Skip to main content

Molecular and Structural Properties of Spider Silk

  • Chapter
  • First Online:
Extracellular Composite Matrices in Arthropods

Abstract

Spider silk has extraordinary mechanical properties, outperforming some of the best-known man-made and natural materials in the world. Over the past 300 million years, spiders have evolved to produce high performance fibers that are uniquely designed to encompass high-tensile strength and toughness. As scientists have pursued a deeper understanding of the biochemical properties of silk, investigators have discovered that spiders are capable of spinning multiple fiber types that exhibit diverse mechanical properties. These differences are largely attributed to unique combinations of silk proteins spun into the fibers and the primary, secondary, and tertiary structure of the silk proteins in the fibers. Because of the outstanding properties of spider silk and its potential to serve as a next generation biomaterial, researchers have been racing to replicate synthetic spider silk. In this book chapter, we summarize the molecular and chemical properties of different silk types in spiders, their biological functions, and mechanisms of silk extrusion, assembly, and post-spin draw. We also discuss strategies that are being implemented for large-scale production of recombinant silk proteins using a variety of heterologous expression systems, explore purification protocols, and review the different spinning methodologies that are being applied for synthetic silk production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrianos SL, Teule F, Hinman MB, Jones JA, Weber WS, Yarger JL, Lewis RV (2013) Nephila clavipes flagelliform silk-like GGX motifs contribute to extensibility and spacer motifs contribute to strength in synthetic spider silk fibers. Biomacromolecules 14:1751–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albertson AE, Teule F, Weber W, Yarger JL, Lewis RV (2014) Effects of different post-spin stretching conditions on the mechanical properties of synthetic spider silk fibers. J Mech Behav Biomed Mater 29:225–234

    Article  CAS  PubMed  Google Scholar 

  • Allmeling C, Jokuszies A, Reimers K, Kall S, Vogt PM (2006) Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit. J Cell Mol Med 10:770–777

    Article  PubMed  Google Scholar 

  • Andersson M, Chen G, Otikovs M, Landreh M, Nordling K, Kronqvist N, Westermark P, Jornvall H, Knight S, Ridderstrale Y, Holm L, Meng Q, Jaudzems K, Chesler M, Johansson J, Rising A (2014) Carbonic anhydrase generates CO2 and H+ that drive spider silk formation via opposite effects on the terminal domains. PLoS Biol 12:e1001921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arcidiacono S, Mello C, Kaplan D, Cheley S, Bayley H (1998) Purification and characterization of recombinant spider silk expressed in Escherichia coli. Appl Microbiol Biotechnol 49:31–38

    Article  CAS  PubMed  Google Scholar 

  • Arcidiacono S, Mello CM, Butler M, Welsh E, Soares JW, Allen A, Ziegler D, Laue T, Chase S (2002) Aqueous processing and fiber spinning of recombinant spider silks. Macromolecules 35:1262–1266

    Article  CAS  Google Scholar 

  • Argintean S, Chen J, Kim M, Moore AMF (2006) Resilient silk captures prey in black widow cobwebs. Appl Phys A Mater Sci Process 82:235–241

    Article  CAS  Google Scholar 

  • Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY (2007) Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS One 2:e514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ayoub NA, Garb JE, Kuelbs A, Hayashi CY (2013) Ancient properties of spider silks revealed by the complete gene sequence of the prey-wrapping silk protein (AcSp1). Mol Biol Evol 30:589–601

    Article  CAS  PubMed  Google Scholar 

  • Bini E, Foo CW, Huang J, Karageorgiou V, Kitchel B, Kaplan DL (2006) RGD-functionalized bioengineered spider dragline silk biomaterial. Biomacromolecules 7:3139–3145

    Article  CAS  PubMed  Google Scholar 

  • Blackledge TA, Summers AP, Hayashi CY (2005) Gumfooted lines in black widow cobwebs and the mechanical properties of spider capture silk. Zoology (Jena) 108:41–46

    Article  Google Scholar 

  • Blasingame E, Tuton-Blasingame T, Larkin L, Falick AM, Zhao L, Fong J, Vaidyanathan V, Visperas A, Geurts P, Hu X, La Mattina C, Vierra C (2009) Pyriform spidroin 1, a novel member of the silk gene family that anchors dragline silk fibers in attachment discs of the black widow spider, Latrodectus hesperus. J Biol Chem 284:29097–29108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogush VG, Sokolova OS, Davydova LI, Klinov DV, Sidoruk KV, Esipova NG, Neretina TV, Orchanskyi IA, Makeev VY, Tumanyan VG, Shaitan KV, Debabov VG, Kirpichnikov MP (2009) A novel model system for design of biomaterials based on recombinant analogs of spider silk proteins. J Neuroimmune Pharmacol 4:17–27

    Article  PubMed  Google Scholar 

  • Bon M (1710) A discourse upon the usefulness of the silk of spiders. Philos Trans 27:2–16

    Article  Google Scholar 

  • Brooks AE, Stricker SM, Joshi SB, Kamerzell TJ, Middaugh CR, Lewis RV (2008) Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2. Biomacromolecules 9:1506–1510

    Article  CAS  PubMed  Google Scholar 

  • Carmichael S, Barghout JY, Viney C (1999) The effect of post-spin drawing on spider silk microstructure: a birefringence model. Int J Biol Macromol 24:219–226

    Article  CAS  PubMed  Google Scholar 

  • Casem ML, Turner D, Houchin K (1999) Protein and amino acid composition of silks from the cob weaver, Latrodectus hesperus (black widow). Int J Biol Macromol 24:103–108

    Article  CAS  PubMed  Google Scholar 

  • Chaw RC, Correa-Garhwal SM, Clarke TH, Ayoub NA, Hayashi CY (2015) Proteomic evidence for components of spider silk synthesis from black widow silk glands and fibers. J Proteome Res 14:4223–4231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Liu X, Zhang Y, Lin S, Yang Z, Johansson J, Rising A, Meng Q (2012) Full-length minor ampullate spidroin gene sequence. PLoS One 7:e52293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choresh O, Bayarmagnai B, Lewis RV (2009) Spider web glue: two proteins expressed from opposite strands of the same DNA sequence. Biomacromolecules 10:2852–2856

    Article  CAS  PubMed  Google Scholar 

  • Clarke TH, Garb JE, Hayashi CY, Haney RA, Lancaster AK, Corbett S, Ayoub NA (2014) Multi-tissue transcriptomics of the black widow spider reveals expansions, co-options, and functional processes of the silk gland gene toolkit. BMC Genomics 15:365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colgin MA, Lewis RV (1998) Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like “spacer regions”. Protein Sci 7:667–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dams-Kozlowska H, Majer A, Tomasiewicz P, Lozinska J, Kaplan DL, Mackiewicz A (2013) Purification and cytotoxicity of tag-free bioengineered spider silk proteins. J Biomed Mater Res A 101:456–464

    Article  PubMed  CAS  Google Scholar 

  • Dicko C, Knight D, Kenney JM, Vollrath F (2004a) Secondary structures and conformational changes in flagelliform, cylindrical, major, and minor ampullate silk proteins. Temperature and concentration effects. Biomacromolecules 5:2105–2115

    Article  CAS  PubMed  Google Scholar 

  • Dicko C, Vollrath F, Kenney JM (2004b) Spider silk protein refolding is controlled by changing pH. Biomacromolecules 5:704–710

    Article  CAS  PubMed  Google Scholar 

  • Eberhard WG (2010) Possible functional significance of spigot placement on the spinnerets of spiders. J Arachnol 38:407–414

    Article  Google Scholar 

  • Elsner MB, Herold HM, Muller-Herrmann S, Bargel H, Scheibel T (2015) Enhanced cellular uptake of engineered spider silk particles. Biomater Sci 3:543–551

    Article  CAS  PubMed  Google Scholar 

  • Fahnestock SR, Bedzyk LA (1997) Production of synthetic spider dragline silk protein in Pichia pastoris. Appl Microbiol Biotechnol 47:33–39

    Article  CAS  PubMed  Google Scholar 

  • Fahnestock SR, Irwin SL (1997) Synthetic spider dragline silk proteins and their production in Escherichia coli. Appl Microbiol Biotechnol 47:23–32

    Article  CAS  PubMed  Google Scholar 

  • Fukushima Y (1998) Genetically engineered syntheses of tandem repetitive polypeptides consisting of glycine-rich sequence of spider dragline silk. Biopolymers 45:269–279

    Article  CAS  PubMed  Google Scholar 

  • Gaines WA, Sehorn MG, Marcotte WR (2010) Spidroin N-terminal domain promotes a pH-dependent association of silk proteins during self-assembly. J Biol Chem 285:40745–40753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garb JE, Hayashi CY (2005) Modular evolution of egg case silk genes across orb-weaving spider superfamilies. Proc Natl Acad Sci U S A 102:11379–11384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatesey J, Hayashi C, Motriuk D, Woods J, Lewis R (2001) Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 291:2603–2605

    Article  Google Scholar 

  • Gerritsen VB (2002) The tiptoe of an airbus. Protein Spotlight Swiss Prot 24:1–2

    Google Scholar 

  • Geurts P, Zhao L, Hsia Y, Gnesa E, Tang S, Jeffery F, La Mattina C, Franz A, Larkin L, Vierra C (2010a) Synthetic spider silk fibers spun from Pyriform Spidroin 2, a glue silk protein discovered in orb-weaving spider attachment discs. Biomacromolecules 11:3495–3503

    Article  CAS  PubMed  Google Scholar 

  • Geurts P, Zhao L, Hsia Y, Gnesa E, Tang S, Jeffery F, Mattina CL, Franz A, Larkin L, Vierra C (2010b) Synthetic spider silk fibers spun from pyriform spidroin 2, a glue silk protein discovered in orb-weaving spider attachment discs. Biomacromolecules 11:3495–3503

    Article  CAS  PubMed  Google Scholar 

  • Gnesa E, Hsia Y, Yarger JL, Weber W, Lin-Cereghino J, Lin-Cereghino G, Tang S, Agari K, Vierra C (2012) Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers. Biomacromolecules 13:304–312

    Article  CAS  PubMed  Google Scholar 

  • Gosline JM, Guerrete PA, Ortlepp CS, Savage KN (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202:3295–3303

    CAS  PubMed  Google Scholar 

  • Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703

    Article  CAS  Google Scholar 

  • Grip S, Johansson J, Hedhammar M (2009) Engineered disulfides improve mechanical properties of recombinant spider silk. Protein Sci 18:1012–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerette PA, Ginzinger DG, Weber BH, Gosline JM (1996) Silk properties determined by gland-specific expression of a spider fibroin gene family. Science 272:112–115

    Article  CAS  PubMed  Google Scholar 

  • Guinea GV, Elices M, Plaza GR, Perea GB, Daza R, Riekel C, Agullo-Rueda F, Hayashi C, Zhao Y, Perez-Rigueiro J (2012) Minor ampullate silks from Nephila and Argiope spiders: tensile properties and microstructural characterization. Biomacromolecules 13:2087–2098

    Article  CAS  PubMed  Google Scholar 

  • Hagn F, Eisoldt L, Hardy JG, Vendrely C, Coles M, Scheibel T, Kessler H (2010) A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465:239–242

    Article  CAS  PubMed  Google Scholar 

  • Hardy JG, Leal-Egana A, Scheibel TR (2013) Engineered spider silk protein-based composites for drug delivery. Macromol Biosci 13:1431–1437

    Article  CAS  PubMed  Google Scholar 

  • Hauptmann V, Weichert N, Menzel M, Knoch D, Paege N, Scheller J, Spohn U, Conrad U, Gils M (2013) Native-sized spider silk proteins synthesized in planta via intein-based multimerization. Transgenic Res 22:369–377

    Article  CAS  PubMed  Google Scholar 

  • Hayashi C, Lewis RV (1998) Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J Mol Biol 275:773–784

    Article  CAS  PubMed  Google Scholar 

  • Hayashi CY, Lewis RV (2000) Molecular architecture and evolution of a modular spider silk protein gene. Science 287:1477–1479

    Article  CAS  PubMed  Google Scholar 

  • Hayashi CY, Shipley NH, Lewis RV (1999) Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int J Biol Macromol 24:271–275

    Article  CAS  PubMed  Google Scholar 

  • Hayashi CY, Blackledge TA, Lewis RV (2004) Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Mol Biol Evol 21:1950–1959

    Article  CAS  PubMed  Google Scholar 

  • Heidebrecht A, Eisoldt L, Diehl J, Schmidt A, Geffers M, Lang G, Scheibel T (2015) Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk. Adv Mater 27:2189–2194

    Article  CAS  PubMed  Google Scholar 

  • Hinman MB, Lewis RV (1992) Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. J Biol Chem 267:19320–19324

    CAS  PubMed  Google Scholar 

  • Hsia Y, Gnesa E, Pacheco R, Kohler K, Jeffery F, Vierra C (2012) Synthetic spider silk production on a laboratory scale. J Vis Exp 2012:e4191

    Google Scholar 

  • Hu X, Kohler K, Falick AM, Moore AM, Jones PR, Sparkman OD, Vierra C (2005a) Egg case protein-1. A new class of silk proteins with fibroin-like properties from the spider Latrodectus hesperus. J Biol Chem 280:21220–21230

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Lawrence B, Kohler K, Falick AM, Moore AM, Mcmullen E, Jones PR, Vierra C (2005b) Araneoid egg case silk: a fibroin with novel ensemble repeat units from the black widow spider, Latrodectus hesperus. Biochemistry 44:10020–10027

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Kohler K, Falick AM, Moore AM, Jones PR, Vierra C (2006a) Spider egg case core fibers: trimeric complexes assembled from TuSp1, ECP-1, and ECP-2. Biochemistry 45:3506–3516

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Vasanthavada K, Kohler K, Mcnary S, Moore AM, Vierra CA (2006b) Molecular mechanisms of spider silk. Cell Mol Life Sci 63:1986–1999

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Yuan J, Wang X, Vasanthavada K, Falick AM, Jones PR, La Mattina C, Vierra CA (2007) Analysis of aqueous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. Biochemistry 46:3294–3303

    Article  CAS  PubMed  Google Scholar 

  • Huemmerich D, Slotta U, Scheibel T (2006) Processing and modification of films made from recombinant spider silk proteins. Appl Phys A 82:219–222

    Article  CAS  Google Scholar 

  • Ittah S, Michaeli A, Goldblum A, Gat U (2007) A model for the structure of the C-terminal domain of dragline spider silk and the role of its conserved cysteine. Biomacromolecules 8:2768–2773

    Article  CAS  PubMed  Google Scholar 

  • Jain D, Zhang C, Cool LR, Blackledge TA, Wesdemiotis C, Miyoshi T, Dhinojwala A (2015) Composition and function of spider glues maintained during the evolution of cobwebs. Biomacromolecules 16:3373–3380

    Article  CAS  PubMed  Google Scholar 

  • Jeffery F, La Mattina C, Tuton-Blasingame T, Hsia Y, Gnesa E, Zhao L, Franz A, Vierra C (2011) Microdissection of black widow spider silk-producing glands. J Vis Exp 47:2382. doi:10.3791/2382

    Google Scholar 

  • Jin HJ, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424:1057–1061

    Article  CAS  PubMed  Google Scholar 

  • Jones JA, Harris TI, Tucker CL, Berg KR, Christy SY, Day BA, Gaztambide DA, Needham NJ, Ruben AL, Oliveira PF, Decker RE, Lewis RV (2015) More than just fibers: an aqueous method for the production of innovative recombinant spider silk protein materials. Biomacromolecules 16:1418–1425

    Article  CAS  PubMed  Google Scholar 

  • Knight DP, Vollrath F (2001) Changes in element composition along the spinning duct in a Nephila spider. Naturwissenschaften 88:179–182

    Article  CAS  PubMed  Google Scholar 

  • Kohler K, Thayer W, Le T, Sembhi A, Vasanthavada K, Moore AM, Vierra C (2005) Characterization of a novel class II bHLH transcription factor from the black widow spider, Latrodectus hesperus, with silk-gland restricted patterns of expression. DNA Cell Biol 24:371–380

    Article  CAS  PubMed  Google Scholar 

  • Kovoor J, Zylberberg L (1980) Fine structural aspects of silk secretion in a spider (Araneus diadematus). I. Elaboration in the pyriform glands. Tissue Cell 12:547–556

    Article  CAS  PubMed  Google Scholar 

  • Kovoor J, Zylberberg L (1982) Fine structural aspects of silk secretion in a spider. II. Conduction in the pyriform glands. Tissue Cell 14:519–530

    Article  CAS  PubMed  Google Scholar 

  • Kummerlen J, Van Beek JD, Vollrath F, Meier B (1996) Local structure in spider dragline silk investigated by two-dimensional spin-diffusion nuclear magnetic resonance. Macromolecules 29:2920–2928

    Article  Google Scholar 

  • La Mattina C, Reza R, Hu X, Falick AM, Vasanthavada K, Mcnary S, Yee R, Vierra C (2008) Spider minor ampullate silk proteins are constituents of prey wrapping silk in the cob weaver Latrodectus hesperus. Biochemistry 47:4692–4700

    Article  PubMed  CAS  Google Scholar 

  • Lane AK, Hayashi CY, Whitworth GB, Ayoub NA (2013) Complex gene expression in the dragline silk producing glands of the Western black widow (Latrodectus hesperus). BMC Genomics 14:846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lang G, Jokisch S, Scheibel T (2013) Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins. J Vis Exp 2013:e50492

    Google Scholar 

  • Lazaris A, Arcidiacono S, Huang Y, Zhou JF, Duguay F, Chretien N, Welsh EA, Soares JW, Karatzas CN (2002) Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295:472–476

    Article  CAS  PubMed  Google Scholar 

  • Lefevre T, Rousseau ME, Pezolet M (2007) Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys J 92:2885–2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefevre T, Boudreault S, Cloutier C, Pezolet M (2011) Diversity of molecular transformations involved in the formation of spider silks. J Mol Biol 405:238–253

    Article  CAS  PubMed  Google Scholar 

  • Lewis R (1996) Unraveling the weave of spider silk. Bioscience 46:636–638

    Article  Google Scholar 

  • Lewis RV, Hinman M, Kothakota S, Fournier MJ (1996) Expression and purification of a spider silk protein: a new strategy for producing repetitive proteins. Protein Expr Purif 7:400–406

    Article  CAS  PubMed  Google Scholar 

  • Liivak O, Flores A, Lewis L, Jelinski LW (1997) Conformation of the polyalanine repeats in minor ampullate gland silk of the spider Nephila clavipes. Macromolecules 30:7127–7130

    Article  CAS  Google Scholar 

  • Liivak O, Blye A, Shah N, Jelinski LW (1998) A microfabricated wet-spinning apparatus to spin fibers of silk proteins. Structure-property correlations. Macromolecule 31:2927–2951

    Article  Google Scholar 

  • Lin Z, Deng Q, Liu XY, Yang D (2013) Engineered large spider eggcase silk protein for strong artificial fibers. Adv Mater 25:1216–1220

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Shao Z, Vollrath F (2005) Extended wet-spinning can modify spider silk properties. Chem Commun 19:2489–2491

    Article  CAS  Google Scholar 

  • Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297

    Article  CAS  PubMed  Google Scholar 

  • Muller-Hermann S, Scheibel T (2015) Enzymatic degradation of films, particles, and nonwoven meshes made of a recombinant spider silk protein. ACS Biomater Sci Eng 1:247–259

    Article  CAS  Google Scholar 

  • Nova A, Keten S, Pugno NM, Redaelli A, Buehler MJ (2010) Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett 10:2626–2634

    Article  CAS  PubMed  Google Scholar 

  • Parnham S, Gaines WA, Duggan BM, Marcotte WR, Hennig M (2011) NMR assignments of the N-terminal domain of Nephila clavipes spidroin 1. Biomol NMR Assign 5:131–133

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Zhou S, Jiang J, Guo T, Zheng X, Yu X (2009) Pressure-induced crystal memory effect of spider silk proteins. J Phys Chem B 113:4636–4641

    Article  CAS  PubMed  Google Scholar 

  • Perry DJ, Bittencourt D, Siltberg-Liberles J, Rech EL, Lewis RV (2010) Piriform spider silk sequences reveal unique repetitive elements. Biomacromolecules 11:3000–3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham T, Chuang T, Lin A, Joo H, Tsai J, Crawford T, Zhao L, Hsia Y, Williams C, Vierra CA (2014) Dragline silk: a fiber assembled with low-molecular-weight cysteine-rich proteins. Biomacromolecules 15:4073–4081

    Article  CAS  PubMed  Google Scholar 

  • Prince JT, Mcgrath KP, Digirolamo CM, Kaplan DL (1995) Construction, cloning, and expression of synthetic genes encoding spider dragline silk. Biochemistry 34:10879–10885

    Article  CAS  PubMed  Google Scholar 

  • Rabotyagova OS, Cebe P, Kaplan DL (2009) Self-assembly of genetically engineered spider silk block copolymers. Biomacromolecules 10:229–236

    Article  CAS  PubMed  Google Scholar 

  • Rammensee S, Slotta U, Scheibel T, Bausch AR (2008) Assembly mechanism of recombinant spider silk proteins. Proc Natl Acad Sci U S A 105:6590–6595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425

    Article  CAS  Google Scholar 

  • Scheller J, Guhrs KH, Grosse F, Conrad U (2001) Production of spider silk proteins in tobacco and potato. Nat Biotechnol 19:573–577

    Article  CAS  PubMed  Google Scholar 

  • Scior A, Preissler S, Koch M, Deuerling E (2011) Directed PCR-free engineering of highly repetitive DNA sequences. BMC Biotechnol 11:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slotta U, Tammer M, Kremer F, Koelsch P, Scheibel T (2006) Structural analysis of spider silk films. Supramol Chem 18:465–471

    Article  CAS  Google Scholar 

  • Sofia S, Mccarthy MB, Gronowicz G, Kaplan DL (2001) Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 54:139–148

    Article  CAS  PubMed  Google Scholar 

  • Spiess L, Wohlrab S, Scheibel T (2010) Structural characterization and functionalization of engineered spider silk films. Soft Matter 6:4168–4174

    Article  CAS  Google Scholar 

  • Stark M, Grip S, Rising A, Hedhammar M, Engstrom W, Hjalm G, Johansson J (2007) Macroscopic fibers self-assembled from recombinant miniature spider silk proteins. Biomacromolecules 8:1695–1701

    Article  CAS  PubMed  Google Scholar 

  • Stephens JS, Fahnestock SR, Farmer RS, Kiick KL, Chase DB, Rabolt JF (2005) Effects of electrospinning and solution casting protocols on the secondary structure of a genetically engineered dragline spider silk analogue investigated via Fourier transform Raman spectroscopy. Biomacromolecules 6:1405–1413

    Article  CAS  PubMed  Google Scholar 

  • Szela S, Avtges P, Valluzzi R, Winkler S, Wilson D, Kirschner D, Kaplan DL (2000) Reduction-oxidation control of beta-sheet assembly in genetically engineered silk. Biomacromolecules 1:534–542

    Article  CAS  PubMed  Google Scholar 

  • Teule F, Cooper AR, Furin WA, Bittencourt D, Rech EL, Brooks A, Lewis RV (2009) A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat Protoc 4:341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teule F, Miao YG, Sohn BH, Kim YS, Hull JJ, Fraser MJ Jr, Lewis RV, Jarvis DL (2012) Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc Natl Acad Sci U S A 109:923–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian M, Lewis RV (2005) Molecular characterization and evolutionary study of spider tubuliform (eggcase) silk protein. Biochemistry 44:8006–8012

    Article  CAS  PubMed  Google Scholar 

  • Tian M, Lewis RV (2006) Tubuliform silk protein: a protein with unique molecular characteristics and mechanical properties in the spider silk fibroin family. Appl Phys A 82:265–273

    Article  CAS  Google Scholar 

  • Tillinghast EK, Townley MA, Bernstein DT, Gallagher KS (1991) Comparative study of orb web hygroscopicity and adhesive spiral composition in three araneid spiders. J Exp Zool 259:154–165

    Article  Google Scholar 

  • Townley MA, Pu Q, Zercher CK, Neefus CD, Tillinghast EK (2012) Small organic solutes in sticky droplets from orb webs of the spider Zygiella atrica (Araneae; Araneidae): beta-alaninamide is a novel and abundant component. Chem Biodivers 9:2159–2174

    Article  CAS  PubMed  Google Scholar 

  • Tremblay ML, Xu L, Lefevre T, Sarker M, Orrell KE, Leclerc J, Meng Q, Pezolet M, Auger M, Liu XQ, Rainey JK (2015) Spider wrapping silk fibre architecture arising from its modular soluble protein precursor. Sci Rep 5:11502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Beek JD, Hess S, Vollrath F, Meier BH (2002) The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc Natl Acad Sci U S A 99:10266–10271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vasanthavada K, Hu X, Falick AM, La Mattina C, Moore AM, Jones PR, Yee R, Reza R, Tuton T, Vierra C (2007) Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spider Latrodectus hesperus. J Biol Chem 282:35088–35097

    Article  CAS  PubMed  Google Scholar 

  • Vasanthavada K, Hu X, Tuton-Blasingame T, Hsia Y, Sampath S, Pacheco R, Freeark J, Falick AM, Tang S, Fong J, Kohler K, La Mattina-Hawkins C, Vierra C (2012) Spider glue proteins have distinct architectures compared with traditional spidroin family members. J Biol Chem 287:35986–35999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollrath F, Edmonds DT (1989) Modulation of the mechanical properties of spider silk by coating with water. Nature 340:305–307

    Article  Google Scholar 

  • Vollrath F, Knight DP (1999) Structure and function of the silk production pathway in the spider Nephila edulis. Int J Biol Macromol 24:243–249

    Article  CAS  PubMed  Google Scholar 

  • Vollrath F, Knight DP (2001) Liquid crystalline spinning of spider silk. Nature 410:541–548

    Article  CAS  PubMed  Google Scholar 

  • Vollrath F, Fairbrother WJ, Williams RJP, Tillinghast EK, Bernstein DT, Gallagher KS, Townley MA (1990) Compounds in the droplets of the orb spider’s viscid spiral. Nature 345:526–528

    Article  CAS  Google Scholar 

  • Vollrath F, Wen Hu X, Knight DP (1998) Silk production in a spider involves acid bath treatment. Proc R Soc B 263:817–820

    Article  Google Scholar 

  • Wen H, Lan X, Zhang Y, Zhao T, Wang Y, Kajiura Z, Nakagaki M (2010) Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. Mol Biol Rep 37:1815–1821

    Article  CAS  PubMed  Google Scholar 

  • Winkler S, Szela S, Avtges P, Valluzzi R, Kirschner DA, Kaplan D (1999) Designing recombinant spider silk proteins to control assembly. Int J Biol Macromol 24:265–270

    Article  CAS  PubMed  Google Scholar 

  • Winkler S, Wilson D, Kaplan DL (2000) Controlling beta-sheet assembly in genetically engineered silk by enzymatic phosphorylation/dephosphorylation. Biochemistry 39:12739–12746

    Article  CAS  PubMed  Google Scholar 

  • Wolff JO, Grawe I, Wirth M, Karstedt A, Gorb SN (2015) Spider’s super-glue: thread anchors are composite adhesives with synergistic hierarchical organization. Soft Matter 11:2394–2403

    Article  CAS  PubMed  Google Scholar 

  • Xia XX, Qian ZG, Ki CS, Park YH, Kaplan DL, Lee SY (2010) Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci U S A 107:14059–14063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Lewis RV (1990) Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci U S A 87:7120–7124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Rainey JK, Meng Q, Liu XQ (2012) Recombinant minimalist spider wrapping silk proteins capable of native-like fiber formation. PLoS One 7:e50227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Tremblay ML, Orrell KE, Leclerc J, Meng Q, Liu XQ, Rainey JK (2013) Nanoparticle self-assembly by a highly stable recombinant spider wrapping silk protein subunit. FEBS Lett 587:3273–3280

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Xu S, Zhang H, Gu L, Xu Y, Ko F (2013) Structure-property relationship of regenerated spider silk protein nano/microfibrous scaffold fabricated by electrospinning. J Biomed Mater Res A 102:3828–3837

    Article  PubMed  CAS  Google Scholar 

  • Zarkoob S, Eby RK, Reneker DH, Hudson SD, Ertley D, Adams WW (2004) Structure and morphology of electrospun silk nanofibers. Polymer 45:3973–3977

    Article  CAS  Google Scholar 

  • Zhao AC, Zhao TF, Nakagaki K, Zhang YS, Sima YH, Miao YG, Shiomi K, Kajiura Z, Nagata Y, Takadera M, Nakagaki M (2006) Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi. Biochemistry 45:3348–3356

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Ayoub NA, Hayashi CY (2010) Chromosome mapping of dragline silk genes in the genomes of widow spiders (Araneae, Theridiidae). PLoS One 5:e12804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou S, Peng H, Yu X, Zheng X, Cui W, Zhang Z, Li X, Wang J, Weng J, Jia W, Li F (2008) Preparation and characterization of a novel electrospun spider silk fibroin/poly(D, L-lactide) composite fiber. J Phys Chem B 112:11209–11216

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Tiffany-Blasingame Tuton, Felicia Jeffery, Coby La Mattina, Albert Lin and Tyler Chuang for their contributions with the spider microdissection images from black widow spiders. In addition, we are grateful for contributions from Yang Hsia, Eric Gnesa, Thanh Pham, and Connie Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig Vierra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Crawford, T., Williams, C., Hekman, R., Dyrness, S., Arata, A., Vierra, C. (2016). Molecular and Structural Properties of Spider Silk. In: Cohen, E., Moussian, B. (eds) Extracellular Composite Matrices in Arthropods. Springer, Cham. https://doi.org/10.1007/978-3-319-40740-1_12

Download citation

Publish with us

Policies and ethics