Matsuzawa S (1982): Mechanical denaturation of high polymers in solution. XXXVI. Flow induced crystallization of Bombyx mori L. silk fibroin from the aqueous solution under a steady state flow. J Macro Mol Sci Phys B21:49–69

    Article  CAS  Google Scholar 

  • Yamaura K, Okumura Y, Matsuzawa S (1985): Flow induced crystallization of Bombyx mori L. silk fibroin from regenerated aqueous solution and spinnability of its solution. J Appl Polym Sci: Appl Polym Symp 41:205–220

    CAS  Google Scholar 

  • Ziabicki A (1976): Fundamentals of Fiber Formation. New York: Wiley Interscience

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Boston

About this chapter

Cite this chapter

Hudson, S.M. (1997). The Spinning of Silk-like Proteins Into Fibers. In: McGrath, K., Kaplan, D. (eds) Protein-Based Materials. Bioengineering of Materials. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4094-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4094-5_10

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8649-3

  • Online ISBN: 978-1-4612-4094-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics